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Abstract
The main purpose of many medical studies is to estimate the effects of a
treatment or exposure on an outcome. However, it is not always possible to
randomize the study participants to a particular treatment, therefore observa-
tional study designs may be used. There are major challenges with observational
studies; one of which is confounding. Controlling for confounding is com-
monly performed by direct adjustment of measured confounders; although,
sometimes this approach is suboptimal due to modeling assumptions and
misspecification. Recent advances in the field of causal inference have dealt
with confounding by building on classical standardization methods. How-
ever, these recent advances have progressed quickly with a relative paucity of
computational-oriented applied tutorials contributing to some confusion in the
use of these methods among applied researchers. In this tutorial, we show the
computational implementation of different causal inference estimators from
a historical perspective where new estimators were developed to overcome
the limitations of the previous estimators (ie, nonparametric and parametric
g-formula, inverse probability weighting, double-robust, and data-adaptive esti-
mators). We illustrate the implementation of different methods using an empir-
ical example from the Connors study based on intensive care medicine, and
most importantly, we provide reproducible and commented code in Stata, R, and
Python for researchers to adapt in their own observational study. The code can
be accessed at https://github.com/migariane/Tutorial_Computational_Causal_
Inference_Estimators.
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1 INTRODUCTION

Often, questions that motivate studies in the health, social, and behavioral sciences are causal. However, these research
questions are usually answered using classical statistical methods, including multivariable outcome regression, to assess
the relationship between an exposure and an outcome. For example, in a given population, what is the mortality risk dif-
ference among those patients who received surgery for colorectal cancer vs those who did not?1 Often, the associations
between a treatment and an outcome assessed using classical methods cannot be interpreted as causal. Randomized clin-
ical trials (RCTs) are considered the gold standard for causal inference because randomization ensures the outcome is
independent of the treatment assignment. RCTs are not always feasible (ie, for ethical reasons or when the interest lies
in the estimation of real-world effects) or may fail when randomization does not work. Therefore, when causality cannot
be guaranteed by design (ie, in observational studies) or when the randomization procedure fails, causal inference meth-
ods must be used. Based on the randomized experiment setting, Rubin introduced the potential outcomes framework:
extending causal inference from randomized experiments to observational data.2 Then, these methods were extended to
observational settings with time-varying confounders.3

One of the aims when designing an observational study is to answer a scientific question that characterizes the effect
of a treatment on an outcome. This question is translated to an estimand (a target), which is the as yet unknown quantity
we are interested in. Then, we use the estimator (a method), which is an algorithm that uses the values of the obser-
vations in the sample (in other words, a function of the random variables) to generate the estimate (the quantitative
value generated for the estimator). The estimators are represented by algebraic equations that explicitly describe a func-
tion of the realized observations. Over the years, rapid ongoing advances in the field of causal inference have resulted
in several algorithms that improve upon classical methods (ie, outcome regression adjustment) to estimate the causal
effect of a treatment on an outcome. These methods incorporate estimators using propensity scores, g-computation, or
a combination of both (ie, double-robust estimators). G-computation methods model the outcome mechanism, whereas
propensity-score based methods model the treatment allocation, thus balancing the treatment groups in terms of the
confounders. Often, double-robust estimators are preferred over classical single-robust regression approaches when the
research question is causal.4,5

In this tutorial, we introduce the estimators mentioned above and show their computational implementation in
regards to their chronological development (ie, the methods were developed to address the limitations of the previous
approaches). However, these methods are also introduced from a practical computational perspective, allowing readers to
learn by using the replicable code. We use the Stata statistical software (StataCorp, 2020. StataCorp LLC, College Station,
TX), R statistical software (R Development Core Team, 2020. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria), and Python software (Python Software Foundation, 2020). All
materials are available at a GitHub repository for reuse and replication of our examples at https://github.com/migariane/
TutorialComputationalCausalInferenceEstimators. All examples in this article use Stata code, but examples using R and
Python are provided on the GitHub repository.

In the following sections, we will illustrate the computational implementation of different estimators that are comput-
ing the same estimand (ie, the average treatment effect (ATE), a.k.a risk difference for a binary treatment and outcome).
We will not focus on the assessment of heterogeneous treatment effects. In Section 2, we briefly introduce the setting
to estimate the ATE using Connors’ study. In Section 3, we introduce the g-computation based on the g-formula; and
in Section 4, we introduce the methods based on the inverse probability of treatment weights (IPTW). Afterwards, in
Section 5, we describe the computation of double-robust methods including the augmented inverse probability of treat-
ment weighting (AIPTW), and in Section 6, we present targeted maximum likelihood estimation (TMLE). Finally, in
Section 7, we compare the performance of the various estimators using a single simulated data set.

2 SETTING TO ESTIMATE THE ATE

To illustrate the implementation of the most common causal inference estimators we use an empirical data set from the
prospective cohort study of Connors et al.6 We use the data within the aforementioned GitHub repository; the original data
are available at: https://hbiostat.org/data/, however some variables will need to be recoded (see Box 1). The study was set
within intensive care units (ICUs) of five US teaching hospitals between 1989 and 1994, and evaluated the effectiveness
of right heart catheterization (RHC) on short-term mortality (30 days) of 5735 critically ill adult patients (2184 treated
and 3551 untreated) receiving care for 1 of 9 prespecified disease categories.

https://github.com/migariane/TutorialComputationalCausalInferenceEstimators
https://github.com/migariane/TutorialComputationalCausalInferenceEstimators
https://hbiostat.org/data/
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W A Y

F I G U R E 1 Y : outcome; A: treatment; W: sufficient set of variables to control for confounding, as outlined in Connors et al6

A common estimand in causal inference is the ATE. The ATE is defined by an average of the difference of two random
variables (ie, the potential outcomes Y (1) and Y (0)).3,7,8 For a binary treatment, each patient in the study has two potential
outcomes (ie, Y (a)), where Y (1) denotes the potential outcome if they received RHC, and Y (0) denotes the potential
outcome if they did not receive RHC (Supplementary Appendix 1).2,3,7,8 More detailed introductions of the causal language
used for the potential outcomes, and the assumptions needed to estimate causal effects using observational data, we
refer readers to a recently published tutorial.9 In our illustration, the outcome is short-term mortality (a binary variable)
defined as mortality within 30 days after ICU admission; the main intervention was RHC. We define the vector (W) to
include the set of predefined confounders. To estimate the ATE (ie, the standardized short-term risk difference of death
for those patients who received RHC versus those who did not), we compute different estimators using the prospective
cohort study of Connors et al.6

Figure 1 is a directed acyclic graph representing the causal relationship between the vector of predefined confounders
(ie, W: sex, age, education, race, and cancer), the intervention (A: receipt of RHC during their stay at the ICU), and the
outcome (Y : vital status of the patient in an ICU at 30 days after admission). Note that throughout the article, we refer to
A as the “treatment,” but it can be used interchangeably with the terms “exposure” or “intervention” depending on the
context.

To estimate the ATE of the intervention (RHC) on short-term mortality, we assume counterfactual consistency, condi-
tional exchangeability, non-interference, and positivity (see Supplementary Appendix 1). Furthermore, all the variables
included in W are confounders of the effect of A on Y ; there are no intermediate variables (ie, mediators or colliders); and
there is no residual confounding. Therefore, we assume, for illustrative purposes, that the set of covariates included in W
suffices, implying that the assumption of conditional mean independence holds (ie, sufficient control for confounding).

3 G- COMPUTATION METHODS BASED ON THE G-FORMULA

3.1 Nonparametric g-formula

Regression adjustment is used to estimate the main effect of a risk factor on an outcome. It is one of the classical methods
used in epidemiology to control for confounding. When a regression model does not include interactions the use of regres-
sion adjustment to control for confounding makes the assumption that the effect is constant across levels of confounders
(W) included in the model.5 Note that we focus on a binary outcome and treatment, thus “classical methods” will involve
logistic regression adjustment to estimate the conditional odds ratio (OR) for the association between the treatment and
the outcome. However, the OR is a non-collapsible measure of association, which means that the conditional OR can-
not be used to estimate the marginal ATE.5 Furthermore, in observational and randomized studies, the estimate of the
effect measure can be confounded given the different distribution of individual characteristics by treatment levels; thus,
causal inference methods are needed to correct for the imbalance. For example, in the instance of differential age dis-
tributions between two treatment groups, classical methods will approach the problem using multivariable regression
adjustment. However, causal inference methods use the g-formula, a generalization of the classical standardization proce-
dure, which allows obtaining an unconfounded marginal estimation of the ATE. For a binary treatment, the g-formula is
given by:3

ATE =
∑

w
[P(Y = 1 ∣ A = 1,W = w) − P(Y = 1 ∣ A = 0,W = w)]P(W = w), (1)

where

P(Y = 1 ∣ A = a,W = w) = P(W = w,A = a,Y = 1)∑
y P(W = w,A = a,Y = y)



4 SMITH et al.

is the conditional probability of the outcome Y = 1, given the treatment A = a, and the set of confounders W = w. Note,
the implementation of the g-formula requires the use of the total law of probability.2 In probability theory, the law of total
probability is a fundamental rule relating marginal probabilities to conditional probabilities.

In the following set of boxes, we show how to estimate the marginal causal effect (ie, effect of RHC on short-term
mortality) using the nonparametric and parametric g-formula in Stata. The Stata code, and the implementation of the
same computational approach using R and Python, is provided in a GitHub repository: https://github.com/migariane/
Tutorial_Computational_Causal_Inference_Estimators. For now, in the first nine boxes, we use sex as the sole con-
founder, namely “c” (sex: 0 female, 1 male). It is an oversimplification for pedagogical purposes, which allows readers
to readily appreciate the implementation of the computation of the parametric and nonparametric g-formula using
G-computation methods. In Boxes 10 to 13, we extend the methods by including multiple confounders. In contrast to
classical methods (regression-based methods), the way we adjust for confounding based on the generalization of stan-
dardization (g-formula) is more coherent as we assume that the effect of RHC on short-term mortality can differ by
sex. Classical methods, by including an interaction term in the model, can allow the effect to differ by sex but this
hampers the interpretation of the main effect of RHC.5 It is a subtle difference but provides a richer adjustment for
confounding.

In Box 1, we declare the global variables Y , A, C, and W to match the presented algebraic nomenclature (ie, Y : outcome,
A: treatment, C: one unique confounder, and W : a set of confounders). We use these global variables throughout the
implementation of the different methods.

Box 1: Setting the data

We first introduce, in Box 2, a naïve approach to estimate the ATE: we regress the outcome over the treatment (using
a linear model) and adjust for the confounder (ie, sex). In the naïve regression adjustment, the interpretation of the value
for the regression coefficient of the treatment in the model is assumed to be constant for a fixed level of the confounder
(ie, sex). In Box 2, the result for the naive regression adjustment shows strong evidence (p < 0.001) that the risk difference
of death within 30 days is 7.35% higher among those with RHC (95% confidence interval [CI]: 4.84-9.86), conditional on
sex. Results for this method, and for all of the methods in this tutorial, are shown in Table 1.

Box 2: Adjusted regression

For the first causal inference method we use, in Box 3, we compute the marginal probability of the confounder,
save it, and generate two new variables named sexf for females and sexm for males (ie, the marginal proportion of
females was 44%, thus 56% are males, which shows unequal probability of being assigned the treatment by sex). We
then compute, and save in a matrix, the expected conditional probabilities of the outcome by levels of the treatment
and the confounder. We substitute the results of the matrix into the g-formula, given in Equation (1), and compute
the ATE.

https://github.com/migariane/Tutorial_Computational_Causal_Inference_Estimators
https://github.com/migariane/Tutorial_Computational_Causal_Inference_Estimators
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T A B L E 1 Estimates of ATE from the different computational methods

Method ATE 95% CI ATE Bootstrap 95% CI

One confounder

Regression 7.35 4.84 to 9.86 7.35 4.78 to 9.92

NPG-1C n/a n/a 7.37 4.72 to 9.89

NPG-FS 7.37 4.83 to 9.91 7.37 4.68 to 9.84

PG-1C 7.37 4.83 to 9.91 7.37 4.68 to 9.84

Multiple confounders

Regression 8.26 5.77 to 10.75 8.26 5.69 to 10.83

PG-FS 8.36 5.83 to 10.88 8.36 5.68 to 10.84

IPW-PS 8.33 5.81 to 10.85 8.33 5.65 to 10.81

MSM 8.33 5.77 to 10.89 8.33 5.74 to 10.62

IPW-RA 8.35 5.82 to 10.87 8.35 5.74 to 10.63

AIPW 8.35 5.82 to 10.87 8.39 5.78 to 10.66

TMLE 8.45 5.92 to 10.97 n/a n/a

ELTMLE 8.35 5.82 to 10.87 n/a n/a

Note: n/a, 95% CI were not computed for the NPG-1C because the normal approximation was
not appropriate. Bootstrap 95% CIs for the TMLE and ELTMLE estimators are not theoretically
supported.
Abbreviations: 1C, one confounder; AIPW, augmented inverse probability weighting;
ELTMLE, ensemble learning targeted maximum likelihood estimation using Stata eltmle
package; FS, fully saturated; IPW, inverse probability weighting; MSM, marginal structural
model; NPG, nonparametric g-formula; PG, parametric g-formula; PS, propensity score; RA,
regression adjustment; TMLE, targeted maximum likelihood estimation by hand.

Box 3: Nonparametric g-formula for the ATE

For the case of only one confounder, the results from the naïve regression adjustment and g-formula approaches are
the same to one decimal place and nearly the same for the multivariable setting (ie, multiple confounders) (Table 1).
However, this is due to the use of a teaching data set with limited residual confounding (ie, good balance of treatment
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across the levels of the confounders). Note that in real settings it will not be the case and more importantly the
results and interpretation will differ (ie, conditional vs marginal estimate). The naïve approach (Box 2) is a condi-
tional estimation interpreted as the individual risk for treated vs non-treated, holding the levels of the confounder
constant. Whereas, the g-formula is a marginal contrast (Box 3) and therefore it must be interpreted at a population
level.

The interpretation of the estimate from the naïve approach (Box 2) is difficult to conceptualize because we are holding
the value of the confounder constant, and it requires the assumption that the effect of the treatment is the same for males
and females (ie, constant across the levels of the confounders).5,10 However, in observational studies, the ATE within strata
of confounders may differ. Therefore, the g-formula has become a powerful alternative to the multivariable regression
adjustment when controlling for confounding and evaluating the effects of treatments.3

3.1.1 Statistical inference: The bootstrap

When constructing confidence intervals from an estimate obtained from a causal inference estimator, model-based stan-
dard errors (SE) are incorrect. This is because the model-based SE do not account for the different steps we need to take
when we balance the confounders between treatment groups. We use the bootstrap procedure for inference implemented
in Stata with the command bootstrap.11 The bootstrap is a resampling method used to approximate the variance of the
estimate (eg, G-computation for the ATE).11,12 When estimating the variance using the bootstrap method, the observed
data is thought of as representing the entire target population, and each draw (with replacement) from the data mimics
the sampling variability. Under certain assumptions, this set of draws will return estimates of the sampling distribution
that are equivalent to having actually repeated the sampling from the original target population.11 Typically, for proce-
dures that use parametric models, the bootstrap is a reliable estimator of the variance (ie, the bootstrap uses the standard
deviation of the bootstrap estimates of the ATE as a plug-in for the SE and the computation of the confidence inter-
vals). However, note, it does not account for the bias engendered by model misspecification, so it only provides sampling
variability for whatever the estimator is estimating.11 The accuracy with which the bootstrap distribution estimates the
sampling distribution depends on the number of observations in the original sample and the number of replications in
the bootstrap.

To implement the bootstrap procedure in Stata we need to define a program that estimates the nonparametric
g-formula and then samples (with replacement) the ATE to derive the confidence intervals for the ATE. In Box 4 we
provide the code to compute the SE for the ATE using Stata.

Box 4: Bootstrap 95% confidence intervals (CI) for the ATE estimated using the nonparametric g-formula

Based on the nonparametric g-formula, the estimate of the ATE was 7.37%. Using the command “estat boot, all,”
Stata gives three sets of CIs for the ATE; by default the bootstrap procedure will only provide the Normal-based CI. The
first (N) is an approximation based on the Normal distribution (95% CI: 4.79-9.94). The naïve approach also uses the
Normal approximation based on the central limit theorem giving asymptotic CIs. It is observed that the performances
of the bootstrap CIs are better than the asymptotic confidence intervals in terms of the nominal coverage. Furthermore,
the average length of bootstrap CIs is slightly larger than those of asymptotic CIs.13,14 The second (P) is based on the
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percentile of the bootstrap distribution (95% CI: 4.59-9.82), and the third (BC) is based on the bias-corrected (95% CI:
4.72-9.89) (Table 1). Note that the percentile interval is a simple “first-order” interval that is formed from quantiles of the
bootstrap distribution. However, it is based only on bootstrap samples and does not adjust for skewness in the bootstrap
distribution, unlike the bias-corrected. Thus, we will report the BC 95% CI.14

For an alternative implementation of the nonparametric g-formula, we turn our attention to computing the ATE using
a fully saturated regression model (still with only one confounder) using the full information of the sample (including the
interactions between the treatment and the confounders). In Stata, there are two different approaches that we illustrate
in Boxes 5 and 6 using the commands predictnl and margins.

To estimate the ATE using a fully saturated regression model we need to include all the possible interactions between
the treatment and the different levels of the confounders (if categorical, otherwise with a continuous confounder) (Box
5). We do this by using the hashtag “#” symbol in Stata to include the interaction between A and C. The Stata prefix “ibn.”
specifies estimation of a categorical variable without the use of a base level (use with the noconstant option). The pre-
fix “c.()” indicates that the confounder (ie, sex) is to be used as a continuous variable (it does not matter for continuous
or binary variables, but will matter for categorical variables). The coeflegend option asks Stata to provide the list of the
labels of the variables in the analysis. The labels are then used for the predictnl command, which allows the computation
of the nonparametric predictions based on the combination of the conditional probabilities from the regression coeffi-
cients. Finally, we average over the predictions to get the nonparametric estimate for the ATE. Note that the approach
introduced in Box 5, in contrast to the approach presented in Box 3, is less computationally intensive in terms of time
and code.

Box 5: Nonparametric g-formula using a fully saturated regression model in Stata (A)

A simpler option for the nonparametric g-formula would be to use the margins command to estimate the marginal
probabilities using the option vce(unconditional) (Box 6). Then, the difference in marginal probabilities between the
treated vs non-treated is implemented using the contrast option from the margins command. Note that here we obtain
the same estimate of the ATE as 7.37% (95%: CI 4.83-9.91) but the appropriate 95% CI has been calculated using the delta
method (Table 1). The delta method is a statistical approach to derive the SE of an asymptotically normally distributed
estimator. It uses a first-order Taylor approximation, which is how we approximate the distribution of a function using a
tangent line (ie, the first derivative).15 Therefore, using the delta method here we assume that the ATE estimate from the
G-computation is normally distributed.16

Box 6: Nonparametric g-formula using a fully saturated regression model in Stata (B)
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3.2 Parametric g-formula

In contrast to the nonparametric methods (ie, probability distribution free or infinite dimensions), parametric methods
are not affected by the curse of dimensionality.17 However, to compute the ATE parametrically we have to assume there
is a particular probability distribution that fits the distribution of our data. To compute the ATE, we first regress (using a
simple linear regression model) the outcome over the confounder(s) separately for each treatment group. We then predict
the probability of treatment and contrast the difference in the expected probabilities between the two treatment groups
(note that every individual has two predicted probabilities corresponding to the two estimated potential outcomes). The
algebraic form of the ATE under the G-computation is given by

ATE = 1
n

n∑
i=1

(E(Yi ∣ Ai = 1,Wi) − E(Yi ∣ Ai = 0,Wi)) . (2)

In Box 7, we provide the code to compute, by hand, the ATE based on the parametric g-formula for one confounder
using parametric regression adjustment (based on formula 2).

Box 7: Parametric regression adjustment implementation of the g-formula

The risk of mortality among those with RHC is 7.37%, higher compared to those without RHC. Note that using a simple
linear combination (ie, lincom command in Stata) to compute a 95% CI for the linear contrast between the marginal
potential outcomes results in a biased CI that does not account for the two-step procedure to get the marginal probabilities.

Box 8: Parametric regression adjustment using Stata’s teffects

In Box 8, we confirm the result we obtained (by hand in Box 7) using the STATA’s teffects command and including
the “ra” option to perform the regression adjustment. Note the difference between the naïve and the teffects 95% CIs. The
teffects uses the delta method to correct for the uncertainty for each of the two models (ie, E(Y ∣ A = 1,C) and E(Y ∣ A =
0,C)), and provide appropriate statistical inference.

With the teffects command in Stata the ATE is 7.37%, which is the same as we obtained by hand (Box 7). However, note
that the 95% CI for the ATE using the command from Stata (teffects) is more conservative than using the naïve approach
without accounting for the uncertainty of the two regression models to predict the marginal probabilities (ie, 95% CI:
4.83-9.91 and 95% CI: 7.35-7.39, respectively for the teffects and the naïve approaches) (Table 1).

Box 9: Bootstrap for the parametric regression adjustment
Again, if we want to compute the 95% CI by hand using Stata we could use the bootstrap procedure (refer to Box 4 for

an explanation).

After bootstrapping, the estimate of the ATE is 7.37% and the bias-corrected 95% CI: (4.68-9.84) (Table 1).
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Box 10: Parametric multivariable regression adjustment implementation of the g-formula

As is often the case, there is almost always more than one confounder. The parametric computation of the g-formula
can easily be extended to include more than one confounder: remember that W includes a set of five confounders.

The ATE of those with RHC (ie, risk of mortality among those with RHC) is 8.36%, (95% CI: 8.25-8.47) higher compared
to those without RHC in contrast to the naïve regression multivariable adjustment of 8.26% (Table 1). Note, the 95% CI
provided by the lincom Stata command is biased as it is not accounting for the two-step estimation procedure to derive
the ATE.

Box 11: Parametric multivariable regression adjustment using Stata’s teffects command

In Box 11, we use Stata’s teffects command to confirm our results. We now include W instead of the single
confounder C.

We obtain the same results with Stata’s teffects command as with our calculations by hand (ATE 8.36%; 95% CI:
5.83-10.88). However, note again the difference between the 95% CI estimated naïvely and using the teffects command
(Table 1).
Box 12: Parametric multivariable regression adjustment using Stata’s marginscommand

In Box 12, we show another way of obtaining the ATE under the parametric g-formula approach using the Stata
margins command after fitting a fully saturated regression model. First, we regress the dependent variable (Y ) over the
treatment (A), including the interaction of A with all of the other confounders (W). We do this using the same approach as
in Box 5 (ie, ibn.$A#c.($W)) to include the interaction between all levels of A and a vector of all of the other confounders
included in the model. Then, the margins command calculates the predicted value of the expectation of the outcome
given the treatment and the confounders, and reports the mean value of those predictions for each level of the treatment
(A) (ie, E(Y ∣ A = 1,W) and E(Y ∣ A = 0,W)). Finally, to compute the ATE and provide corrected 95% CI based on the
delta method, we use the contrast option to compute the ATE. The ATE is the difference in the average 30-day mortality
between those treated with RHC and those who were not (ie, E(Y ∣ A = 1, W) − E(Y ∣ A = 0, W)). Note the results are
the same as before using the teffects command (ie, ATE 8.36%; 95% CI: 5.83-10.88) (Table 1).

Box 13: Bootstrap for the multivariable parametric regression adjustment

Finally, in Box 13, we show how to compute the bootstrap 95% CIs for the G-computation implementation of the
g-formula by hand using regression adjustment in Stata.

After bootstrapping, the estimate of the ATE is 8.36%. The bootstrapped bias-corrected 95% CI is (5.68-10.84) (Table 1).
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4 INVERSE PROBABILITY OF TREATMENT WEIGHTING

4.1 Inverse probability weighting based on the propensity score

In observational studies, some individuals will be more likely than others to be treated (A = 1) due to their characteristics.
Suppose some individuals who were treated were unlikely to be treated based on a specific set of features encapsulated
in a particular vector of confounders (W). To balance the differences in characteristics between treatment groups, we
reweight the outcome variable of these individuals by the inverse of their probability of the treatment (A) actually received
(ie, propensity score). Originally, the weights were motivated from the classical Horvitz and Thompson survey estimator
used to reweight the outcome variable by the inverse probability that it is observed, thus accounting for the sampling
process.18 The result of this weighting procedure is that, among the treated we up-weight those who had a low probability
of being treated, and among the untreated we up-weight those who were unlikely to be untreated; that is, the individuals
underrepresented in their treatment group. As a consequence, the weighted set of data is unchanged apart from A and
W are now conditionally independent. Therefore, a comparison of Yw(1) to Yw(0) gives a marginal causal effect under the
three identification assumptions (Supplementary Appendix 1) while also assuming the propensity score model is correctly
specified. The inverse probability of treatment weighting (IPTW), and the g-formula when targeting the same estimand
(ie, the ATE), are equivalent in the nonparametric setting.3,19 In Supplementary Appendix 2, we provide a proof of the
equivalence between IPTW and G-computation procedures using the law of total expectation.

Departing from the identification assumptions of the ATE for the regression adjustment G-computation estimand
(ATE = Ew(E(Y ∣ A = 1, W) − Ew(Y ∣ A = 0, W)), we can rewrite the same estimand as a function of the distribution of
A given W (ie, P(A = 1|W) a.k.a propensity score or treatment mechanism).

Therefore, the estimator is given by

ATE = 1
n

n∑
i=1

(
Ai

P(Ai = 1 ∣ Wi)
− 1 − Ai

(1 − P(Ai = 1 ∣ Wi))

)
Yi. (3)

There is a modified version (ie, Hájek type)20 of the IPTW estimator (Equation 3) consisting of stabilized weights,
which is more commonly used in practice when treatment and exposure vary over time (ie, time dependent confounding).
However, stabilized weights should have a mean of 1, but some values could be higher (ie, large weights). The stabilized
version of the IPTW estimator is given by

ATE =

∑(
AY

P(A=1∣W)

)
∑(

A
P(A=1∣W)

) −

∑(
(1 − A)Y

1 − P(A=1∣W)

)
∑(

(1 − A)
1 − P(A=1∣W)

) . (4)

In Box 14, we show how to compute the IPTW by hand in two steps:

• First, the propensity score model is fitted in rows 1 to 4 (ie, a logistic regression model for a binary treatment)
• Then the sampling weights are generated based on the inverse probability of treatment actually received. Note, the

weights are just the implementation of the classical Horvitz-Thompson survey estimator,18 (see rows 3 and 4) also
known as unstabilized weights (rows 5-9).

When there are near violations of the positivity assumption, the unstabilized weights can have large values, forc-
ing the variance to increase and exacerbate the uncertainty of the ATE estimation. Therefore, it is advisable to
explore the distribution of the weights to evaluate the extent to which they balance the distribution of confounders
across the levels of the treatment (ie, equally distributed). It is common to provide a table with the unweighted
and weighted differences of the standardized means of the confounders by the levels of the treatment. Also, it is
common to visualize an overlap of the propensity scores by the level of the treatment to identify and visualize posi-
tivity or near positivity violations and to explore the descriptive distribution of the weights (ie, mean, minimum and
maximum values). Lastly, while we are showing the use of logistic regression, the propensity score model may alter-
natively be estimated using nonparametric approaches (eg, the twang21 R package uses generalized boosted regression
modeling).
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Box 14: Computation of the IPTW estimator for the ATE

The risk difference between those with RHC and those without is 8.33%. Re-weighting the individuals generates a
pseudo-population (weighted population) from which the data generation does not follow a theoretical distribution and
individuals are no longer independent. Therefore the 95% CI is estimated using the bootstrap procedure in Box 15.

Box 15: Bootstrap computation for the IPTW estimator

As before, we can obtain confidence intervals using the bootstrap procedure.

After bootstrapping, the estimate of the ATE is 8.33%. The bootstrapped bias-corrected confidence interval is:
(5.65-10.81) (Table 1).

Box 16: Computation of the IPTW estimator for the ATE using Stata’s teffects command

We now confirm this result in Box 16 using Stata’s teffects command. Note that the Horvitz-Thompson estimator is
implemented using the ipw option. We obtain the same point estimate for the ATE and slightly different, but consistent,
95% CI based on the robust SE derived from the functional delta method (ie, ATE 8.33%; 95% CI: 5.81-10.85) (Table 1).

Box 17: Assessing IPTW balance

In Box 17, we show how to explore the balance of the confounders after weighting the contributions of individuals
using IPTW (ie, that the distribution of the confounders are balanced between those with RHC and those without). When
applying weights, we must be careful as we are assuming that the treatment has been balanced across the levels of the
confounders. In Stata, we use the tebalance option after using the teffects command but the balance can be assessed by
hand as well.
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T A B L E 2 Distribution of the treatment before and after applying weights

Standardized differences Variance ratio

Confounder Raw Weighted Raw Weighted

Sex 0.093 0.000 0.977 1.000

Age −0.061 −0.004 0.817 0.791

Education 0.091 −0.002 1.015 1.027

Race: Black −0.031 0.002 0.944 1.003

Race: Other 0.020 0.001 1.078 1.004

Cancer: Metastatic −0.069 −0.000 0.780 1.000

Cancer: Localized −0.072 0.000 0.879 0.999

Note: Reference groups (race: white, cancer: none).

After weighting, the two treatment groups appear to be well-balanced. Prior to weighting, there was some imbalance
(absolute values of the standardized differences close to, or beyond, 0.10) on sex, education level and presence/extent
of cancer between treatment groups.22 A variance ratio (ie, the ratio of the standardized distribution of the confounders
by the levels of the treatment) equal to 1 before and after weighting informs us that the distribution of the confounders
across the levels of the treatments is the same (ie, perfectly balanced). Note, the weighted variance ratio for the continuous
variable age is 0.79, which is slightly further from 1 than the variance ratio for the original (unweighted) sample (ie,
0.82); this slight change is possibly because the weighted mean for age might have greater sampling variance than the
unweighted mean (Table 2).23

There is no definitive value at which the treatment is considered unbalanced; however, as a guideline, a variance ratio
less than 0.5 indicates that the data is not balanced and the potential for the positivity violation must be explored (ie,
when P(A = a ∣ C = c) is near to zero or one). An additional strategy is to check the distribution of the weights: if there
are very large weights this indicates the violation of the positivity assumption but, also, it can be due to parametric mod-
eling misspecification. Again there is no clear consensus but, when there are very large weights, researchers often set
the weights to a less extreme value. This is done by trimming or removing the data at the extremes of the distribution of
the weights (eg, the 5th and 95th percentiles).24 Trimming the weights reduces variance (ie, omitting the largest weights
and making the positivity assumption more plausible), but at the expense of introducing bias.25 However, another alter-
native without dropping observations is truncation, whereby all the values of the weights, larger than a user-specified
maximum value or percentile (eg, 1st and 99th or 5th and 95th), are replaced by that threshold value.25,26 In extreme
cases, when the weights are extremely large, changing the estimand could be another solution (eg, estimating the ATE
in a subset of the sample, just like among only those treated, representing the average treatment effect among the treated
-ATT-).

Box 18: Assessing IPTW overlap by hand

It is also important to check the overlap of the propensity scores of the two treatment groups. The “overlap” gives
a visual identification regarding the strength of confounding and whether it is acceptable. In Box 18, we show how to
visualize the “overlap” using a kernel density estimate of the treatment assignment by the levels of the treatment. Figure 2
shows there is a suitable amount of overlap.
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Box 19: Assessing overlap using teffects overlap

The overlap plots can be obtained with Stata’s overlap command after calling the teffects command. We are using data
where there is a good balance and overlap but in real-world observational data the balance and overlap, before using any
weighting procedure, are not likely to be well balanced.

4.2 Marginal structural model with stabilized weights

We now introduce the marginal structural model (MSM) as a transition to the double-robust methods.27 An MSM is a
marginal mean model. A popular method for estimating the parameters of the MSM is weighted regression modeling
that estimates the marginal distributions of the counterfactuals.27,28 In the MSM, the coefficient for the treatment is
the estimate of treatment effect, usually the ATE. The MSM uses an updated version of the Horvitz-Thompson weights,
commonly used in sampling theory.18 The weights represent the inverse of the probability of treatment (a.k.a propensity
score). In Box 20, we show how to compute a MSM:

• First, in rows 1 to 18, we compute the propensity score and the weights.
• In row 20, we fit the MSM using the unstabilized weight, and in row 21, using the stabilized version. The approach

to compute the weights is equivalent to the one presented in Box 14 where reweighting the individuals generated
a pseudo-population and classical statistical inference does not hold.29 Thus, for statistical inference we use the
vce(robust) option, which implements the delta method, to estimate the appropriate SE for the ATE.17 However, using
the bootstrap procedure is also a valid option.

• Finally, in rows 21 to 45, we show how to implement the bootstrap procedure to compute the 95% CI.
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The ATE derived from the MSM is 8.33%, and the 95% CI using the delta method: (5.77-10.89) and (5.84-10.85) using
the bootstrap procedure (Table 1).

Box 20: Computation of the IPTW estimator for the ATE using a MSM

5 DOUBLE-ROBUST METHODS

5.1 Inverse probability weighting plus regression adjustment

The IPTW-RA is an estimator using a G-computation regression adjustment (RA) that incorporates the estimated sta-
bilized IPTW. It has been shown that the IPTW-RA helps to correct the estimator when the regression function is
misspecified, provided that the propensity score model for the treatment is correctly specified. When the regression func-
tion is correctly specified, the weights do not affect the consistency of the estimator even if the model from which they
are derived is misspecified.30 Note that combining both, the IPTW and the RA approaches, the IPTW-RA estimator has
the special property that it is consistent as long as at least one of the two models (ie, ITPW and RA) is correctly specified,
it is why estimators that combine both modeling approaches are named double-robust.31 When one uses G-computation
methods only, they rely on extrapolation of the treatment effects when there are identifiability issues due to data spar-
sity and near-positivity violations. Adding the IPTW to the regression adjustment allows evaluation of the balance of the
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treatment and of possible positivity violations, increasing the researcher’s awareness of the limitations of causal infer-
ence modeling. It is encouraged, when possible, to explore the implementation of the nonparametric g-formula (using the
important confounders) and identify potential problems with the data relating to the curse of dimensionality from finite
samples (ie, zero empty cells for a given combination of conditional probabilities from the different variables included in
analysis needed to implement the g-formula).

Although IPTW with regression adjustment (IPTW-RA) is usually more efficient than IPTW, it also relies on different
parametric modeling assumptions: (i) a parametric G-computation regression adjustment model, and (ii) a model for
the propensity score of binary treatments. The G-computation weighted model uses the weights calculated from the
predictions of the propensity score logistic model. An estimated propensity score that is close to 0 or 1 is problematic,
since it implies that some individuals will receive a very large weight leading to imprecise and unstable estimates (ie,
near positivity assumption violation). Therefore, the use of stabilized weights is suggested (see code from Box 20), and
the bootstrap for statistical inference.

Box 21: Computation of the IPTW-RA estimator for the ATE and bootstrap for statistical inference

After bootstrapping, the estimate of the IPTW-RA ATE is 8.35%, bias-corrected 95% CI (5.83 - 10.87). The results are
very similar to those obtained using the Stata’s teffects command with the option ipwra presented in Box 22 (ie, ATE:
8.35% and 95% CI: 5.82-10.87) (Table 1).

Box 22: Computation of the IPTW-RA estimator for the ATE using Stata’s teffects

Note that using ipwra we specify two models (ie, the model for the outcome and the model for the treatment).

5.2 Augmented inverse probability of treatment weighting

The AIPTW estimator is an improved IPTW estimator that includes an augmentation term, which corrects the estimator
when the treatment model is misspecified. When the treatment model is correctly specified, the augmentation term van-
ishes as the sample size becomes large. Thus, the AIPTW estimator is more efficient than the IPTW. However, like the
IPTW, the AIPTW does not perform well when the predicted treatment probabilities are too close to zero or one (ie, near
positivity violations). Under correct modeling specification, the augmentation term has expectation zero and includes the
expectation of the propensity score and the regression adjustment outcome. Thus, the AIPTW combines two paramet-
ric models (ie, a model for the outcome and a model for the treatment).32,33 The AIPTW estimator produces a consistent
estimate of the ATE if either of the two models has been correctly specified.30,33
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Focusing on the IPTW estimator for the ATE in Equation (3), let �̂�a be the expectation of the ATE using IPTW, more
formally this is

�̂�a = E
(

I(A = a)
g(A ∣ W)

Y
)
,

where I is the indicator function and g(.) refers to the treatment mechanism.
We can rewrite the equation in the form of an estimating equation (see Glossary) as,

1
n

n∑
i=1

(
I(Ai = a)Yi

g(Ai ∣ Wi)
− 𝜇a

)
= 0,

As long as the estimating function has mean zero then �̂� is a consistent estimator of 𝜇, where 𝜇a = E(Y ∣ A = a,W). If we
augment the estimating function using a mean-zero term,

I(A = a) − g(A = a ∣ W)
g(A = a ∣ W)

,

including the propensity score expectation (g(A = a ∣ W)), we have integrated both the estimation of the treatment
mechanism and the mean outcome (E(Y ∣ A = a,W)), then

E
(

I(A = a)Y
g(A = a ∣ W)

−
(

I(A = a) − g(A = a ∣ W)
g(A = a ∣ W)

)
E(Y ∣ A = a,W)

)
− 𝜇a = 0.

Rearranging the equation we can see that the AIPTW estimator is a combination of inverse weighting and outcome
regression defined for a binary treatment as

1
n

n∑
i=1

(E(Yi ∣ Ai = 1,Wi) − E(Yi ∣ Ai = 0,Wi))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
G-computation-Regression-Adjustment

+ 1
n

n∑
i=1

(
Ai[Yi − E(Yi ∣ Ai = 1,Wi)]

g(Ai = 1 ∣ Wi)
− (1 − Ai)[Yi − E(Yi ∣ Ai = 1,Wi)]

g(Ai = 0 ∣ Wi)

)
,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Zero-expectation

(5)
where the ATE from the AIPTW estimator is defined as

AIPTW-ATE = 𝜇1 − 𝜇0,

𝜇1 = 1
n

n∑
i=1

(
E(Yi ∣ Ai = 1,Wi) +

Ai[Yi − E(Yi ∣ Ai = 1,Wi)]
g(Ai = 1 ∣ Wi)

)
,

𝜇0 = 1
n

n∑
i=1

(
E(Yi ∣ Ai = 0,Wi) +

(1 − Ai)[Yi − E(Yi ∣ Ai = 1,Wi)]
g(Ai = 0 ∣ Wi)

)
. (6)

The second term in Equation (5) can be interpreted as playing the role of two nuisance parameters of the AIPTW
estimating function. The nuisance parameters are represented as a weighted sum of the residuals for the conditional mean
of the outcome.16 Equation (5) shows that the AIPTW estimator equals the g-formula estimator if the outcome model is
correctly specified irrespective of the treatment model. Likewise, the point estimate will be equal to the IPTW estimator
if the treatment model is correctly specified, irrespective of the outcome model.31,33

In Box 23 we show how to compute the AIPTW estimator for the ATE using Stata:

• Step 1: First, we predict the mean outcome by treatment status using G-computation regression adjustment (rows 1-7).
• Step 2: Then, we compute the inverse of treatment weights (rows 9-16).
• Step 3: Using Equation (5), we compute the ATE (rows 18-26).
• Step 4: Finally, we compute 95% CI using the bootstrap procedure in Stata (rows 28-52).
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Box 23: Computation of the AIPTW estimator for the ATE and bootstrap for statistical inference

After bootstrapping the ATE is 8.39% and the bias-corrected 95% CI confidence intervals are: (5.87-10.89) (Table 1). In
Box 24, we show the same results using Stata’s teffects command with the aipw option. Note that we have to specify the
model for the treatment and the model for the outcome.

Box 24: Computation of the AIPTW estimator for the ATE using Stata’s teffects

The ATE is 8.35%, 95% CI: 5.82 to 10.87 (Table 1).

6 DATA-ADAPTIVE ESTIMATION: ENSEMBLE LEARNING TARGETED
MAXIMUM LIKELIHOOD ESTIMATION

Targeted maximum likelihood estimation (TMLE) is a plug-in, semi-parametric, double-robust method that reduces the
bias of an initial estimate by allowing for flexible estimation using nonparametric data-adaptive machine-learning meth-
ods to target an estimate closer to the true model specification.4 There are several TMLE tutorials published elsewhere,34-38
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but here we provide a brief introduction. To learn more about the algorithm, readers can refer to van der Laan and Rose’s
TMLE book,4 and from a practical perspective to a step-by-step tutorial illustrated in a realistic cancer epidemiology sce-
nario published by Statistics in Medicine in 2018.38 The advantages of TMLE have been demonstrated in both simulation
studies and applied analyses.4,39 Evidence shows that TMLE can provide the least biased ATE estimate compared with
other double-robust estimators such as the IPTW-RA and AIPTW. In particular, while TMLE and AIPW estimators are
asymptotically equal, TMLE enjoys better finite sample properties. Separately, TMLE is often implemented with ensemble
machine learning, which can relax model specification constraints.4,39

In Box 25, we provide the computational implementation of TMLE by hand (without data-adaptive estimation) to
guide and interpret the different steps involved in the TMLE. A description of the theory behind these steps can be found
elsewhere.38

• Step 1: We estimate the expected outcome given treatment and confounders (E(Y ∣ A, W): this is called the plug-in
initial estimate of the estimator obtained via G-computation, namely Q0 (Box 25: rows 1-15).

• Step 2: We define the expected treatment given the confounders as we did previously for the estimation of the propensity
score in Box 14, namely g0. Steps 1 and 2 are similar to the double-robust methods of AIPTW; however, we now come
to the advantage of TMLE (Box 25: rows 17-21).

• Step 3: We regress the predicted treatment values and predicted outcome introduced in the model as an offset on the
observed outcome. The parameter estimates (epsilon) for that regression are used to correct the initial estimations of
Q0 (Box 25: rows 24-27). In other words, we reduce the residual bias and optimized the bias-variance trade-off for the
estimate of the ATE so that we can obtain valid statistical inference. Note that the TMLE framework adds the possibility
to estimate the Q0 and g0 models using data adaptive machine learning algorithms and selecting the best model or an
ensemble of the models.4 It has been shown that using machine learning algorithms reduces misspecification bias.40

Note, in Box 25, the residual bias is reduced by solving an equation that calculates how much to update, or fluctuate,
our initial outcome estimates

E∗[Y ∣ A,W] = logit(E[Y ∣ A,W]) + 𝜖H(A,W),

where E∗(Y ∣ A,W) represents the updated initial expectation of the outcome (Y ) given the treatment status (A) and the
set of confounders (W). To solve this equation, we fit an intercept-free logistic regression (using H as the only predictor
of the observed outcome) and the initially predicted outcome (under the observed treatment) as an offset (Step 3: rows
24-27) as a targeting step aimed to reduce bias. Fitting the logistic regression, using maximum likelihood procedures,
TMLE yields many useful statistical properties, such as: (1) the final estimate is consistent as long as either the outcome
or treatment model are estimated correctly (consistently); (2) if both of these models are estimated consistently, the
final estimate achieves “semi-parametric efficiency,” that is, variance reduction as the sample size approaches infinity.
Also the AIPTW is semi-parametric efficient.

• Step 4: We added the coefficient 𝜖 of the clever covariate H in the previous step to the expected outcome for all
observations from the model fitted in Step 1 using (Step 4: rows 29-31), updating the Q0 model predictions to Q1.

Q1(A = 1,W) = E∗[Y ∣ A = 1,W]) = expit(logit(E[Y ∣ A = 1,W]) + 𝜖H(1,W)), and

Q1(A = 0,W) = E∗[Y ∣ A = 0,W]) = expit(logit(E[Y ∣ A = 0,W]) + 𝜖H(0,W)).

• Step 5: We compute the ATE as the difference between expectations of the updated Q1 predictions in the previous
step (ie, E[Y ∣ A = 1,W]) − E[Y ∣ A = 0,W])) (Box 25: rows 33-36). It is worth noting that Steps 3 and 4, which are
improvements to AIPTW and IPTW-RA estimators, are the very concepts that make TMLE more robust against near
positivity violations and force the estimator to respect the boundaries of the limits of the parameter space (ie., the
probabilities stay between 0 and 1). For example, to estimate the ATE using the AIPTW estimator the researcher sets
the estimation equation equal to zero. However, solving the estimating equation when there are near violations of the
positivity assumption can cause the estimator to fall outside the boundaries of the parameter space (ie, 0 and 1). Using
TMLE, the ATE estimate is 8.34%, 95% CI: 5.82-10.98 (Table 1), which is consistent with all the previous estimates
using different estimators.
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• Finally, in Step 6, we provide statistical inference using the functional delta method and the influence function
(IF).4,16,41,42 In the next section we briefly introduce these concepts.

Box 25: Computational implementation of TMLE by hand

6.1 Statistical inference for data-adaptive estimators: Functional delta method

We used the bootstrap procedure and delta method for statistical inference presetting the previous estimators. Although
both approaches are commonly used in practice, and show good statistical properties in a wide range of settings, they
have some limitations. The bootstrap procedure is computationally intensive for large data sets and the use of the delta
method will not always be appropriate (ie, nonparametric settings). Furthermore, when data-adaptive estimation is used,
the bootstrap procedure is not supported theoretically, and the functional delta method based on the IF is required.
The IF is a fundamental object of semi-parametric theory that allows us to characterize a wide range of estimators
and their efficiency.4,16,42 The IF of a regular asymptotic and linear estimator �̂� of 𝜓(𝜃), where 𝜃 is a random vari-
able based on independent and identically distributed samples Oi which capture the first order asymptotic behavior
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of �̂� , such that

n
1
2 �̂� − 𝜓(𝜃) = n− 1

2

n∑
i=1

IF(Oi; 𝜃) + op(1),

where op(1) represents the remainder term from the first order approximation that converges to zero (in terms of the
probability) when the sample size converges to infinity. Mathematically, we can identify the IF as being the second term of
a first degree Taylor approximation.41,43 From the variance of the IF we derive the SE of the ATE from the TMLE estimator.
Therefore, the functional delta method based on the IF readily allows the application of the central limit theorem and,
therefore, to compute Wald-type confidence intervals.4 However, using the IF for statistical inference may require larger
sample sizes to avoid finite-sample issues. Recent research and theoretical developments support the use of double-robust
cross-fit estimators to retain valid statistical inference when using machine learning algorithms that are non-Donsker.44

The computation of the IF is provided in Box 25 (Step 6: rows 38-53).
In Box 26, we outline how to compute the ATE using data-adaptive procedures implemented in the eltmle user-written

Stata command.45 This command implements the TMLE framework for the ATE of the marginal risk ratio and odds
ratio for a binary or continuous outcome and a binary treatment. It also includes the use of data-adaptive estimation of
the propensity score g0 and regression outcome Q0 models via ensemble learning,46 which is implemented by calling the
SuperLearner package v.2.0-21 from R.46,47 The super-learner uses 5-fold cross-validation by default to assess the perfor-
mance of prediction regarding the potential outcomes and the propensity score as weighted averages of a set of machine
learning algorithms. The SuperLearner has default algorithms implemented in the base installation of the tmle-R package
v.1.2.0-5.35 The default algorithms include the following: (i) stepwise selection, (ii) generalized linear modeling (GLM),
(iii) a GLM variant that includes second order polynomials and two-by-two interactions of the main terms included in
the model. Additionally, eltmle has an option to include Bayes generalized linear models and generalized additive models
as additional algorithms.

Box 26: TMLE and data-adaptive estimation with Stata’s user written eltmle

The ATE is 8.35%, 95% CI: 5.82-10.87 (Table 1).

7 SIMULATION

The motivation of this section is to compare all of the different methods provided in the tutorial under a simple Monte
Carlo simulated experiment. For simplicity and pedagogical purposes, we only simulate one sample. However, we pro-
vide the results and code in R of a Monte Carlo experiment with 1000 samples based on the same template as the one
presented here and available at https://github.com/migariane/TutorialComputationalCausalInferenceEstimators. In Box
27, we outline the data generation process to create random variables including the confounders, the treatment, and the
outcome. Afterward, we estimate the simulated value for the ATE, and compute the ATE using all the aforementioned
different estimators under a scenario of forced near-positivity violation and model misspecification. Lastly, we compare
their performance based on the relative bias with respect to the value of the simulated ATE (note that this approximates
bias, as we only simulate 1 data set). Note that other metrics to assess performance can also be used, including the vari-
ance of the estimate. The simulation setting includes a binary outcome (Y ), potential outcomes (ie, Y (1) and Y (0)), and a
binary treatment (A). The vector of confounders W reflect the commonly analyzed cancer patient characteristics: depri-
vation level (w1, five categories), age at diagnosis (w2, binary), cancer stage (w3, four categories), and comorbidity (w4,
four categories).

https://github.com/migariane/TutorialComputationalCausalInferenceEstimators
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Box 27: Data generation for the Monte Carlo experiment

For a single-instance simulated data set, compared to the true ATE of 0.165, all of the methods produced a biased
estimate under near positivity violations and model misspecification (ie, RA: 4.4% bias, IPTW: 3.3% bias, IPTW-RA: 1.2%
bias, and AIPTW: 1.8% bias), but ELTMLE produces an estimate that is unbiased (ie, ELTMLE: 0% bias to 3 decimal
places) relative to the true ATE. The relative bias from only one simulated sample for the regression adjustment and IPTW
estimator is large because they rely on the positivity assumption, which, in this simulation, is violated because there
was a low number of individuals with a higher comorbidity value. Without correcting for this imbalance in the data, the
methods that rely on this assumption will be vulnerable to bias.
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8 CONCLUSION

Overall, methods introduced here rely on the estimation of the g-formula (nonparametrically or parametrically), which
is a generalization of standardization, the inverse probability of treatment weighting (IPTW), or their combination (ie,
double-robust methods).3 However, there are other estimators based on matching strategies that we did not cover here.19

Readers can find a more detailed overview of the propensity score and matching methods in a recently published article.48

Table 2 shows the results of the ATE for all of the different causal inference estimators we introduced in the tutorial.
Overall, all of the methods showed a consistent result for the ATE (Table 2). The RHC data (demonstrated in this article) is
used to teach causal inference methods because of its extremely well-balanced distribution of confounders across levels of
the treatment (RHC). However, in most observational studies, data are not usually well-balanced and there are potentially
near violations of the positivity assumption that must always be checked.

We introduced different estimators in regards to their chronological development: the methods were developed to
answer the limitations of the previous approach. For example, parametric estimators were developed to address the curse
of dimensionality. Then, issues related to extrapolation for the G-computation, and the instability of the estimations due
to large weights for the IPTW estimators, encouraged the development of double-robust methods. AIPTW was a strong
candidate to answer this issue by incorporating semi-parametric theory and methods to causal inference. However, it was
known that it did not solve the estimation equation (ie, equal to zero) due to the fact that it is not a substitution estimator
or plug-in estimator (see Glossary). Thus, to overcome this limitation of the AIPTW estimator, data-adaptive estimation
using machine learning algorithms and ensemble learning to estimate the nuisance parameters from the regression and
propensity score models, were combined to solve the estimation equation.4 Evidence shows that the double-robust esti-
mators (particularly TMLE) obtain less biased estimates of the true causal effect in comparison to naive estimators such
as multivariate regression.4

Evidence shows that when comparing the underlying properties of each method based on Monte-Carlo experiments,
only TMLE provides the numerous properties of estimating the probability distribution that enable it to out-perform the
others. The properties of the estimator are: loss-based, well-defined, unbiased, efficient and can be used as a substitution
estimator. Maximum likelihood estimation (MLE) based methods (stratification, propensity score and parametric regres-
sion) and other estimating equations (IPTW and AIPTW) do not have all of the properties of TMLE and evidence shows
that they underperform in comparison to TMLE in selected samples. For more detailed comparisons between the differ-
ent methods, the interested reader is referred to Chapter 6 of van der Laan and Rose’s TMLE textbook.4 It is important
to highlight that in contrast to the AIPTW estimator, TMLE respects the global constraints of the statistical model (ie,
P0(0 < Y < 1) = 1) and solves the estimation equations being equal to zero.4

However, even if TMLE is less prone to errors due to misspecification than alternative methods (eg, inverse prob-
ability weighting) there is some question regarding the validity of the robustness of inference produced by TMLE in
nonparametric settings.49 This is an area of ongoing work (ie, double/debiased machine learning, cross-validated TMLE
and cross-fit estimators).44,50,51 Furthermore, TMLE and the SuperLearner were originally developed in R.35,46 Outside
R, there is a Python library implementing TMLE and the SuperLearner named zEpid,52 and a SAS library implement-
ing the SuperLearner.53 Also, there is a user written program for Stata (eltmle).45 However, eltmle is not completely
native to Stata but rather calls the SuperLearner R package to calculate the predictions of the treatment and outcome
models. More work is required to continue implementing and improving the TMLE framework in other statistical
software.35

Causal inference is a growing field in rapid developments. Modern causal inference methods allow machine learning
to be used when strong assumptions for parametric models are not reasonable. Overall, due to the difficulty of correctly
specifying parametric models in high-dimensional data, we advocate for the use of double-robust estimators with ensem-
ble learning. Using these approaches may require larger sample sizes to avoid finite-sample bias.16,54 However, recent
developments support the use of cross-fit double-robust estimators for data adaptive estimation.44,50 Tutorials introduc-
ing the use and derivation of the functional delta method and influence curve for applied researchers are needed. The
tutorial presented here may help applied researchers to gain a better understanding of the computational implementation
for different causal inference estimators.
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GLOSSARY
The glossary is adapted from the book Targeted learning: causal inference for observational and experimental data and a
recent publication introducing the TMLE framework.4,55

• Data-generating process
The mechanism that generated the observed data, with the corresponding data-generating probability distribution
which produces the observed samples that were collected.

• Estimand
A quantity we are interested in estimating from our data.

• Estimator
A function of the sample of observations (ie, a function of the random variables) that generates estimates. The
estimators are represented by algebraic equations that explicitly describe a function of the realized observations.

• Estimate
The realized value of an estimator, or a function of the realized observations. It is the value of the quantity defined by
the estimand.

• Counterfactual
A contrary-to-fact value said to arise from hypothetically imposing an intervention on a system represented by a
structural causal model. For example, the potential outcome Y (a) is a counterfactual that arises from a hypothetical
intervention that sets the treatment A to level a.

• Statistical model
A set (family) of probability distributions that could describe the data-generating process (DGP). Note that, outside
simulation exercises, the true DGP is unknown.

• Saturated model
A saturated model fits the data perfectly and it includes the main terms plus the higher order interactions between the
factors included in the model. Usually, the number of parameters is equal to the number of the possible combinations
between the levels of the distinct covariates included in the model.

• Model misspecification
A scenario in which the statistical model, which is postulated to contain the distribution describing the DGP, fails to
actually contain the corresponding true data-generating distribution.

• Parametric statistical model
A family of probability distributions indexed by a finite set of model parameters. For example, a linear model tradi-
tionally assumes the outcome is a linear function of covariates plus a normally distributed error term with constant
variance. Its parameters are the coefficients on the covariates and the variance of the error term.

• Nonparametric statistical model
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A family of probability distributions that cannot be indexed by a finite set of parameters. That is, the set of parameters
indexing this family of distributions is infinite-dimensional. Most often, when making minimal assumptions, the DGP
cannot be defined by a finite set of parameters, making the set of parameters infinite-dimensional. For example, if all
we know about the DGP is that we have access to n independent and identically distributed (i.i.d.) samples, then the
statistical model for the DGP is a nonparametric statistical model.

• Target estimand or target parameter
A function of the true (unknown) DGP that one is interested in estimating, and represents the mathematical
formulation of the motivating question of interest.

• Maximum likelihood estimation
The most common method for estimating parameters in a finite-dimensional model (ie, parametric statistical model).
As the name implies, such estimates are generated by finding a set of parameter estimates that maximize the likelihood
function of the observed data.

• Score equation
The gradient (ie, multi-variable generalization of the derivative) of the log-likelihood function of the data with respect to
the parameter(s). This equation provides information on the degree of change resulting from very small perturbations
of the parameter values.

• Regular estimator
A class of estimators that converge in distribution to some limit distribution even if one samples from a slightly
perturbed data distribution. Such estimators, if also asymptotically linear, accommodate inference by way of their
asymptotic convergence to a Normal distribution.

• Plug-in (substitution) estimator
An estimator that generates an estimate of the true parameter value by “plugging in” estimates of relevant parts of the
data-generating distribution into the parameter mapping. This method is commonly referred to as the plug-in principle.
For example, “plugging in” targeted Super Learner fit of the conditional mean under A = 1 and A = 0 generates an
estimate of the average treatment effect.
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