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Abstract  

Objective. Polygenic prediction of type 2 diabetes in continental Africans is adversely affected 

by the limited number of genome-wide association studies (GWAS) of type 2 diabetes from 

Africa and the poor transferability of European derived polygenic risk scores (PRS) in diverse 

ethnicities. We set out to evaluate if African American, European or multi-ethnic derived PRSs 

would improve polygenic prediction in continental Africans. 

Research Design and Methods. Using the PRSice software, ethnic-specific PRSs were 

computed with weights from the type 2 diabetes GWAS multi-ancestry meta-analysis of 

228,499 cases and 1,178,783 controls. The  South African Zulu study (1602 cases and 981 

controls) was used as the target data set. Validation and assessment of the best predictive PRS 

association with age at diagnosis was done in the Africa America Diabetes Mellitus (AADM) 

study (2148 cases and 2161 controls). 

 Results. The discriminatory ability of the African American and Multi-ethnic PRS were 

similar. However, the African American derived PRS was more transferable in all the countries 

represented in the AADM cohort, and predictive of type 2 diabetes in the country combined 

analysis compared to the European and multi-ethnic derived scores. Notably, participants in 

the 10th decile of this PRS had a 3.63-fold greater risk (OR 3.63; 95%CI (2.19 - 4.03), p = 2.79 

x 10-17) per risk allele of developing diabetes and were diagnosed 2.6 years earlier compared 

to those in the first decile.  

Conclusions African American derived PRS enhances polygenic prediction of type 2 diabetes 

in continental Africans. Improved representation of non-European populations (including 

Africans) in GWAS promises to provide better tools for precision medicine interventions in 

type 2 diabetes. 
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Introduction  

The global prevalence of diabetes mellitus in 2019 was estimated to be 463 million 

individuals(1), of which 19.4 million were from Africa. Type 2 diabetes is the most common 

form of diabetes in Africa, accounting for 90% of the cases. African countries are adversely 

affected by limited resources to manage this burden. Nonetheless, by 2045 it is projected that 

Africa will experience the largest increase in diabetes prevalence in the world of 143% (1; 2). 

In addition, the highest proportion of undiagnosed (59.7%) people living with diabetes in the 

world reside in Africa(1). Therefore, urgent strategies and resources for improving screening 

and early identification interventions are required to help curb this pandemic in Africa. 

 

Type 2 diabetes is a multifactorial disease that is hypothesised to be increasing in prevalence 

due to the interaction of genetic and environmental factors(3). Although the genetic factors are 

stable over time, the surge in diabetes prevalence over the past decades is thought to be caused 

by urbanization and the adoption of westernized lifestyles characterised by consumption of 

energy-dense foods and physical inactivity(3; 4). However, diabetes has been noted to be 

preventable, and its onset delayed for 15 years by diet and exercise interventions in the Diabetes 

Prevention Program(5). Since diet and exercise strategies are readily accessible and relatively 

low-cost, coupling these lifestyle interventions with approaches that identify people more 

susceptible to developing diabetes earlier might effectively lower the diabetes burden. The use 

of polygenic risk scores for early identification of people that are more genetically susceptible 

to developing type 2 diabetes is such an approach(6). Recent studies conducted in Europeans 

have indicated that individuals in the 10th decile have a 5.21-fold higher risk (OR=5.21; 95% 

CI 4.94–5.49) of developing diabetes compared to those in the first decile(7). However, 

evidence exists of the poor transferability of European derived polygenic scores in diverse 

populations. For example, Martin et al. 2019 reported that European PRSs had a 4.9-fold 
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reduced predictive in African Americans across 17 traits. There is now a concern that African 

ancestry and other similarly under-studied population groups may not benefit from the clinical 

translation efforts of these polygenic risk scores and thereby further exacerbate existing health 

disparities (8; 9).  

 

Large multi-ethnic cohorts such as the Million Veteran Program improve the representation of 

African Americans in GWAS and offer a promise of enhanced polygenic prediction in this 

group (10). However, the representation of continental Africans in GWAS is still very low, 

both in the number of studies and the total number of study participants. For example, Type 2 

diabetes GWAS with over a million European participants are being reported, while the sample 

sizes of continental Africans remain under 10,000 (7; 11). Therefore, continental Africans face 

a much worse threat than African Americans of under-representation in precision medicine 

efforts for type 2 diabetes(9). It has been reported that multi-ethnic PRS (compared to European 

only PRS) might enhance prediction in diverse populations(12; 13). However, the predictive 

ability of the multi-ethnic derived PRS and that of African Americans who originated mainly 

from the Western part of Africa and have ~80% Africa admixture is yet to be evaluated in 

continental Africans (12; 13). We set up this study to assess the predictive ability of European, 

African-American and multi-ethnic derived polygenic risk scores for type 2 diabetes in 

continental Africans.  

 

Methods 

Study participants 

Black South African participants from the Durban Case-Control (DCC) study (1602 cases) that 

were attending a diabetes clinic in the same location in Durban with the 981 controls from the 

cross-sectional study  Durban Diabetes Study (DDS) were aggregated and collectively 
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regarded as the South African Zulu study, as indicated elsewhere (11; 14).  These individuals 

were above 18 years, not pregnant, and from urban black African communities in Durban, 

South Africa(14). The WHO criteria was used to define type 2 diabetes status. The validation 

study participants were from the AADM study, which has been described in detail 

elsewhere(15-17). The 2148 cases and 2161 controls from this study were enrolled at university 

medical centers in Nigeria (1325 cases and 1363 controls), Ghana (449 cases and 435 controls) 

and Kenya (374cases and 363controls) (17). In this study, diabetes was defined based on an 

oral glucose tolerance test or pharmacological treatment of diabetes(17) . Written informed 

consent was completed by the study participants. The respective studies were approved by 

relevant ethics committees under the following references DCC (BF078/08), DDS (BF030/12) 

and AADM (14/WM/1061). 

  

Genotyping and Imputation 

Participants in the South African Zulu study (Supplementary Table 1) were genotyped using 

the Illumina Multi-Ethnic Genotyping Array (Illumina, Illumina Way, San Diego, CA, USA). 

The Affymetrix Axiom PANAFR SNP array or Illumina Multi-Ethnic Genotyping Array was 

used to genotype participants in the AADM study. Detailed quality control and imputation for 

these studies was done using  African whole genomes from the Uganda 2000 Genomes (UG2G) 

and the 1000 Genomes as reference panels, as has been described elsewhere (11; 18). A 

minimum MAF threshold of 0.5% and imputation information score > 0.4 was applied(11). 

 

Statistical Analysis 

PRSice 2 software was used to implement the clumping and threshold approach for developing 

PRS. After sensitivity analysis, a clumping distance of 500kb and r2 of 0.5 were parameters 

used for computing PRS. GWAS summary statistics from the multi-ancestry GWAS of type 2 
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diabetes by Vujkovic et al., 2020, comprising of participants representative of European, 

African Americans, Hispanics and Asians(7) were used as the base (discovery), while genotype 

data from the South African Zulu study and AADM was used as the target data and validation 

datasets respectively as illustrated in Table 1.  

 

In the discovery analysis, multiple PRS were computed at p-value thresholds from 1 to 5x10-8 

of the base dataset and LD clumping from the target data set. The predictivity of these PRSs 

was then evaluated through linear models that adjusted for age, sex and population stratification 

(five principal components). The p-values of these PRS and the Nagelkerke R2 were evaluated 

to assess transferability and predictability, respectively (Supplement Figure 2-4). The best 

predictive Multi-ethnic, African American and European PRSs were then validated in the 

AADM study as shown in Table 1 and Supplementary Table 2. 

 

During the validation stage, the best predictive PRSs were assessed for transferability and 

predictivity through the p-values and Nagelkerke R2 in linear models implemented in PRSice, 

which corrected for age, sex, BMI and population stratification (five principal components) as 

shown in Table 1. This was first done for the whole of the AADM study and then at the country 

level, as shown in Figure 1B. 

 

The best predictive PRS from the three discovery datasets was then further used to assess its 

risk stratification and diagnostic utility. Logistic regression models for the PRS deciles as a 

predictor variable were computed while correcting for age, sex, body mass index (BMI) and 

residual population structure using principal components (five principal components). A shape 

plot was computed to show the differences in risk of the PRS deciles from the first, as shown 
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in Figure 1A. Finally, a linear regression model was used to evaluate whether the age of 

diagnosis in patients with diabetes (n=1031) is affected by PRS in the AADM study . 

 

Results 

 

Polygenic score development and validation 

From the linear models of the multiple PRSs generated using the PRSice software 

(Supplementary Figure 2-4), the best predictive PRS from the Europeans, Multiethnic, and 

African Americans was significant and had the highest variance as indicated by Nagelkerke R2 

of 0.69% (p = 5.09x10-6), 0.69% (p = 3.90x10-9 ) and 1.11% (p = 4.62x10-6) respectively (Table 

1). The best PRSs were validated in the AADM study and noted to be all significant in a similar 

trend. The African American PRS had the highest predictability indicated by Nagelkerke R2 

of 2.92% (9.38 x10-24)  in the combined analysis of the countries, as illustrated in Table 1. 

 

Polygenic risk score stratification and transferability in African countries 

 

The participants in the 10th decile of the African American derived PRS had a more than 3-fold 

higher risk for developing type 2 diabetes per risk allele, compared to those in the first decile 

in the AADM study OR 3.63 (95%CI (2.19 - 4.03), ;p = 2.79 x 10-17) (Figure 1A). On average, 

participants in the 10th decile of the African American PRS in the AADM study were diagnosed 

with type 2 diabetes 2.6 years earlier (Beta = -2.61; p = 0.046) than participants in the first 

decile (Figure 2B). The African American PRS was transferable in all countries compared to 

the multi-ethnic that was not in Kenya. The predictability (indicated by Nagelkerke R2) varied 

greatly between the East African country of Kenya and the two West African countries  Ghana 
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and  Nigeria, where it was much higher for both the African-American and the multi-ethnic 

PRSs. 

 

Discriminatory ability of the polygenic risk score 

The model with the conventional risk factors of age, BMI, five PCs and sex had an area under 

the curve (AUC)/C -statistic of 67.9% while that of the African American PRS, five PCs, age, 

BMI and sex was 69.8% (Figure 2) almost similar to the multi-ethnic PRS of multi-ethnic of 

69.9%. There was therefore improved discriminatory ability by 1.9%, with the addition of the 

African American PRS to the conventional risk factors.  

 

 

Conclusions 

 

Our study set out to assess the predictive value of type 2 diabetes PRS in continental Africans. 

In this study, we set out to compare the polygenic prediction of African American, European 

and multi-ethnic PRSs for type 2 diabetes in continental Africans. The PRS with the best 

prediction was derived from an African American restricted GWAS(7). Participants in the 10th 

decile of this PRS had a more than 3-fold increased risk of developing type 2 diabetes and were 

diagnosed 2.6 years earlier on average than those in the first decile. 

 

Limited studies of candidate SNP PRS have been performed in continental Africans. 

Previously we reported a genetic risk score with weights from Europeans that was associated 

with OR = 1.21, 95%CI (1.02–1.43) for type 2 diabetes in black South Africans(19). This GRS 

had an AUC of 0.665 together with conventional risk factors for type 2 diabetes (19). However, 

this study was limited due to the small sample size (n = 356), the availability of only genotyped 

SNPs, and the use of weights that were derived from European-only studies. In our current 
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study, we have substantially expanded the sample size (n = 2383), enhanced genome coverage 

by imputing to 1000 Genomes and local African Ancestry whole genomes(18), and used a 

multi-ethnic discovery dataset GWAS that included 1.4 million individuals, which had people 

of African American ancestry. We performed a country-level analysis which showed less 

variable predictability within regional countries in West Africa, Ghana and Nigeria and greater 

variability when comparing with other countries from other regions, such as Kenya in East 

Africa. This phenomenon is suggestive of the usefulness of regional PRS in Africa. However, 

this will need to be validated by additional studies. 

 

Nonetheless, polygenic predictions of European derived PRS in Europeans are still higher than 

that of the African Americans in continental Africans(7). Notably, participants in the top decile 

of a European derived PRS have recently been reported to have a greater than 5-fold risk for 

developing type 2 diabetes than those in the first decile in Europeans(7).  Failure to reach 

predictions denoted in Europeans might be due to that in our study, the African American 

derived PRS are from an admixed population group that is not representative of the genetic 

diversity and linkage disequilibrium patterns of continental Africans(13; 20). In addition, vast 

improvements in sizes of the European cohorts that are now over a million individuals is 

indicative of substantial power compared to African diabetes cohorts that are still below the 10 

thousand mark (21). More investments are thus required to increase the representation of 

continental Africans in GWAS of type 2 diabetes. 

 

Recently, it was reported that the multi-ancestry PRS outperforms the population-specific ones 

from Europeans and East Asians (22). However, this phenomenon is yet to be validated in 

continental Africans. Considering that 80% of GWAS have been done in Europeans, most 

multi-ancestry GWAS meta-analyses are biased towards this population group (8). Another 
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paper by Marquez-Luna et al., 2017 combined the training and the target dataset summary 

statistics to compute the PRS and then showed that the multi-ethnic PRS improve prediction in 

diverse populations(12). However, since this approach is not widely accepted and more 

research is still required to validate if the multi-ethnic PRS outperforms the population-specific 

PRS for all the ancestries(23; 24). In our study, the African American and Multiethnic PRS 

had similar discriminatory abilities. However, the African American PRS was slightly more 

predictive than the multi-ancestry for the combined AADM study and with improved 

representations of Africans, these predictions might increase in the future. In addition, the 

country stratified analyses also indicated that the multi-ancestry PRS was not transferable to 

participants from Kenya. The failure to tag the causal variant due to differences in allele 

frequencies, LD patterns, and heterogeneity of effect sizes is a potential reason for the limited 

predictivity of multi-ancestry meta-analysis in continental Africans that have greater genetic 

diversity(25-27). 

 

The utility of polygenic risk scores is an issue of paramount importance for clinical 

translation(6). The African American PRS, though it was predictive for type 2 diabetes in 

continental Africans, only improved the AUC of conventional risk factors by 1.9%, and  when 

combined with PCs, its AUC was 69.8%, while that of the conventional risk factors was 67.9%. 

Similarly, in a Swedish type 2 diabetes study, the European derived PRS increased the AUC 

by 1% compared to conventional risk factors (28). However, the use of AUC as a measure to 

evaluate the clinical utility of polygenic prediction is being debated, as it is regarded as a less 

sensitive metric(29). There are ongoing efforts to develop better metrics (30).  Nonetheless, 

findings from this study that people with type 2 diabetes and a high PRS are typically diagnosed 

at an earlier age and have a 3.6-fold risk of developing diabetes are of clinical importance. 

They may be useful in the prevention and treatment of diabetes. 
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Our study was limited by the limited number of GWAS of type 2 diabetes of continental 

Africans. Nonetheless, the African American derived PRS improved disease classification in 

this population. The clumping and thresholding approach used to compute the genome-wide 

PRS did not account for environmental factors such as diet and exercise that might confound 

the predictive accuracy of these measures. The strengths of our study include validation of the 

African American PRS in the AADM study and the fact that we used GWAS summary statistics 

of varied ethnicities from the same study, which minimized bias due to genotyping and GWAS  

designs. 

 

In summary, an African American derived PRS seems to be the best predictor for type 2 

diabetes in continental Africans compared to a European and multi-ethnic PRS. More studies 

are required to determine whether using continental African GWAS might further enhance 

these predictions and reach a similar accuracy as in Europeans. Although the PRS prediction 

of diabetes had low specificity and sensitivity, patient stratification by PRS may prove 

clinically useful. 
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Table 1 Comparisons of the predictive ability of ethnically derived PRS on type 2 

diabetes in continental Africans 

 Multi-ethnic African 

American 

European 

    

Discovery Dataset (Multi-ancestry 

meta-analysis) 
   

Cases 228,499 24,646 148,726 

Controls 1,178,783 31,446 965,732 

    

PRS Development    

Target Data Set (SA Zulu)    

Cases 1,602 1,602 1,602 

Controls 981 981 981 

PRS parameters    

P-value threshold 3 x 10-4 5 x 10-8 0.0608 

Number of SNPs 41,815 65 405,572 

Nagelkerke R2 % 0.69 1.11 0.69 

P-value 4.62x10-6 3.90x10-9 5.09x10-6 

*OR(95%CI) 1.29 (1.16-1.43) 1.58 (1.36-

1.84) 

1.01 (1.00-

1.01) 

*P-value 3.52 x 10-6 4.80 x 10-9 9.54 x10-6 

    

Validation of PRS     

Validation data set (AADM)    

Cases 2148 2148 2148 

Controls 2161 2161 2161 

PRS parameters    

P-value threshold 3 x 10-4 5 x 10-8 0.0608 

Number of SNPs 41,553 65 1,408,065 

Nagelkerke R2 % 2.62 2.92 0.13 

P-value 1.06 x 10-21 9.38 x10-24 2.99 x10-2 

*OR(95%CI) 1.04 (1.03-1.05) 1.57 (1.47-

1.67) 

1.004 (1.03-

1.05) 

*P-value 1.41 x 10-21 5.91 x 10-23 3.16 x10-2 

*models adjusted for ancestry indicated by 5 principal components, age, sex and BMI; OR = odds ratio; CI = confidence interval.  

 

Figure 1 A. Shape plot for the difference in odds ratio for type 2 diabetes (adjusted for age, 

sex, BMI and five principal components) in reference to the 1st decile for the African (African 

American), in the AADM study. B. Bar plots showing the  transferability of the  in African 

countries represented in the AADM study.  

 

Figure 2. A. Receiver operating curves for the African Americans derived PRS and 

conventional risk factors for the prediction of type 2 diabetes in the AADM study. 

Abbreviations; AUC= area under the curve, 5PCs = five principal components ,full model 
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=Age, sex, BMI, AFR PRS,5 PCs. B. Shape plot for the difference of age at diagnosis for 

type 2 diabetes in the AADM study for the African American derived PRS. 

 


