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A B S T R A C T

Background: In sub-Saharan Africa, the efficacy of intermittent preventive therapy in pregnancy with sulphadox-
ine-pyrimethamine (IPTp-SP) for malaria in pregnancy is threatened by parasite resistance. We conducted an indi-
vidual-participant data (IPD) meta-analysis to assess the efficacy of intermittent screening with malaria rapid
diagnostic tests (RDTs) and treatment of RDT-positive women with artemisinin-based combination therapy (ISTp-
ACT) compared to IPTp-SP, and understand the importance of subpatent infections.
Methods: We searched MEDLINE and the Malaria-in-Pregnancy Library on May 6, 2021 for trials comparing
ISTp-ACT and IPTp-SP. Generalised linear regression was used to compare adverse pregnancy outcomes
(composite of small-for-gestational-age, low birthweight (LBW), or preterm delivery) and peripheral or pla-
cental Plasmodium falciparum at delivery. The effects of subpatent (PCR-positive, RDT/microscopy-negative)
infections were assessed in both arms pooled using multi-variable fixed-effect models adjusting for the num-
ber of patent infections. PROSPERO registration: CRD42016043789.
Findings: Five trials conducted between 2007 and 2014 contributed (10,821 pregnancies), two from high SP-resis-
tance areas where dhfr/dhps quintuple mutant parasites are saturated, but sextuple mutants are still rare (Kenya
and Malawi), and three from low-resistance areas (West-Africa). Four trials contributed IPD data (N=10,362). At
delivery, the prevalence of any malaria infection (relative risk [RR]=1.08, 95% CI 1.00-1.16, I2=67.0 %) and patent
infection (RR=1.02, 0.61-1.16, I2=0.0%) were similar. Subpatent infections were more common in ISTp recipients
(RR=1.31, 1.05-1.62, I2=0.0%). There was no difference in adverse pregnancy outcome (RR=1.00, 0.96-1.05; stud-
ies=4, N=9,191, I2=54.5%). Subpatent infections were associated with LBW (adjusted RR=1.13, 1.07-1.19), lower
mean birthweight (adjustedmean difference=32g, 15-49), and preterm delivery (aRR=1.35, 1.15-1.57).
Interpretation: ISTp-ACT was not superior to IPTp-SP and may result in more subpatent infections than the
existing IPTp-SP policy. Subpatent infections were associated with increased LBW and preterm delivery.
More sensitive diagnostic tests are needed to detect and treat low-grade infections.
Funding: Centers for Disease Control and Prevention and Worldwide Antimalarial Resistance Network.
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Research in context

Evidence before this study

We conducted a literature search for trials in sub-Saharan
Africa comparing intermittent screening and treatment in preg-
nancy (ISTp) with intermittent preventive treatment in preg-
nancy with sulfadoxine-pyrimethamine (IPTp-SP) in HIV-
negative women using the search terms: ((intermittent AND
screening) AND malaria) AND pregnan* AND Clinical Trial
[ptyp] AND Humans[Mesh]; the following databases were
searched: MEDLINE and the Malaria in Pregnancy Consortium
(MiPc) Library, which consists of references from Web of
Knowledge, Scopus, Cumulative Index to Nursing and Allied
Health Literature (CINAHL), Bioline, the Cochrane Library data-
bases, the World Health Organization (WHO) Global Health
Library, as well as ‘grey literature’ and conference abstracts.
The final search was conducted May 6, 2021. ISTp with artemi-
sinin-based combination therapy was associated with a higher
relative risk of malaria during pregnancy or at delivery and a
non-significant increase in the risk of low birth weight. Model-
ling also suggested that screening with RDTs was less effective
than IPTp-SP in the 2nd and 3rd trimester.

Added value of this study

This pooled analysis of five trials provides further evidence that
ISTp with the current generation of rapid diagnostic tests
(RDTs) is not superior to the existing strategy of IPTp with SP,
regardless of the level of SP resistance. In addition, this is the
largest individual patient data (IPD) meta-analysis of the impact
of low-density infections below the level of detection by RDTs
on clinically relevant pregnancy outcomes. The study provides
evidence that these subpatent infections are potentially harm-
ful and associated with poor birth outcomes, providing a possi-
ble explanation for the inferior efficacy of the ISTp strategies
that rely on the current generation of RDTs.

Implications of all the available evidence

This study suggests that ISTp with the current generation of
RDTs is not a suitable alternative to IPTp-SP even in high SP
resistance areas where the dihydrofolate reductase/dihydrop-
teroate synthase (dhfr/dhps) quintuple mutant parasites are
saturated or have reached near saturation, but where the sextu-
ple mutants are still rare, as is the case in most of East and
southern Africa. Scale up of IPTp with SP in these areas should
continue while simultaneously pursuing further research on
alternative strategies, including assessing the use of more sen-
sitive diagnostic tests to detect and treat more low-grade infec-
tions, either as ISTp or as an adjunct to IPTp-SP.
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1. Introduction

Approximately 11.6 million pregnancies in sub-Saharan Africa
were exposed to malaria in 2019 [1], a significant cause of poor birth
outcomes.[2] In these areas, the World Health Organization (WHO)
recommends that HIV-seronegative women receive intermittent pre-
ventive treatment in pregnancy (IPTp) with sulphadoxine-pyrimeth-
amine (SP). Across east and southern Africa, resistance to SP is highly
prevalent. The highest levels of resistance to SP undermine the ability
of IPTp-SP to minimise the adverse consequences of malaria in preg-
nancy [3,4], necessitating alternative approaches [5,6].

One approach would be to use an alternative drug; however, poor
tolerability undermines the effectiveness of amodiaquine, alone or
combined with SP [7], mefloquine [8], and chloroquine either alone
[9] or as chloroquine-azithromycin [10]. Dihydroartemisinin-pipera-
quine shows promise [11�13], and further trials with this combina-
tion are ongoing.

Another potential approach is to screen women with a rapid diag-
nostic test (RDT) at each scheduled antenatal care (ANC) visit and
treat test-positive women with an effective drug. This approach is
known as intermittent screening and treatment in pregnancy (ISTp).
In two trials in West Africa, ISTp was non-inferior to IPTp-SP in
reducing low birth weight (LBW) in areas with good parasite sensitiv-
ity to SP [14,15]. It was also well accepted by health care providers
and pregnant women [16,17]. Two additional trials in East and south-
ern Africa [11,18] indicated that screen-and-treat approaches were
not superior to the existing strategy with IPTp-SP, despite being con-
ducted in high resistance areas where the curative efficacy and dura-
tion of post-treatment prophylaxis provided by SP are reduced
[3,19].

We carried out a systematic review and meta-analysis of individ-
ual-participant data (IPD) to comprehensively evaluate the potential
utility of ISTp with a conventional RDT and an artemisinin combina-
tion therapy (ISTp-ACT) and define factors that determine the efficacy
of ISTp-ACT relative to IPTp-SP in different settings. We also exam-
ined the effect of subpatent malaria infections missed by rapid diag-
nostic tests but detected by nucleic acid amplification tests like
polymerase chain reaction (PCR) on adverse pregnancy outcomes in
these trials.

2. Methods

2.1. Search strategy and selection criteria

An electronic literature search, using the search terms: ((intermit-
tent AND screening) AND malaria) AND pregnan* AND Clinical Trial
[ptyp] AND Humans[Mesh]) was conducted on August 8, 2016, and
updated on May 6, 2021, following PRISMA guidelines [20]. The fol-
lowing databases were searched: MEDLINE and the Malaria in Preg-
nancy Consortium (MiPc) Library, which includes references from
Web of Knowledge, Scopus, CINAHL, Bioline, the Cochrane Library
databases, WHO Global Health Library, as well as ‘grey literature’ and
conference abstracts [21]. A multi-concept Boolean search strategy
was applied using keywords and MeSH terms. Randomised con-
trolled trials among pregnant women comparing ISTp-ACT versus
IPTp-SP were eligible (Supplement 1, page 2). The search was con-
ducted in English but without language or date restriction.

2.2. Data extraction and quality assessment

Two independent reviewers (JRG and MM or CK) screened titles,
abstracts, and full texts of all citations. For eligible studies, authors
were contacted to request de-identified individual-level data. Three
attempts were made to contact authors. Data were analysed using
STATA/MP2 16.0 (StataCorp LP), according to an a priori defined sta-
tistical analysis plan. Reviewers were unblinded to the authors of the
source study. Two reviewers (JRG and CK) independently assessed
the risk of bias for the included trials using the Cochrane risk-of-bias
tool for randomised trials version 2 (RoB2) [22] (Supplement 2, page
2). The study is registered in PROSPERO (CRD42016043789).

2.3. Outcomes

The co-primary outcomes for the comparison of the effect of ISTp-
ACT vs IPTp-SP were 1) maternal malaria infection at delivery,
defined as any Plasmodium infection detected in peripheral or placen-
tal blood by PCR, microscopy, RDT, or histopathology (acute and/or
chronic infection) and 2) adverse live-birth, defined as the composite
of LBW (<2500 grams), small-for-gestational-age (SGA, <10th



J.R. Gutman et al. / EClinicalMedicine 41 (2021) 101160 3
percentile relative to INTERGROWTH-21st gender-specific chart) [23],
or preterm delivery (<37 weeks gestation).

Secondary outcome definitions are provided in Supplement 3,
page 2. The analyses of the impact of ISTp-ACT versus IPTp-SP during
pregnancy excluded enrolment and delivery time points from inci-
dence data. Analysis of the impact of patent and subpatent (PCR-posi-
tive, RDT/microscopy-negative) infection on adverse pregnancy
outcomes included enrolment and delivery time points.

2.4. Statistics

2.4.1. Efficacy analyses of ISTp vs IPTp
Log-binomial generalised linear regression models were used to

obtain risk ratios (RR) and 95% confidence intervals (CI). When con-
vergence was not achieved, we followed suggestions from Cum-
mings.[24] For continuous outcomes, mean differences and 95% CIs
were obtained from linear regression.

The primary analyses of the primary and secondary outcomes
used two-stage IPD meta-analysis. Because the number of studies
was small, fixed-effect models were used [25,26]. Because IPD data
was not available for one study [27], aggregated data of this study
were included in the second stage [28]. Unadjusted models were
used for the primary analysis. The stratification factors study site (i.e.,
health facility) and gravidity were included a priori as covariates in
all unadjusted models because the randomisation was stratified by
study site in all IPD studies and by gravidity in Malawi [18]. Hetero-
geneity was measured using the I2 statistic [29] (Supplement 4, page
3). To explore potential modification of treatment effect by prevailing
SP resistance levels, we classified studies into low (�90% prevalence
of Plasmodium falciparum dihydropteroate synthase (Pfdhps) K540E
mutation) and high (>90% PfdhpsK540E) resistance [3].

Supportive secondary analyses using covariate adjusted and sub-
group analyses were performed using the 2-stage model. Potential
effect modifiers and confounding variables were pre-specified. In
addition to the stratification factors study site and gravidity, these
included the baseline factors maternal haemoglobin concentration,
bed net use, and gestational age. Maternal socioeconomic status,
maternal education, and malaria status at enrolment were excluded
because they were missing in a large proportion of participants in at
least one of the studies.

Further sensitivity analyses to assess the robustness of the pri-
mary analysis were conducted using 1-stage models, with site and
gravidity included as covariates, and random-effect models.

2.4.2. Analysis of the impact of subpatent malaria on pregnancy
outcomes

The effect of exposure to subpatent malaria on pregnancy out-
comes was examined using fixed-effect models with robust Poisson
regression for binary outcomes and linear regression for continuous
outcomes, accounting for study and the total number of malaria tests
conducted, including the number of patent infections detected. In the
binary models, risk ratios (RR) correspond to the change in the risk of
the adverse outcome associated with one additional positive test (i.e.
a patent or subpatent malaria infection) during pregnancy. In models
with continuous outcomes, the mean difference in the outcome mea-
sure associated with each additional patent or subpatent infection
was estimated. Both types of models included a robust estimator of
variance. Crude models included study arm and the number of patent
and subpatent infections as the two exposure variables of interest.
Adjusted models (primary analysis) also included gestational age at
enrolment, maternal age, gravidity (paucigravidae [G1-G2]/multigra-
vidae), and the number of sick visits (Supplement 5, page 3). A sensi-
tivity analysis was conducted to determine if the method used to
assess gestational age influenced the conclusions for outcomes
requiring gestational age at delivery (preterm delivery, SGA) (Supple-
ment 6, page 4; Supplement 8, page 12; Table S5).
Details of the performance of the RDTs to detect PCR-positive
infections have been described previously [30].
2.5. Ethics

The five original studies were approved by the relevant local and
international partner ethical committees and institutional review
boards. The protocol for the meta-analysis was reviewed by the US
Centers for Disease Control and Prevention (CDC) Human Research
Protection Office and deemed exempt from further review. Written
consent was required from each patient for participation in each indi-
vidual study.
2.6. Role of the funding sources

WWARN had no role in study design, data collection, data analy-
sis, data interpretation, or writing of the report. CDC staff were
involved in study design, data collection, data analysis, data interpre-
tation, and writing of the report. The corresponding author had full
access to all the data in the study and had final responsibility for the
decision to submit for publication.
3. Results

3.1. Studies and baseline characteristics

A total of 141 studies were reviewed (Figure 1 and Supplement 7,
page 4). Five trials met the eligibility criteria and were included in
the analysis; one from Ghana (N=2,205 pregnancies) [14], one four-
country trial in West Africa (N=5,292) [15], one from Malawi
(N=1,844) [18], one from Kenya (N=1,021) [11], and one from Nigeria
(N=459) [27] (Table S1). SP resistance was classified as low for three
studies and high for two studies [11 18], None were in areas with
“super resistance” characterized by >90% prevalence of PfdhpsK540E
and >10% PfdhpsA581G [31]. For the first four trials, individual partic-
ipant data were available (N=10,362 pregnancies) (Table S2). The
results of the Nigerian trial [27] were added as aggregated data in the
second stage for eight binary and two continuous outcomes. The first
four trials were judged to have a low risk of bias. The Nigerian trial
was judged to have a high risk of bias (Figure S1).

Among the 10,362 women included in the IPD analysis, the base-
line characteristics were well balanced between the study arms
(Table 1). The mean age was 22.4 years, the mean gestational age
20.7 weeks, 42.5% were primigravidae, and just over half reported
using a bednet the night before enrolment. Of the 5187 women in
the ISTp arm, 2254 (43.5%) had at least one positive RDT and were
treated with an ACT. Overall a total of 3,053 ACT treatments were
given to these 2,254 women (mean 1.3, median 1, range 1-4),
whereas 13,247 IPTp courses with SP were given to 5,154 women in
the IPTp arm (mean 2.6, median 2, range 1-7).
3.2. Primary efficacy outcomes

Data for the co-primary outcomes were available from the four
studies with IPD but not from the Nigerian study [27]. Women in the
ISTp arm were similarly likely at delivery to have peripheral or pla-
cental malaria detected by any measure (RDT/smear/PCR/histopa-
thology) (RR=1.08, 95% confidence interval (CI) 1.00-1.16; p=0.06;
I2=67.0%, N=7,226, N=3 trials, Figure 1). There was no difference in
the composite adverse pregnancy outcomes (LBW/SGA/PTD)
(RR=1.00, 0.96-1.05, p=0.92, I2=54.5%, N=9,191, N=4, Figure 2). Ran-
dom-effects models produced similar results (Table S3).



Figure 1. PRISMA diagram of included studies
*For the study in Nigeria (Esu et al., 2018, n=459), data on the primary outcome used in the meta-analysis were not available. However, data on haemoglobin (n=236), anaemia

(n=236), and malaria infection (n=208) in the third trimester, perinatal death (420), pregnancy outcome (n=418), preterm birth (n=420), mean birthweight and LBW (n=325) were
available.

IPD = individual patient data
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3.3. Secondary efficacy outcomes

3.3.1. Maternal outcomes
During pregnancy, women in the ISTp arm had a 21% increased

risk of developing clinical malaria compared to the IPTp arm
(RR=1.21, 95% CI 1.04-1.42, p=0.02, N=4 trials, I2=37.2%), and a 40%
increased risk of patent infection (RR=1.40, 1.29-1.50, p<0.001, N=5,
I2=67.7%), but not subpatent infection (RR=0.99, 0.89-1.10, p=0.89,
N=4, I2=0%). At delivery, women in the ISTp arm had an 18% increased
risk of any peripheral-blood malaria infection (RR=1.18, 1.06-1.31,
p=0.002, I2=0%), reflecting 31% more subpatent infections (RR=1.31,
1.05-1.62, p=0.01, I2=0%), but not more patent infections (RR=1.02,
0.81-129, p=0.85, I2=0%) (Figure 2). There were no differences
between study arms in placental malaria (RR=1.05, 0.96-1.14, p=0.27,
I2=53.7%, N=3), maternal anaemia (haemoglobin <11 g/dL [p=0.97]
and <9 g/dL [p=0.14]) (Figure 1), or mean haemoglobin (p=0.69)
(Table S4).
3.3.2. Neonatal outcomes
The risk of LBW infants was similar between arms (RR=1.08, 0.97-

1.20, p=0.15, N=5, I2=7.5%), but the mean birthweight was 28g lower
in IST recipients (95% CI 10-46, p=0.003, N=5, I2=0%). None of the
other neonatal outcomes were significantly different between arms
(Figure 3).

3.4. Impact of patent and subpatent infections on adverse pregnancy
outcomes

Data on patent and subpatent infection were available from three
of the five trials [11,15,18]. Overall, 2,352 (32.3%) of 7,283 women
with PCR data had at least one patent Plasmodium infection during
pregnancy (including enrolment and delivery), and 1,632 (22.4%) had
at least one subpatent infection. About three-quarters (74.7%) of the
1,632 women with subpatent infections did not have evidence of any
patent infection during pregnancy or delivery. Similarly, 29.8% of the



Table 1
Baseline characteristics by study arm

ISTp IPTp Overall
(n=5187) (n=5175) (N=10,362)

Maternal characteristics
Maternal age (years) 22.4 (5.2) 22.4 (5.1) 22.4 (5.2)
Used a bednet previous night 2617 (54.2%) 2659 (55.0%) 5276 (54.6%)
Schooling levely

Low 2874 (59.1%) 2901 (60.0%) 5775 (59.5%)
Medium 1629 (33.5%) 1563 (32.3%) 3192 (32.9%)
High 362 (7.4%) 375 (7.7%) 737 (7.6%)

SES index score (median, range) -0.1 (-8.3; 12.5) -0.1 (-7.9; 19.6) -0.1 (-8.3; 19.6)
Pregnancy number (gravidity)

First 2216 (42.8%) 2173 (42.1%) 4389 (42.5%)
Second 1764 (34.1%) 1802 (34.9%) 3566 (34.5%)
Third or higher 1194 (23.1%) 1184 (23.0%) 2378 (23.0%)

Gestational age (weeks) 20.7 (3.4) 20.7 (3.4) 20.7 (3.4)
Weight (kg) 58.0 (9.5) 58.5 (9.6) 58.2 (9.5)
Height (cm) 156.5 (7.9) 156.8 (7.9) 156.6 (7.9)
Laboratory findings
Haemoglobin (g/dL) 10.5 (1.8) 10.6 (2.0) 10.6 (1.9)
Malaria infection

RDTz 1616 (31.7%) 114 (48.1%) 1730 (32.4%)
Microscopy 1208 (23.9%) 1213 (24.1%) 2421 (24.0%)
PCR 1566 (40.2%) 768 (41.2%) 2334 (40.6%)
Subpatent 493 (17.4%) 369 (12.5%) 862 (14.9%)

ISTp=intermittent screening and treatment in pregnancy. IPTp=intermittent preventive treat-
ment in pregnancy.
*Values are mean (SD) or percentages unless otherwise indicated.

y Schooling: Low: no schooling or primary school not completed, Medium: Primary school
completed, High: Junior high school completed, Highest: Senior High school or academy
completed.

z The RDT data at enrolment between study arms are not comparable because of the nature
of the intervention; RDT were only conducted in symptomatic women in the IPTp arms, but
among all women in the ISTp arm
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2,352 women with patent infections did not have additional subpa-
tent infections identified.

Each patent infection during pregnancy was associated with an
11% increase in the risk of the composite adverse pregnancy outcome
(adjusted [a]RR=1.11, 1.05-1.16, p<0.001). A smaller, non-significant
increase was seen with subpatent infections (aRR=1.04, 1.00-1.09,
p=0.05) (Figure 4). Each patent or subpatent infection was associated
with a reduction in mean birthweight compared to women without
infection (adjusted mean difference [a]MD: subpatent=32g, 15-49,
p<0.001, patent=26g, 10-43, p=0.003) (Figure 5). Each subpatent
infection was associated with a shortening of pregnancy duration by
a mean of 1.7 days (95% CI 0.6-2.8, p=0.003). Patent infections were
not associated with a shorter duration of pregnancy (aMD=0.1, -0.6-
0.7, p=0.82). By contrast, patent (aMD=0.09, 0.04-0.13, p<0.001) but
not subpatent infections (aMD=0.02, -0.06-0.02, p=0.25) were associ-
ated with lower mean weight-for-gestational-age Z-scores (Figure 5).
Each subpatent infection was associated with an increased risk of
LBW (aRR=1.13, 1.07-1.19, p<0.001) and preterm delivery (aRR=1.35,
1.15-1.57, p<0.001), but not SGA (Figure 4).

4. Discussion

This meta-analysis of five trials confirmed that ISTp with ACTs
was not superior to the current IPTp-SP strategy in the situations
where it was tested. These included areas in West Africa where the
prevalence of SP resistance was low and in Kenya and Malawi where
it was high. Babies born to mothers in the ISTp arm weighed slightly
less than those in the IPTp-SP, though the risk of LBWwas not signifi-
cantly different. Women randomised to ISTp had a 21% increased risk
of clinical malaria during pregnancy and an 18% increased risk of
peripheral blood malaria infection at delivery, reflecting 31% more
subpatent infections. There was no difference in the prevalence of
placental malaria or anaemia between the two study arms. Further
analysis to assess the impact of subpatent infections on newborn
outcomes, while controlling for the effect of patent infections,
showed that each antenatal subpatent infection was associated with
a 26 gram decrease in mean birth weight and a 13% increased risk of
LBW. This association with birthweight reflected an increased risk of
preterm delivery rather than fetal growth retardation. Overall, these
results suggest ISTp with the current generation of RDTs is not a suit-
able alternative to the existing IPTp-SP strategy, even in areas with
high SP resistance in East and southern Africa. Our observation that
subpatent infections are associated with an increased risk of LBW
suggests that, compared with conventional RDT use for ISTp, the
detection and treatment of more low-density infections with more
sensitive diagnostic point-of-care tests may enhance birth outcomes.
Further, the high proportion of women with evidence of malaria at
delivery, including those in the IPTp-SP arm, highlights that better
adherence to ITN usage and improved strategies to prevent malaria
in pregnancy remain urgently needed to address the serious adverse
effects of malaria in pregnancy on the developing fetus, newborn and
infant development [2,32,33].

One reason for the modest efficacy of ISTp compared to IPTp-SP
likely reflects a three- to six-fold difference (depending on the anti-
malarial used for ISTp) between the study arms in the duration of
pregnancy spent under prophylaxis. Approximately one-quarter of
women in the ISTp arms (26.4%) had at least one patent infection
detected by RDTs during pregnancy. This proportion is a function of
both malaria transmission intensity and the sensitivity of the diag-
nostic test, which is affected by parasite density and immunity. In the
ISTp arm, only RDT-positive women received treatment and benefit-
ted from the post-treatment prophylactic effect of the long-acting
component of the ACT, estimated to be about two weeks with a 3-
day treatment dose of artemether-lumefantrine and four weeks with
dihydroartemisinin-piperaquine [34]. In contrast, women in the
IPTp-SP arms received an average of 2.6 courses of SP. SP provides at
least four weeks of prophylaxis against new infection in areas with
sensitive parasites and about two weeks in high SP resistance areas



Figure 2. Co-primary outcomes (adverse pregnancy outcome, and malaria at delivery)
and secondary maternal outcomes

ACT=artemisinin-based combination therapy, AQ-AS= amodiaquine-artesunate,
AL=Artemether-lumefantrine, DP=dihydroartemisinin-piperaquine, IST=Intermittent
screening and treatment, IPT=intermittent preventive treatment, RR=relative risk,
CI=confidence interval, PCR=polymerase chain reaction. The outcomes during preg-
nancy reflect the cumulative risk. Weight reflects fixed-effect models.

*Unadjusted relative risk models include the stratification factors site and gravidity
(primigravidae vs secundigravidae vs multigravidae) for all four studies for which IPD
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such as in Malawi and western Kenya, where quintuple mutant para-
sites are saturated, but the sextuple mutants are still rare [3]. Addi-
tionally, because of the limited sensitivity of the current generation
of RDTs, subpatent infections remain undetected and untreated and
can persist for months, yet are cleared or suppressed with regular
use of presumptive SP. These low-grade infections were associated
with more LBW and preterm delivery independent of patent infec-
tions, i.e. they were observed even in women who never had a patent
infection. The lack of effect on SGA suggests that the reductions in
birthweight associated with subpatent infections are mediated pri-
marily through preterm deliveries rather than fetal growth restric-
tion. In contrast, patent infections were associated with both preterm
delivery and SGA, suggesting that their effect on birth weight also
results from fetal growth restriction. This relationship between pat-
ent infections and preterm delivery and SGA is not be restricted to
highly malaria endemic areas and has also been described in areas
with much lower malaria transmission along the Thailand-Myanmar
border [35].

The failure of ISTp to show incremental effectiveness compared to
IPTp-SP is consistent with a recent mathematical model based on
these trials [30]. The model suggested that infections missed by stan-
dard RDTs lead to a greater proportion of inadequately treated
infected women than does providing SP presumptively, i.e., the nega-
tive effects of misdiagnosed infections outweigh those of treatment
and prophylaxis failures with SP in high SP resistance areas. However,
the simulation also suggested that in high SP resistance settings, both
IPTp-SP and ISTp, whilst failing to provide optimal protection, effec-
tively prevent the majority of infections when compared to no inter-
vention [30]. It remains to be determined if ISTp, or a hybrid of
screen and treat approaches combined with IPTp-SP, may have a role
in areas where SP is ineffective in clearing existing infections due to a
high prevalence of parasites carrying the highly resistant ‘sextuple’
dhfr/dhps mutant haplotype that includes the dhps-A581G
data was available, as these were used in some of the source studies. Adjusted models
also include anaemia at enrolment (haemoglobin < 11 g/dL), gestational age (binary,
study-specific median), and maternal ITN use at enrolment.

yAdverse live-birth (co-primary outcome) defined as the composite of low birth
weight (<2500 grams), small-for-gestational-age (SGA, <10th percentile relative to
INTERGROWTH-21st gender-specific chart), or and preterm delivery (<37 weeks
gestation).

zAny malaria at delivery (co-primary outcome) defined as any maternal plasmo-
dium infection detected in peripheral or placental blood by any diagnostic method
(PCR, microscopy, RDT or histopathology (acute and/or chronic infections)).

xAny patent Plasmodium infection in peripheral or placental blood detected by PCR
or histopathology (acute and/or chronic infections) and positive by microscopy or RDT.
Any subpatent infection at delivery is defined as a microscopy and RDT negative infec-
tion detected by PCR or histopathology.

{Any placental malaria infection detected in the placental blood by any diagnostic
method (PCR, microscopy, RDT or histopathology (acute and/or chronic infections)).

||Patent placental malaria infection defined as any infection in the placental blood
detected by PCR or histopathology positive by RDT or microscopy. Subpatent placental
malaria infection is defined as microscopy and RDT negative infections detected by
PCR or histopathology (acute and/or chronic infections).

**Any maternal plasmodium infection detected in peripheral blood by PCR, micros-
copy, or RDT.

yyPatent maternal plasmodium infection in peripheral blood detected by PCR and
by microscopy or RDT. Subpatent maternal plasmodium infection detected in periph-
eral blood by PCR, but not by microscopy or RDT

zzMaternal anaemia (Hb <11 g/dL) and moderate to severe anaemia (Hb <9 g/dL)
at delivery or otherwise in the third trimester if values at delivery were not available.

xxClinical malaria, defined as documented fever or recent history of fever in the
presence of microscopy or RDT confirmed malaria infection.

{{Any maternal peripheral blood Plasmodium infection during pregnancy,
detected by microscopy or RDT, or PCR.

||||Patent maternal peripheral blood Plasmodium infection during pregnancy
detected by PCR and by microscopy or RDT. Subpatent Plasmodium infection during
pregnancy, defined as PCR positive but microscopy and RDT negative infections.

The effect sizes for primary outcomes in a sensitivity analysis using 1-stage models
were 1.00 (95% CI 0.96-1.05, p=0.9) for adverse pregnancy outcome and 1.07 (95% CI
1.00-1.15, p=0.06) for any malaria infection at delivery, respectively.



Figure 3. Neonatal outcomes comparing ISTp to IPTp
*Unadjusted relative risk models include the stratification factors site and gravidity

(primigravidae vs secundigravidae vs multigravidae) for all four studies for which IPD
data was available, as these were used in some of the source studies. Adjusted models
also include anaemia at enrolment (haemoglobin < 11 g/dL), gestational age (binary,
study-specific median), and maternal ITN use at enrolment

ACT=artemisinin-based combination therapy, AQ-AS= amodiaquine-artesunate,
AL=Artemether-lumefantrine, DP=dihydroartemisinin-piperaquine, IST=Intermittent
screening and treatment, IPT=intermittent preventive treatment, RR=relative risk,
CI=confidence interval.
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substitution [30]. As shown previously, the sensitivity of the current
generation of RDTs was good at the first antenatal clinic visit, which
occurred on average at 21 weeks gestation [30]. At that time, over
80% of infections, particularly in primigravidae, were detectable by
RDTs. ISTp or single screening and treatment in pregnancy focusing
on the first ANC, when the prevalence of malaria is highest and RDTs
are most sensitive, may also be appropriate in areas of very low trans-
mission where the exposure to malaria is low, but the adverse conse-
quences of undetected infection remain high [36].

The observed difference in birthweight may also reflect a non-
malaria effect of SP [37]. IPTp-SP reduces the risk of some sexually
transmitted infections [38] and is associated with dose-dependent
increases in birthweight [39] even in areas of low malaria transmis-
sion [40]. Three recent trials comparing IPTp with dihydroartemisi-
nin-piperaquine (DP) versus SP, similarly noted that although
women randomised to the IPTp-DP had substantially less malaria,
infants born to women in the IPTp-SP arm had higher mean birth-
weights [12,13,41]. It was hypothesized that this reflected a potent
non-malaria effect of IPTp-SP on birthweight [37]. The non-malarial
mechanisms are still being elucidated, but potential mechanisms
include SP’s antimicrobial effect on pathogens or the gut or vaginal
microbiome [37,42] or a potential anti-inflammatory effect, similar to
that observed with cotrimoxazole [43].

A limitation of this study is that the effect of subpatent infection
on birth outcome could only be adjusted for the number of patent
infections, but not for their parasite density or duration. Furthermore,
women were enrolled in the second or third trimester. Many women
are already infected by their first antenatal visit, including from car-
riage of infections acquired prior to conception. Malaria infection
early in pregnancy is associated with dysregulation of essential regu-
lators of angiogenesis, metabolism, and inflammation resulting in
placental insufficiency and an increased risk of maternal anaemia
later in pregnancy, preterm birth, fetal growth restriction [44�46].
Preventing malaria earlier may reduce the risk that these infections
persist, multiply, and sequester within the placenta at crucial stages
of placental development. Modelling suggests that screening and
treatment of RDT positive women with long-acting ACTs would have
a substantial impact in early pregnancy when IPTp with SP is contra-
indicated [30]. Another limitation is the small number of studies
included (N=5). For most outcomes, only 3 or 4 studies contributed.
This precluded us from exploring the source of the heterogeneity in
treatment effect, which was considerable for some of the outcomes.

As described in the primary study reports, ISTp was well tolerated.
Although requiring more steps and more time, ISTp was also gener-
ally well received by providers and pregnant women [13,17,47-49].
Most women were amenable to regular testing for malaria and
understood that asymptomatic infection could be harmful to the
baby [48,49]. In East and southern Africa, providers generally feel
that SP is no longer effective and therefore preferred to use an alter-
nate antimalarial and considered it a benefit if this was limited to
actively infected women. However, providers expressed doubts
about the reliability of RDTs and had concerns that ISTp would not
provide adequate protection [48]. In addition, both women and pro-
viders expressed concern that the 3-day duration of treatment might
lead to poor adherence outside of a trial setting [48]. While none of
these barriers are insurmountable, they should be considered when
implementing screening strategies for malaria in pregnancy, e.g., as
part of first-trimester screening or hybrid strategies with IPTp. The
cost of ISTp is higher than IPTp. This should also be considered as the
cost-effectiveness of ISTp improves when the efficacy of IPTp-SP
drops [50]. The current five trials were all conducted in highly
endemic settings, but as transmission drops, the number of women
who may benefit from monthly IPTp falls. Under these lower trans-
mission conditions, screen and treat strategies may be considered
more acceptable than exposing large numbers of women to monthly



Figure 4. Impact of patent and subpatent infections on binary neonatal outcomes
RR= risk ratio. For example, for the impact of patent infection on adverse pregnancy outcome, a value of 1.11 means an increase of 11% with each additional patent infection. The

unadjusted risk ratio (RR) reflects models that include the stratification factor gravidity (primigravidae (G1) vs secundigravidae (G2) vs multigravidae (G3+)), which was used in
some of the source studies, as well as site. The p-value for the interaction term reflects the difference in effect between gravidity strata. The adjusted models also include anaemia at
enrolment (haemoglobin < 11 g/dL), gestational age (binary, study-specific median), and maternal ITN use at enrolment.

* Small-for-gestational-age is defined as <10th percentile of the INTERGROWTH-21 reference population

Figure 5. Impact of patent and subpatent infections on continuous neonatal outcomes
*Mean change in gestational age at birth, weight-for-age z-score and corrected birth weight. For example, for the impact of patent infection on gestational age, a value of -0.07

means a reduction of 0.07 days in mean gestation age associated with each additional patent infection. The p-value for the interaction term reflects the difference in effect between
gravidity strata. G1 = primigravidae; G2 = secundigravidae; G3+ = multigravidae.
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antimalarial prophylaxis, especially if more complex 3-day IPTp regi-
mens are used instead of single day SP [51].

This analysis of data from five trials found no evidence that ISTp
with the current generation of RDTs improves maternal or neonatal
outcomes compared to the current strategy IPTp with SP, and should
not replace IPTp-SP even in areas with a high prevalence of parasites
with the SP-resistant quintuple mutation. Further studies should be
considered with highly sensitive diagnostic tests, as ISTp or as part of
hybrid strategies that combine screening and treatment with IPTp-SP
in high SP resistance areas. It remains possible that ISTp, ideally start-
ing as early in pregnancy as possible, would perform more favourably
in settings with a higher prevalence of the sextuple mutant resistant
parasites or could be a potential strategy where the risk of malaria in
pregnancy is low but its consequences still severe [52�56]. No IST
studies have been conducted in such settings. In light of the high
prevalence of malaria in the IPTp-SP arms, 32it is also critical to
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further explore IPT with more effective antimalarials such as dihy-
droartemisinin-piperaquine.
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