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Land-use practices such as agriculture can impact mosquito vector breeding ecology, resulting in changes in disease transmission.
(e typical breeding habitats of Africa’s secondmost important malaria vectorAnopheles funestus are large, semipermanent water
bodies, which make them potential candidates for targeted larval source management. (is is a technical workflow for the
integration of drone surveys and mosquito larval sampling, designed for a case study aiming to characterise An. funestus breeding
sites near two villages in an agricultural setting in Côte d’Ivoire. Using satellite remote sensing data, we developed an envi-
ronmentally and spatially representative sampling frame and conducted paired mosquito larvae and drone mapping surveys from
June to August 2021. To categorise the drone imagery, we also developed a land cover classification scheme with classes relative to
An. funestus breeding ecology. We sampled 189 potential breeding habitats, of which 119 (63%) were positive for the Anopheles
genus and nine (4.8%) were positive for An. funestus. We mapped 30.42 km2 of the region of interest including all water bodies
which were sampled for larvae.(ese data can be used to inform targeted vector control efforts, although its generalisability over a
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large region is limited by the fine-scale nature of this study area. (is paper develops protocols for integrating drone surveys and
statistically rigorous entomological sampling, which can be adjusted to collect data on vector breeding habitats in other ecological
contexts. Further research using data collected in this study can enable the development of deep-learning algorithms for
identifying An. funestus breeding habitats across rural agricultural landscapes in Côte d’Ivoire and the analysis of risk factors for
these sites.

1. Introduction

Land-use and land cover changes transform landscapes, with
complex effects on mosquito vectors and the transmission of
malaria and other vector-borne diseases [1, 2]. (ese en-
vironmental changes can lead to shifts in vector densities,
species compositions, host availability, and biting patterns
[3]. Despite large reductions in malaria burden globally,
these landscape changes threaten to undermine malaria
control and elimination efforts and have been identified as a
priority for malaria eradication by the World Health Or-
ganisation [4]. Land-use practices, such as agriculture,
forestry, and urbanisation, can modify physical surfaces and
create new malaria vector breeding sites. Identifying where
and when land-use practices are likely to increase mosquito
vector densities and malaria transmission is a fundamental
step towards understanding how landscapes can be sus-
tainably managed to improve public health.

Remote sensing data is becoming increasingly acces-
sible as a means to investigate the impact of land-use
practices and other landscape characteristics on different
aspects of vector ecology [5].(ese Earth Observation (EO)
data have different spatial and temporal resolutions
depending on the sensor specifications and frequencies of
obtaining usable imagery. In addition, optical EO data are
characterised by spectral resolution determined by the
number and wavelengths the sensor measures along the
electromagnetic spectrum. Traditionally, pixel-based ma-
chine learning methods have been used to identify land
cover categories of interest from these spectral signatures.
However, new sources of Earth Observation data, such as
very high-resolution satellite imagery (e.g., Geo-Eye and
Planet SkySat) and drone imagery, often have high spatial
resolution but much lower spectral resolution. Aerial
imagery may also be used to estimate 3-dimensional
structures using photogrammetric (structure from motion)
methods [6]. While these new data sources have enormous
potential for identifying vector habitats, the characteristics
of these data limit the utility of pixel-based methods relying
solely on spectral characteristics to classify environments.
Deep-learning methods, such as convolutional neural
networks (CNNs), are revolutionising image analysis.
(ese methods allow efficient analysis of image textures
and spectral characteristics using self-learning artificial
intelligence approaches to identify features in complex
environments. By enabling the identification of highly
discriminative features and patterns, these methods have
the potential to detect landscape factors associated with
vector habitat productivity, helping to overcome the lim-
itations of lower spectral resolution data. Although com-
putationally intensive, more efficient deep-learning

architectures and cloud-based computing are increasingly
accessible and have been applied for ecological analysis
(e.g., [7–9]).

Mosquitoes have four main life stages. (e first three
juvenile stages, egg, larva, and pupa, are aquatic, with the
adult stage being terrestrial. When aiming to identify aquatic
mosquito habitats, the choice of EO data and analysis
methods is largely dependent on the local vector ecology and
available resources. Anopheles funestus, the second most
important malaria vector in Africa, typically breeds in large
permanent or semipermanent water bodies with emergent
vegetation [10–13]. (e creation of these habitats has been
associated with agricultural practices such as rice cultivation
[14–16], pastures [17], cultivated swamps [18–20], and ca-
nals and drainage ditches used for irrigation [10–12, 21, 22].
(e relatively large and stable qualities of An. funestus
habitats suggest the utility of satellite-based EO data to
identify breeding sites despite coarser spatial resolution and
less frequent coverage of satellites over target areas. (e
identification of breeding sites can allow for targeted malaria
control using larval source management, or LSM.(e goal of
LSM is to reduce adult mosquito populations by targeting
the immature aquatic stages of disease vectors through
environmental, biological, or chemical modification of the
larval habitats [23]. Using LSM in areas where this vector
dominates has been suggested as a potential tool to com-
plement existing malaria control efforts due to the “few,
fixed, and findable” nature of their breeding sites [13]. As
satellite-based EO data are often available freely through
government sources (e.g., NASA and the European Space
Agency), these data sources may be more attractive for
control programmes operating in resource-limited envi-
ronments. However, although satellite-based EO data have
been used to characterise risk factors for An. funestus
breeding sites (e.g., [24, 25]) and describe An. funestus
species distributions (e.g., [26]), predictive models inte-
grating EO data have not been routinely applied to identify
An. funestus breeding sites as targets for vector control. A
previous study found the pixel-based analysis of spectral
signatures of EO data were insufficient to identify An.
funestus breeding sites [27]. Subsequent studies have visually
identified these breeding habitats from very high-resolution
aerial imagery collected by drones [28]. In comparison to
satellite-based EO data, aerial drone surveys are more re-
source intensive and require field-based teams, but they may
generate data that are more easily interpretable and ac-
tionable for local control programmes.

Despite the medical importance of this vector, and the
nature of breeding water bodies which intuitively should be
relatively easy to detect, An. funestus breeding habitats are
difficult to locate [13]; however, there is a paucity of
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knowledge on their breeding ecology in Côte d’Ivoire.
Developing operationally feasible methods of identifying
potential breeding sites for An. funestus requires integrating
different sources of EO data with local entomological
knowledge. Baseline knowledge of the spatial distribution
and characteristics of their larval habitats are required and
can be acquired by conducting larval surveys during the
appropriate months. An important requirement in the
collection of larval distribution data is to ensure that all
habitats present in the study area are sampled equally.
Ensuring such spatial representativeness can help to build an
understanding of the distribution of breeding sites across the
full range of land types and habitats present in the study site,
rather than an overrepresentation of habitats which are easy
to access or are suspected to be associated with larval
presence [29, 30].

One method of ensuring environmental and spatial
representativeness in a larval sampling frame is by classifying
the region of interest into environmental strata such as land
cover and randomly sampling each stratum proportionally.
(is ensures a random spatial distribution of sampled sites,
with an even number of sampled sites for each environ-
mental stratum. EO data such as drone imagery and mul-
tispectral satellite data have been used to develop stratified
sampling designs for malaria vector larval surveys [29, 31].
In the case of An. funestus breeding habitats and their
documented rarity [13], a representative sampling design
can be integrated with local entomological and hydrological
knowledge. (is should ensure that the aquatic habitats
which could potentially serve as sites for An. funestus ovi-
position within the study site are located. (e locations of
potential An. funestus breeding sites identified through the
representative sampling frame can then be used to guide a
second stage of intensive larval surveys. Such adaptive
sampling designs, which use information from previously
collected data to inform future sampling sites, have been
used to aid the field studies in locating rare or hard-to-find
phenomena such as plant species or disease hotspots
[32–34].

While ground-based studies and aerial mapping may be
essential for identifying fine-scale characteristics of water
bodies and determining vector productivity, regional
mapping of large areas can only be achieved by using sat-
ellite-based EO data. (e utility of these different data
sources and image analysis methods are highly dependent on
the identification of fine-scale landscape factors influencing
vector distributions. Deep learning methods of image
classification are highly reliant on the availability of suffi-
cient training data on areas with and without vector
breeding sites. (is necessitates designing a spatially rep-
resentative sampling approach to identify breeding sites and
key landscape features across areas of interest. (e aim of
this study was to characterise the aquatic habitats of An.
funestus across an agricultural gradient in Côte d’Ivoire
using paired drone and entomological surveys. In this paper,
we outline a technical workflow to carry out these aims and
to collect data to enable development of deep-learning
approaches to identify An. funestus breeding sites. (e
specific objectives were to (i) develop a land cover

classification scheme with categories relative to An. funestus
breeding and to categorise drone images accordingly; (ii) to
develop a statistically rigorous larval sampling frame for An.
funestus which is environmentally and spatially represen-
tative of the study site using remote sensing data and which
is spatially adaptive to account for the rarity of breeding
sites; and (iii) to conduct paired larval and high resolution
drone surveys and collect independent validation data for
the land classification scheme.

2. Methods

2.1. Study Area. (is study was conducted in two villages
southeast of Bouaké in the Gbêkê region of the Vallée du
Bandama district of central Côte d’Ivoire. In this region,
malaria is endemic with year-round transmission peaking
during the rainy season between May and October [35];
whilst the dominant malaria vector species is An. gambiae
sensu lato, An. funestus s.l., An. nili, and An. ziemanni are
also present. (e average annual rainfall is 1200mm, and
there is an average annual temperature of 25.8°C [14].

2.2. Study Design and Site Selection. (is was a cross-sec-
tional study pairing larval surveys of An. funestus with
drone surveys to capture the landscape composition that
drives the fine-scale spatial distribution of An. funestus
breeding sites in two villages in central Côte d’Ivoire. (e
two villages were chosen based on adult mosquito catch
data collected during a randomised controlled trial on the
impact of structural interventions on malaria transmission
from 2017 to 2019 [35]. Specifically, “control” villages (i.e.,
without structural interventions) with high mean nightly
catches of An. funestus (using human landing catches and
CDC light traps) as well as high proportions of An. funestus
compared to overall Anopheles numbers were selected
(Figure 1). (e region of interest was set as a 3 km circular
buffer (12.6 km2) surrounding the centroid of each village
(Figure 2), corresponding to the average mosquito flight
range [36].

2.3. Land Classification Development

2.3.1. Defining Land Classes of Interest. We reviewed the
scientific literature for descriptions of land cover types and
water body characteristics which are associated with An.
funestus larval and adult stages. (is informed the devel-
opment of a hierarchical land classification scheme for the
Côte d’Ivoire study site. An initial scoping assessment of
freely available high-resolution satellite data (https://earth.
google.com/web/and https://www.planet.com/explorer) was
performed. (is assessment allowed us to determine which
of the land classes and water body types identified from the
literature review were present in the Côte d’Ivoire study sites
and were discernible from high-resolution remote sensing
data.(e presence of these land classes and water body types
were subsequently validated by field staff who were familiar
with the landscape. (e resulting land classification scheme
was used in ground truthing field surveys.
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Figure 1: (e mean An. funestus count per house in control villages from the study [35] from June to September 2017 and 2018. Our study
villages, chosen for the highest An. funestus count during the season of interest, are highlighted with red arrows.

Figure 2:(ree km buffer denoting the region of interest around two study villages, divided into (a) one-hectare hexagons, which were used
as sampling units for the larval survey, and (b) stratified based on their multispectral and hydrological profiles; (c) hexagons selected for
sampling from the randomly stratified sampling strategy; and (d) 650m× 600m grid guidelines for drone surveys.
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2.4. Sampling Frame. Two stages of sampling were used to
locate potential An. funestus larval habitats. (e first was a
randomly stratified sampling frame with targeted sampling,
where the landscape was divided into environmental strata
using remote sensing data, and each stratum was sampled
proportionally. (e second sampling stage was an adaptive
sampling strategy to account for the low predicted number
of An. funestus breeding sites within the study area.

2.4.1. Randomly Stratified and Targeted Sampling Stage.
A hexagonal grid was used to partition the region of interest
into sampling units of 10,000m2. Hexagons were used be-
cause their centroids are equidistant to the perimeter of each
edge. Sentinel-2 MSI: MultiSpectral Instrument, Level-2A,
wide-swath high-resolution multispectral imagery was re-
trieved from Google Earth Engine (GEE). (e imagery was
gathered from 1st January 2019 to 31st December 2020, all
with less than 20% cloud coverage. (e imagery was used to
compute the following vegetation indices: normalised dif-
ference vegetation index (NDVI), normalised difference
water index (NDWI), enhanced vegetation index (EVI), and
soil adjusted vegetation index (SAVI). (e GEE script with
the preprocessing of the Sentinel-2 imagery and computa-
tion of the vegetation indices is provided in Supplementary
Materials 1. (e equations used to compute the vegetation
indices are as follows:

NDVI �
(NIR − Red)

(NIR + Red)
,

NDWI �
(NIR − SWIR)

(NIR + SWIR)
,

EVI � 2.5 ×
(NIR − Red)

(NIR +(6 × Red) − (7.5 × Blue) + 1)
,

SAVI � 1.5 ×
(NIR − Red)

(NIR + Red + 0.5)
.

(1)

A k-means clustering algorithm was then applied to
group hexagons into four environmental strata based on
their multispectral and environmental profiles (Figure 2(a)).

Based on the average time taken to sample a hexagon for
a team of three fieldworkers, a sample size of 70 hexagons per
village was chosen for this initial sampling stage. (e 70
hexagons were randomly selected proportional to the total
number of sampling units of each stratum across the region
of interest (Figure 2(b)). (ey were then assigned a unique
identifier code based on the village, stratum, and position
within the area of interest. To locate the randomly selected
sampling unit within the field and to ensure that sampling
was carried out within the boundaries of the hexagon, an
offline satellite map overlaid with the hexagons of interest
was created using QGIS v3.12 [37] as an MBTile. (e maps
were uploaded to the OpenDataKit (ODK) software [38]
onto Android tablets, and the GPS coordinates of the tablet
were visualised on the offline map using the geotrace
function. Sampling one hexagon consisted of collecting three

ground truthing points and sampling all potential larval
habitats for larvae. At each ground truthing point, the GPS
coordinates and photos were collected using digital forms
installed in tablets through ODK, and the predominant land
cover type was recorded according to the land cover clas-
sification scheme, which captures agricultural, savannah,
and built environments (Figure 3).

Due to the scarceness and documented difficulty in
finding An. funestus breeding sites [13], we conducted
targeted sampling alongside the stratified sampling by ac-
tively searching for water bodies in the vicinity of the
randomly stratified hexagons. (ese surveys were aided by
two members of the village, who are very familiar with the
locations of water bodies and their seasonality. (e geotrace
function on the ODK software was also used to record the
GPS coordinates of the hexagons which were visited during
the targeted surveys.

2.4.2. Adaptive Sampling Stage. Using the GPS coordinates
of the water bodies recorded during the first stage of the
sampling frame, we conducted an intensive second stage of
larval sampling. (is involved returning to all previously
identified water bodies and sampling for larvae and pro-
spective searches within these areas to find similar water
bodies nearby, aided again by the village member’s
knowledge.

2.5. Larval Survey, EnvironmentalDNACollection, andWater
Body Characteristics. Larval surveys were conducted at
every water body found using the two sampling strategies.
Each sample included larval dips, an environmental DNA
sample, and the collection of water body characteristics.

Larvae were sampled using standard larval dippers
(BioQuip 350mL), with five dips conducted at each sam-
pling spot. For water bodies that had a clear distinction
between areas with and without emergent vegetation, two
samples were performed accordingly. Counts of Anopheles
immatures were recorded according to their developmental
stage: early (L1/L2), late instars (L3/L4), and pupae. (ey
were transferred into QR code-labelled vials for trans-
portation to the entomological laboratory, where they were
reared into adults for morphological species identification
using a dissecting microscope. (e presence or absence of
culicine larvae was also recorded. (e standard operating
procedures for larvae collections and rearing are outlined in
Supplementary Materials 2A.

In order to confirm the absence or presence of An.
funestus larvae, water samples were also collected at every
sampling spot for environmental DNA (eDNA) analysis.
(ese were collected into QR code-labelled 50mL Falcon
tubes and stored in a freezer for transportation to the en-
tomological laboratory, where they were stored at − 80°C.
eDNA was extracted according to the protocol outlined in
Supplementary Materials 2B. Taqman quantitative PCR
assays were then used to detect eDNA from An. funestus
with probes targeting the species-specific sequences of five
An. funestus species available in the National Center for
Biotechnology Information (NCBI) database [39].
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Regardless of Anopheles’ absence or presence, the
physicochemical parameters of each water body were col-
lected in ODK forms. (e parameters of interest and the
equipment used to collect them are listed in Table 1.

2.6. Drone Surveys. Drone surveys were carried out using a
DJI Phantom 4 Pro (DJI, Shenzhen, China) quadcopter fitted
with a DJI 4K camera (8.8mm/24mm; f/2.8; 1″ CMOS; 20
MP). Flight plans were programmed using Pix4Dcapture
and DJI GS Pro mapping applications on an iPad Pro
(Apple, California, US). Connections between the drones
and controllers were set up using the DJI Go 4 application.

Red-green-blue (RGB) mapping was conducted in the
areas surrounding the water bodies found during the larval
sampling. Drones were flown at an altitude of 150 m,
generating imagery with a pixel size of ∼4 cm. Photographs
were taken using a “fast” picture trigger mode with a 70%
forward and horizontal overlap to generate seamless image
mosaics. Drones were programmed to fly 650× 600metres
(0.40 km2) parcel sizes from takeoff points identified using
grids overlaid on satellite imagery (Figure 2). Each flight
took 15minutes, depending on time to reach the start point
of the grid.

A flight log was used to make note of the general
conditions at which the drones were flown (Supplementary
Materials 4). (e standard operating procedure for mapping
breeding sites with drones is available under Supplementary
Materials 2C. Information sheets in French and the local
Baoule languages on the use of drones were circulated
around the sample villages (Supplementary Materials 5).

3. Data Analysis

3.1. Data Management. To ensure confidentiality, field data
(larval and ground-truth surveys) were encrypted, stored on
secured tablets, and sent to a private server. Drone imagery
was kept in an encrypted hard drive on a password-protected

computer. Morphological identification of adult Anopheles
mosquitoes was transcribed and stored in an encrypted
folder.

3.2. Orthomosaic Construction. Drone imagery was com-
bined into high-resolution image mosaics through photo-
grammetric processing using AgiSoft Metashape
Professional (https://www.agisoft.com). First, drone imag-
ery, which is automatically recorded with GPS coordinates,
is imported into MetaShape and processed to construct an
orthomosaic (a georeferencedmosaic of overlapped images).
Second, photographs are aligned (accuracy: high; generic
and reference preselection active; key point limit: 40,000;
adaptive camera model fitting active) and points are
matched between overlapping images to build a sparse point
cloud. (ird, the sparse point cloud is used as a foundation
to build a dense point cloud (quality: high; and depth fil-
tering: moderate). Fourth, the dense point cloud is used to
classify ground points. Fifth, a digital elevation model
(DEM) is built (geographic projection usingWGS 84 (EPSG:
4326); pixel size of 14.6 cm; interpolation: extrapolated; all
point classes to generate a digital surface model). Finally, an
orthomosaic is built (input surface: DEM; blending mode:
mosaic; pixel size of 3.6).

3.3. Image Classification

3.3.1. Classifying Remote-Sensing Imagery. (e drone data
were supplemented with high-resolution (0.58m spatial
resolution, RGB spectral resolution) commercial satellite
data from DigitalGlobe© WorldView2 (https://discover.
digitalglobe.com/), collected in September 2019 and cov-
ered the region of Gbêkê. (ese remote-sensing data were
classified into land cover types relevant to An. funestus
breeding site spatial distribution, according to a refined
version of the classification scheme that was developed to

Land
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Savannah
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Roads

Buildings
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Figure 3: Land classification scheme for field-based ground truthing.
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ensure parsimony and applicability to An. funestus breeding
ecology. (e drone images were labelled according to the
simplified land classification scheme by object detection
methods using the free and collaborative online image la-
belling tool Groundwork (https://groundwork.azavea.com).
Each label was validated by local field technicians and re-
searchers from Côte d’Ivoire who are familiar with the
landscapes. Labelled data were exported as georeferenced
GeoJSON files.

4. Results

A summary of the technical workflow is presented in
Figure 4.

4.1. Classification. Based on a review of published literature,
we identified key characteristics of potential An. funestus
breeding sites (Table 2).(ese included irrigated agricultural
landscapes as well as large water bodies with emergent
vegetation.We additionally identified key areas in whichAn.
funestus was unlikely to be detected, including roads and
other built-up areas. Based on these findings and local
ecology, we developed a land classification scheme specific to
this area and An. funestus habitats (Figure 5).

4.2. Stratification. (e optimal number of clusters from the
K-means algorithm was k� 4, giving us 4 environmental
strata which the hexagons were assigned to (Figure 2(b) and
Table 3).

4.3. Larval Sampling. (e larval and drone surveys were
conducted from 24th June to 31st July 2021. (e second
rainy season in Côte d’Ivoire occurs from July to September.
(is season, however, was remarkably dry. We sampled 189
potential mosquito breeding habitats, of which 119 (63%)
were positive for larvae of theAnopheles genus, foundmostly
using targeted sampling (Table 4). Anopheles larvae-positive
habitats were more likely to be semipermanent or perma-
nent water bodies with emergent vegetation and stationary
water flow (Table 5). (e anopheline species identified in-
cluded An. gambiae, An. nili, An. pharoensis, An. ziemanni,
and An. funestus. Nine sampling points (4.8%) were positive
for An. funestus larvae. Culicine larvae were also recorded in

120 water bodies (63%) but were not counted nor speciated.
eDNA samples were collected for every sampled breeding
habitat. At the time of writing, the eDNA results have not
been finalised.

A total of 671 hexagons were visited during the study,
121 according to the randomly stratified sampling design
and the remaining 550 were visited during targeted and
adaptive surveys (Figure 6). (is makes up 11.6% of the total
hexagons in the full region of interest.

4.4. Drone Surveys. We planned on performing 176 drone
flights of 650m× 600m to cover the study area of 68.64 km2,
but due to technical difficulties with the drones we were able
to complete 78 flights, covering 30.42 km2 (Figure 7(a)). (e
rectangular grid was used as a guideline for the drone flights,
although there could be a gap between the grid and the
orthomosaic generated by a single drone flight (Figure 7(b)).

4.5. Ground-Truthing and Image Classification. From the
available drone imagery and ground-based observations, we
developed a workflow to manually classify different land
cover categories of interest. Researchers used online tools to
manually digitise the extent of different land cover categories
(Figure 8).

5. Discussion

Within this study, we developed a systematic approach to
collect and label paired entomological and aerial EO data for
the development of deep-learning approaches. While drones
are increasingly accessible to vector control programmes,
critical gaps remain on how to design data collection and
analysis methods. (is study outlines a technical workflow
and procedures for collecting these types of data, providing a
template which can be easily adapted to collect data on
vector breeding sites in other ecological contexts.(is allows
the identification of associations between landscape char-
acteristics and vector breeding sites while also developing
training data for deep-learning algorithms.

A key finding of this project was that the development of
an environmentally and spatially representative sampling
design from freely available satellite data is a feasible method
for initial surveys of a landscape for a rare phenomenon

Table 1: Physicochemical characteristics of interest to be collected in each water body.

Variable Equipment and collection method
Location Tablet ODK GPS
Type of water body Observation
Size of water body Approximation, with larger water bodies verified using drone imagery
Proportion of emergent vegetation cover Approximation to the nearest 10%
Predominant type of emergent vegetation present Observation, as classified in [40]
Canopy cover Approximation to the nearest 10%
Water transparency Observation against a white background (dipper)
Water permanence Observation
Water movement Observation
Water depth Ruler
Total dissolved solids Total dissolved solids measurement device
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Remote sensing work Entomological work

1. Identify An. funestus predominant villages

2. Identify region and season of interest

An. funestus mean
counts

An. funestus
(approx.) flight range

Funding and logistics
3. Create hexagonal sampling units within region of interest

 3A. Randomly stratified and
targeted sampling 3B. Adaptive sampling

4A. Mosquito larval
sampling

5A. Environmental
DNA sampling

6. Water body
characterisation

4B. Rearing for
An.funestus

identification

1. Literature review to determine landscape factors
associated with An. funestus breeding ecology

4. Classification of hexagonal sampling units based
on k-means clustering of Sentinel-2 bands to define

the optimal number of environmental strata

5A. Drone surveys and
orthomosaic image

construction

5B. Ground truth
surveys

6. Refinement of land classification scheme

7. Categorisation of drone imagery on Groundwork
Azavea to develop training data

2. Download Sentinel-2 bands for region of interest

7. GPS coordinates of confirmed An. funestus breeding sites
and their characteristics

5B. eDNA
extraction for

further confirmation

8. Develop deep learning algorithms to produce
land cover maps

Future steps: Risk factor analysis and predictive mapping of An. funestus breeding sites

Figure 4: Technical workflow integrating remote sensing (including drone) and entomological work.

Table 2: Land cover and water body types associated with An. funestus larval and adult presence.

Reference Location
Land cover type

Type of water body
Agriculture Human settlement River Savannah Swamp Others

[41] Benin Small scale Yes —

[32] Cameroon Yes Yes Small water bodies, cattle
footprints

[42] Cameroon Cropland Yes Deciduous
woodland —

[43] Malawi Small scale Shrub and
grassland —

[18] Kenya,
Tanzania Yes Yes Yes

Swamps, vegetated
(grass) stream and river
edges, and vegetated

pools

[10] Kenya —

Large,
semipermanent
with aquatic

vegetation and algae
[28] Tanzania Yes Ephemeral river channels

[11] Kenya Highlands Streams, drainage ditch
habitats

[27] Kenya — Shaded water

[12] Ethiopia Irrigated
landscape

Puddles of lowland dam,
and irrigation canals
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when supplemented with local knowledge of the environ-
ment and a follow-up stage of intensive sampling. Larval
surveys are a common form of entomological sampling;
however, their sampling frames can often be designed with
convenience or prior knowledge in mind. For example, a
habitat type which is known to be associated with a certain
vector may be oversampled, leading to biases in the rep-
resentation of land types present. In the case of the breeding
ecology of An. funestus, for which there is a paucity of
knowledge, it is especially important to sample the full range
of habitats present in the study area, to gain knowledge of the
areas where aquatic habitats are present but also where they

are absent. It is also crucial that a sampling frame will pick up
the species of interest and adjust the design to ensure this if
necessary. In our study, it is clear, from the low number of
potential habitats picked up through the random stratifi-
cation alone, that this sampling frame required an extension
in order to be confident that we could locate rare An.
funestus aquatic habitats [13, 49]. We extended the sampling
frame to account for the rarity of these habitats by searching
in the terrain surrounding the randomly selected hexagons,
aided by local knowledge of water body distribution. (e
targeted surveys were a successful method of locating water
bodies, leading to 107 potential larval habitats, often in areas

Table 2: Continued.

Reference Location
Land cover type

Type of water body
Agriculture Human settlement River Savannah Swamp Others

[21, 22] Kenya Yes Grass cover
Swamps, drainage

ditches, and abandoned
gold mines

[19] Mozambique Yes Swamps with reed grass

[17, 44] Kenya Yes Pasture Swamps and permanent
water bodies

[45] Kenya — Stream pools

[13] Tanzania Rice and maize Yes Yes

Small spring-fed pools,
medium-sized

semipermanent natural
ponds, slow-moving
water along river

tributaries
[20] Kenya Yes Cultivated —

[46] Zimbabwe

Small-scale
farming along
rivers (maize,
bananas, and

yams)

Yes Tropical
savannah

Sparse
woodland

Irrigation canals,
marshes, and shallow

wells

[47] Eritrea Yes Streams

[48] Nigeria Farmland Yes

Nonmoving water
bodies, cemented

reservoirs, rice farms,
ponds, pools, and
overhead tanks

Land
classification

class

Agriculture

Built
environment 

Water body

Irrigated rice

Crops

Roads

Buildings

Vegetated

Non-vegetated

Tillage

Figure 5: Refined land classification scheme for categorising drone imagery.
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which would not have been visited based on convenience
sampling. In the case of An. funestus breeding habitats in
Côte d’Ivoire, we found that this sampling framework served
as a strong initial survey which allowed us to locate potential
breeding sites. When followed up with an adaptive sampling
stage of intensive larval surveys, we were successful in
identifying a total of nine An. funestus breeding sites.

In this study, we stratified the landscape using Sentinel-2
multispectral bands and vegetation indices which were
derived from them. Other sources of freely available satellite
remote sensing and spatially explicit data, such as soil type,
hydrological indices, and weather reanalysis and forecasting,
could have been used for the same stratification purposes
and could have produced different numbers and locations of
strata. Nonetheless, to validate the usage of Sentinel-2-de-
rived variables to differentiate the landscapes of interest for
An. funestus breeding, we collected ground-truthing land
cover data and performed a sensitivity analysis. Future
studies could build on existing data to iteratively develop
sampling frames including all key metrics associated with
the vector of interest.

(e nine An. funestus larval habitats found were large,
semipermanent water bodies, which made up a small subset
of our total sampled habitats. (ese findings support pre-
vious descriptions of An. funestus habitats as “few, fixed, and

findable” [13, 49]. (e cross-sectional nature of our study,
however, did not allow us to confirm whether these water
bodies are breeding sites consistently over time, where fe-
male An. funestus returns every breeding season. To in-
vestigate this, the same sampling points could be revisited
and sampled for An. funestus larval presence in the following
rainy season.(e results of our larval survey could be used in
future studies to describe the distribution of An. funestus
breeding sites within this region.

We trialled a novel protocol for the collection of eDNA
samples from potential breeding sites to show the presence
of An. funestus in water bodies where their larvae were not
collected or identified.(e previous detection of eDNA from
artificial Anopheles larval habitats has demonstrated the
ability to detect 0.002 larvae/ml, and further validation of
our protocol with field samples is ongoing [50]. (e SOPs
provided and instructions on these methods should serve as
good guidelines for future researchers.

One of the key outputs of this study is the development
of a workflow using open-source tools to collect and label
imagery. We found that the use of offline maps loaded to the
ODK forms was essential for efficient navigation in the field
and the collection of drone data. (e inclusion of gridded
guidelines for drone surveys and previously sampled water
bodies allowed for efficient mapping of the sampled sites and

Table 3: (e number of hexagonal strata and their proportions sampled according to a randomly stratified sampling design, with the
number of each being positive for water bodies.

Strata Number of hexagons Proportional number sampled Number of sampled hexagons with water bodies
1 1962 41 (2.09%) 0 (0.00%)
2 1545 32 (2.07%) 0 (0.00%)
3 1040 22 (2.12%) 1 (4.50%)
4 1231 26 (2.11%) 2 (7.69%)
Total 5778 121 (2.09%) 3 (2.48%)

Table 4: (e total number of water bodies, and those Anopheles-positive habitats, found per sampling strategy.

Sampling strategy Number of water bodies found Number of water bodies positive for anopheline larvae
Randomly stratified 3 0 (0%)
Targeted 107 62 (72%)
Adaptive 79 57 (59%)

Table 5: Summary statistics for the characteristics of anopheline larval positive habitats.

Variable Positive sites (range) Negative sites (range)
Average canopy cover (%) 37 (0, 100) 28 (0, 100)
Average emergent vegetation cover (%) 51 (0, 100) 27.2 (0, 100)
Average total dissolved solids (ppm) 75 (15, 216) 97 (5, 240)

Proportion of potential habitats positive by water permanence
Temporary 0.47 0.53

Semipermanent 0.61 0.66
Permanent 0.61 0.33

Proportion of potential habitats positive by water flow
Stationary 0.67 0.33

Slow flowing 0.25 0.75
Fast flowing 0.00 0.00

Proportion of potential habitats positive by water turbidity

Transparent 0.67 0.33
Cloudy 0.65 0.35

Very cloudy 0.65 0.35
Opaque 0.67 0.33
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their surrounding landscapes in real-time. In addition, the
online platform Groundwork for categorising our drone
imagery provided a user-friendly, collaborative option for
the often tedious task of labelling imagery for training
datasets for deep-learning methods. (e platform enabled
good project management with the ability to oversee
labellers’ progress, and all labelled images were verified by
experts who are familiar with the environment. (is is an
efficient tool for building a catalogue of training data for
wider projects using remote-sensing data with the aim of
landscape classification using deep-learning methods. Using
a landscape classification system which is based on the
literature of An. funestus breeding ecology should ensure its
applicability for further research into land cover risk factors
for the vector’s larval habitats and predictive mapping based
on land cover.

Another important consideration in projects involving
drone mapping and entomological sampling is the seasonal
changes which may occur during the project. (is is espe-
cially important in rapidly changing environments, for
example, in an area undergoing deforestation events, and
during changing seasons, for example, in the transition
months between dry and rainy seasons. (ese biotic and
abiotic changes can have significant impacts on mosquito
ecology [51] and can also be visible in remote-sensing

imagery. One way to adjust a drone and entomology pro-
tocol to account for this is to aim to collect drone and
entomology data simultaneously. Our protocol aimed to
map a potential larval habitat no more than two days after
sampling, to ensure that the images collected reflected the
characteristics of the water body at the time of sampling.
However, due to logistical issues, there was a lag of over two
weeks when mapping some water bodies. (e extent of the
area to be mapped also resulted in a timespan of six weeks
between the first and the last drone flights. In the case of this
study, we do not expect these time lags to have a major
impact on the imagery analysis, as the rainy season which
was due to commence during our data collection period
arrived late, and the weather remained relatively stable
throughout. We do, however, recommend taking time lags
into account when planning drone and entomological
surveys.

(is project was somewhat limited by technical issues
encountered with drones. On two occasions, our drones lost
connection with the remote controller while in flight,
resulting in irreparable damage. Although there were drone
merchants in Cote d’Ivoire, procurement of new drones was
slow for the short time span of this project. (e original
protocol for this study aimed to map a 3 km buffer around
the study villages; however, due to technical issues this was

Figure 6: Map of (a) hexagons visited in white and water bodies in
blue, of which (b) hexagons positive with Anopheles larvae are in
red.

Figure 7: (a) A rectangular grid used to plan drone flights, with the
grey coloured rectangles highlighting drone flights. (b) Example of
a 600× 650m orthomosaic generated from a single flight. (e red
rectangular grid indicates the guidelines used in the field to plan the
drone flights, and the red hexagons are random sampling locations.
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not feasible within the study time frame. (e protocol
changed to reflect this, and we focused mapping efforts on
sampled water bodies and the landscape immediately sur-
rounding them, rather than mapping the full region of
interest. Technical issues are an important factor to take into
account when planning a project which involves drone
mapping, and we recommend adding contingency time and
budget to any fieldwork planning. We strongly suggest al-
ways using the equipment according to the manufacturer’s
instructions and taking special caution to keep equipment
from overheating, especially in sunnier environments. It is
useful to establish in-country connections with drone
vendors prior to beginning fieldwork, and if possible, to have
backup equipment should any technical issues arise.

6. Conclusions

(is paper provides a technical workflow on the develop-
ment of an environmentally and spatially representative
sampling design using remote-sensing data and the col-
lection of drone imagery and larval distribution data for
deep-learning methods. We hope that it can act as a useful
guide for the integration of drone and vector data collection
for future research. We found that using a randomly
stratified sampling design which is representative of the
landscape supplemented by local knowledge, and a second
stage of intensive sampling, serves as a strong framework for

identifying the “few, fixed, and findable” breeding sites of
An. funestus in our study villages.
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