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Abstract: A descriptive design was carried out studying the correlation between antimicrobial
consumption and resistance profiles of ESKAPE pathogens (Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) in
a Peruvian hospital, including the surgical, clinical areas and the intensive care unit (ICU) during the
time period between 2015 and 2018. There was a significant correlation between using ceftazidime
and the increase of carbapenem-resistant Pseudomonas aeruginosa isolations (R = 0.97; p < 0.05) and the
resistance to piperacillin/tazobactam in Enterobacter spp. and ciprofloxacin usage (R = 0.97; p < 0.05)
in the medical wards. The Pseudomonas aeruginosa resistance to piperacillin/tazobactam and amikacin
in the intensive care unit (ICU) had a significant reduction from 2015 to 2018 (67% vs. 28.6%,
65% vs. 34.9%, p < 0.001). These findings give valuable information about the rates and dynamics
in the relationship between antibiotic usage and antimicrobial resistance patterns in a Peruvian
hospital and reinforce the need for continuous support and assessment of antimicrobial stewardship
strategies, including microbiological indicators and antimicrobial consumption patterns.

Keywords: ESKAPE; antibiotic consumption; antimicrobial resistance; Peru

1. Introduction

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter bauman-
nii, Pseudomonas aeruginosa and Enterobacter spp. are a group of pathogens included in the
ESKAPE acronym to point out the concern about this group for its ability of “escaping”
the bactericidal activity of antimicrobials and therefore raise challenges to treating these
infections, which no longer respond to available antibiotics not only at hospitals, but in
the community [1–3]. The ESKAPE resistant strains are considered within the urgent or
serious threat levels for antimicrobial resistance as they are associated with a high risk
of mortality and high hospital costs [4,5]. The alarming rise of antimicrobial resistance
has a multifactorial etiology where antibiotics’ misuse and limited infection prevention
and control measures are the main known and modifiable causes [6]. Antibiotic overuse
in multiple settings, including the animal, agriculture and human sectors, is one of the
main and modifiable causes [7]; consequently, along with preventive and control measures,
understanding the mechanisms causing resistance and antimicrobial usage dynamics in

Antibiotics 2021, 10, 1221. https://doi.org/10.3390/antibiotics10101221 https://www.mdpi.com/journal/antibiotics

https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0003-3823-4737
https://orcid.org/0000-0001-8094-122X
https://doi.org/10.3390/antibiotics10101221
https://doi.org/10.3390/antibiotics10101221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antibiotics10101221
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics10101221?type=check_update&version=1


Antibiotics 2021, 10, 1221 2 of 11

community and clinical settings will help establish more effective strategies to tackle this
threat [8–10]. Selective pressure is a bacterial mechanism where under antibiotic presence
susceptible strains disappear, facilitating the survival of intrinsically resistant species. Other
mechanisms include the horizontal transfer of resistance genes, changes in cell permeability,
efflux or therapeutic target and the selection of hypermutable clones [6]. The Global Point
Prevalence Survey or Global-PPS is a partnership that evaluates the antimicrobial usage
and bacterial resistance in 303 hospitals from 53 countries from different income categories.
The 2015 report found that Latin American countries have higher rates of carbapenems,
ceftriaxone and vancomycin prescriptions. At the same time, targeted antimicrobial therapy
against carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum beta-lactamases
(ESBL) and methicillin-resistant Staphylococcus aureus (MRSA) in inpatients was higher
than in other regions [11]. The antimicrobials usage was higher on intensive care units
(ICU) and transplant units than general or surgical wards. Furthermore, in this region,
the multiresistant Gram-negative bacilli rate was higher than half of the total nosocomial
infections reported [11,12].

Bacterial resistance represents a serious problem in Peru because over 50% of Gram-
negative bacteria isolated are Escherichia coli and Klebsiella pneumoniae ESBL across differ-
ent hospitalization areas, including general rooms, emergency rooms and intensive care
units [13]. In response to the antimicrobial resistance challenge, some Peruvian hospitals
have started the implementation of antimicrobial stewardship (AMS) programs in order to
reduce the consumption of broad-spectrum antibiotics [13,14]. These response strategies
include antimicrobial restriction, educational campaigns and promotion of antimicrobial
profiles and algorithms, prospective audit, pre-authorized forms and monitoring empirical
antimicrobial treatment flowcharts elaborated in consensus with the intensive care, infec-
tion control, pharmacy and microbiology units [13]. Other countries in the region have
also added automatic and technology-enhanced monitoring strategies, still not reported in
Peru [15]. This study was conducted along with the implementation of an antimicrobial
stewardship program and aims to evaluate the resistance profile of the bacteria ESKAPE
and to study the correlation with the consumption of antimicrobials in three hospitalization
areas of a Peruvian hospital.

2. Results

Among the ESKAPE pathogens evaluated, Klebsiella pneumoniae (n = 1154) and Pseu-
domonas aeruginosa (n = 1212) were the most frequently isolated microorganisms. The
distribution of ESKAPE pathogens by areas during the study period is shown in Figure 1.
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Figure 1. Distribution of ESKAPE pathogens by hospital areas. Abbreviations: SAU = Staphylococcus
aureus, EFM = Enterococcus faecium, KPN = Klebsiella pneumoniae, PAE = Pseudomonas aeruginosa,
ABA = Acinetobacter baumannii, EN- = Enterobacter spp. ICU = Intensive care unit.

Antimicrobial resistance profiles of the evolution and the antimicrobial resistance rate
of ESKAPE pathogens by wards and years are detailed in Figure 2 and Table S1. During
the study period, the average rate of MRSA and vancomycin-resistant Enterococcus faecium
(VRE) isolate exceeded 50% and 60%, respectively, in all three areas and the highest resis-
tance rate was found in the ICU (73.3% and 64.3%). Regarding the resistance profile trend,
there were no significant changes during the follow-up period. In the three study areas,
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the extended-spectrum beta-lactamases (ESBL) rate in Klebsiella pneumoniae was higher
than 70%, whereas an overall increase of Klebsiella pneumoniae resistance to carbapenems
(p < 0.001) and piperacillin/tazobactam (p < 0.05) was found in the last year of follow-up.
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Figure 2. Evolution of the antimicrobial resistance rate of ESKAPE pathogens by hospital areas.
(A). Surgical ward (B). Medical wards (C). ICU. Abbreviations: MRSA = methicillin-resistant Staphy-
lococcus aureus, VRE = Vancomycin resistant Enterococcus faecium, ICU = Intensive care unit.

The carbapenem-resistant Pseudomonas aeruginosa rate in the surgical and medical
wards was around 60%, and over 75% in the intensive care unit. A significant decrease
in the resistance to piperacillin/tazobactam and amikacin was observed (p < 0.001) only
in the ICU when the last and first year of follow-up were compared. Colistin resistance
was not recorded during the study period. The resistance rate to other antimicrobials
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with antipseudomonal action such as ceftazidime or ciprofloxacin exceeded 50% in all the
studied areas. Likewise, the rate of carbapenem-resistant Acinetobacter baumannii in all
areas was greater than 85%. The Acinetobacter baumannii multiresistance profile did not vary
throughout the study, and no colistin or tigecycline resistance was found in the evaluated
strains. The resistance rate to third-generation cephalosporins in Enterobacter spp. in the
surgical and medical wards exceeded 50%; however, no changes in the resistance profile
trend were found in the antibiotics tested.

The relative annual consumption of each antimicrobial, the mean, the standard devia-
tion and the percentage of change during the study period are presented in Figure 3 and
Table S2. The antimicrobials that had the highest average consumption in the ICU were
vancomycin (9.16 DDD/100 bed-days) and meropenem (9.13 DDD/100 bed-days). In this
area, the percentage of change with respect to 2015 was higher for linezolid (+125.42%)
and the usage of third-generation cephalosporins, carbapenems, vancomycin and amikacin
decreased. The antimicrobial with the highest average consumption in the surgical ward
was ceftriaxone (15.63 DDD/100 bed-days), followed by clindamycin (6.25 DDD/100 bed-
days) and ciprofloxacin (3.13 DDD/100 bed-days). In the medical wards, the antimicrobials
with the highest consumption were imipenem (10.66 DDD/100 bed-days) and vancomycin
(8.59 DDD/100 bed-days). The percentage of change in antimicrobial consumption in
both services was greater for ertapenem (>100%), tigecycline (>200%), colistin (>250%),
meropenem (>50%) and piperacillin/tazobactam (>50%).
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Figure 3. Antimicrobial consumption (mean and standard deviation during the period 2015–2018) by hospital areas.
DDD = defined daily doses. AMK = amikacin, CAZ = ceftazidime, CIP = ciprofloxacin, CLI = clindamycin, COL = col-
istin, CRO = ceftriaxone, ETP = ertapenem, IPM = imipenem, LNZ = linezolid, MEM = meropenem, OXA = oxacillin,
SAM = ampicillin/sulbactam, TIG = tigecycline, TZP = piperacillin/tazobactam, VAN = vancomycin. ICU = intensive care unit.

The correlations between antimicrobial resistance and antimicrobial consumption
per service and microorganism are shown in Table 1. A positive correlation between
ceftazidime consumption and resistance to meropenem in Pseudomonas aeruginosa (R = 0.97;
p = 0.031) (Figure 4) and between the consumption of ciprofloxacin and resistance to
piperacillin/tazobactam in Enterobacter spp. (R = 0.97; p = 0.031) was found in the medical
wards (Figure 4). In the surgical areas, a negative correlation was identified between
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the consumption of ceftazidime and resistance to carbapenems in Acinetobacter baumannii
(R = −0.93; p = 0.007) and between the consumption of ciprofloxacin and resistance to
carbapenems (R = −0.93; p = 0.007). No significant correlations were found in Klebsiella
pneumoniae, Staphylococcus aureus or Enterococcus faecium for the selected antimicrobials in
any study area.

Table 1. Results of the Spearman correlation demonstrating the relationship between the frequency of strains resistant to a
particular antimicrobial and the consumption of antimicrobials that potentially exert selection pressure divided by services.

Surgical Ward Statistical
Values Medical Wards Statistical

Values ICU Statistical
Values

Antibiotic
Consumption

Bacterial
Resistance R p Antibiotic

Consumption
Bacterial

Resistance R p Antibiotic
Consumption

Bacterial
Resistance R p

TZP (↑)

TZP PAE 0.95 0.051

TZP (↑)

TZP PAE 0.80 0.200

TZP (↓)

TZP PAE 0.32 0.683
TZP EN- 0.95 0.051 TZP EN- 0.16 0.834 TZP EN- −0.83 0.167
IPM KPN 0.23 0.772 IPM KPN 0.95 0.051 IPM KPN 0.00 1.000
MEM KPN 0.23 0.772 MEM KPN 0.95 0.051 MEM KPN 0.00 1.000
MEM PAE 0.80 0.200 MEM PAE 0.79 0.201 MEM PAE 0.00 1.000

MEM (↑)

MEM KPN −0.06 0.944

MEM (↑)

MEM KPN 0.63 0.367

IPM (↓)

IPM KPN −0.77 0.225
TZP EN- 0.95 0.051 TZP EN- 0.36 0.635 IPM PAE −0.40 0.600
TZP KPN 0.57 0.431 TZP KPN 0.85 0.153 MEM KPN −0.77 0.225
MEM PAE 0.95 0.051 MEM PAE 0.89 0.102 TZP KPN −0.40 0.600
MEM ABA −0.63 0.367 MEM ABA 0.80 0.200 TZP EN- −0.74 0.262

ETP (↑)

ETP KPN 0.63 0.367

ETP (↑)

ETP KPN 0.83 0.166

ETP (↔)

ETP KPN −0.77 0.225
ETP EN- 0.89 0.105 ETP EN- 0.00 1.000 ETP EN- 0.77 0.225
IPM PAE 0.60 0.400 IPM PAE 0.95 0.051 IPM PAE −0.34 0.656
MEM PAE 0.60 0.400 MEM PAE 0.63 0.367 MEM PAE 0.74 0.262

CAZ (↔)

MEM ABA −0.93 0.007

CAZ (↔)

MEM ABA 0.60 0.400

CAZ (↓)

MEM ABA −0.34 0.685
IPM ABA −0.93 0.007 IPM ABA 0.60 0.400 IPM ABA −0.30 0.699
MEM PAE 0.80 0.200 MEM PAE 0.97 0.031 MEM PAE 0.21 0.789
IPM PAE 0.80 0.200 IPM PAE 0.50 0.497 IPM PAE −0.27 0.722

CIP (↔)

CRO EN- 0.20 0.800

CIP (↔)

CRO EN- 0.88 0.115

CIP (↓)

CRO EN- −0.80 0.200
CAZ KPN 0.80 0.200 CAZ KPN −0.05 0.953 CAZ KPN 0.20 0.800
CAZ EN- 0.40 0.600 CAZ EN- 0.63 0.367 CAZ EN- −0.60 0.400
MEM EN- −0.89 0.105 TZP EN- 0.83 0.171 TZP EN- −0.95 0.051

CIP (↔)

OXA SAU −0.20 0.800

CIP (↔)

OXA SAU −0.80 0.200

CIP (↓)

OXA SAU −0.75 0.242
IPM PAE 0.80 0.200 MEM PAE 0.80 0.200 MEM PAE 0.21 0.789
AMK PAE 0.40 0.600 AMK PAE 0.80 0.200 AMK PAE 0.80 0.200
IPM ABA −0.89 0.041 MEM ABA 0.80 0.200 MEM ABA −0.30 0.695
MEM ABA −0.89 0.041 TZP EN- 0.97 0.031 TZP EN- −0.74 0.262

AMK (↔)
AMK PAE 0.63 0.367

AMK (↓)
AMK PAE 0.13 0.868

AMK (↓)
AMK PAE 0.31 0.688

AMK KPN 0.63 0.367 AMK KPN −0.83 0.163 AMK KPN −0.67 0.327
AMK EN- 0.32 0.683 AMK EN- 0.32 0.683 AMK EN- −0.57 0.427

IPM (↔)

IPM KPN −0.95 0.051

IPM (↔)

IPM KPN −0.83 0.167

MEM (↔)

MEM KPN −0.56 0.436
IPM PAE 0.40 0.600 IPM PAE −0.32 0.683 TZP EN- −0.21 0.789
MEM KPN −0.95 0.051 MEM KPN −0.81 0.183 TZP KPN −0.80 0.200
TZP KPN −0.20 0.800 TZP KPN −0.32 0.683 MEM PAE 0.74 0.262
TZP EN- 0.20 0.800 TZP EN- 0.32 0.683 MEM ABA −0.01 0.847

CLI (↔)
OXA SAU 0.40 0.600

CLI (↔)
OXA SAU −0.40 0.600 CLI (↓) OXA SAU −0.94 0.051

CLI SAU 0.40 0.600 CLI SAU −0.40 0.600 CLI SAU −0.80 0.200

SAM (↔)
MEM ABA −0.77 0.225

SAM (↔)
MEM ABA 0.32 0.683 SAM (↓) MEM ABA −0.31 0.683

IPM ABA −0.77 0.225 IPM ABA 0.32 0.683 IPM ABA −0.33 0.665

VAN (↔) VAN EFM −0.20 0.800 VAN (↔) VAN EFM 0.95 0.051 VAN (↓) VAN EFM −0.25 0.746

Abbreviations: SAU = Staphylococcus aureus, EFM = Enterococcus faecium, KPN = Klebsiella pneumoniae, PAE = Pseudomonas aerugi-
nosa, ABA = Acinetobacter baumannii, EN- =Enterobacter spp. AMK = amikacin, CAZ = ceftazidime, CIP = ciprofloxacin, CLI = clin-
damycin, CRO= ceftriaxone, ETP = ertapenem, IPM = imipenem, MEM = meropenem, OXA = oxacillin, SAM =ampicillin/sulbactam,
TZP = piperacillin/tazobactam, VAN = vancomycin. R = Spearman’s rank correlation coefficient. P = statistical significance.
Trend: ↑ = increasing,↔ = stable, ↓ = decreasing.
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Figure 4. Antimicrobial consumption and correlation with resistance for specific pathogen in medical wards.
(A). Ceftazidime consumption and resistance to meropenem in Pseudomonas aeruginosa. (B). Ciprofloxacin
consumption and resistance to piperacillin/tazobactam in Enterobacter spp. DDD = defined daily doses.
CAZ = ceftazidime, CIP = ciprofloxacin, MEM = meropenem, TZP = piperacillin/tazobactam.

3. Discussion

The analysis of the ESKAPE pathogens resistance profiles in our study showed a
high level of resistance to many antibiotics. For instance, Staphylococcus aureus presented
resistance to oxacillin above 50% and Enterococcus faecium at 90% to vancomycin. The rate
of Klebsiella pneumoniae ESBL was between 65% and 87% and resistance to carbapenems
was around 30% in the last year of the study. Pseudomonas aeruginosa presented above 50%
of resistance to carbapenems with even a higher level in the ICU (85%) and Acinetobacter
baumannii showed around 90% of resistance to meropenem. In addition to the appearance
of carbapenem-resistant Klebsiella pneumoniae isolates during the last year of study, 13% of
Enterobacter spp. isolates showed resistance to carbapenem.

A correlation between some ESKAPE pathogens resistance and antimicrobial consump-
tion in the medical wards was also found, such as a positive correlation between the con-
sumption of ceftazidime and the resistance to meropenem in Pseudomonas aeruginosa, and
between ciprofloxacin usage and Enterobacter spp. resistance to piperacillin/tazobactam.

The high level of bacterial resistance in this study is consistent with the 2020 Pan
American Health Organization (PAHO) report [16] that found that Peruvian isolates had
the highest regional rate of carbapenem-resistant Pseudomonas aeruginosa and carbapenem-
resistant Acinetobacter baumannii with 69% and 89%, respectively, in 2016. In contrast,
the carbapenem-resistant Klebsiella pneumoniae rate in Peru was 8% compared to 16% in
Colombia and 24% in Ecuador the same year. The increasing carbapenem-resistant Klebsiella
pneumoniae (CRE) outbreaks in Peru [17,18] were associated with higher mortality rates
than the infections caused by non-carbapenem-resistant strains, thus necessitating the
establishment of multidisciplinary and multilevel strategies to control this threat [19].

Antimicrobial consumption is reported as one of the leading causes of antimicrobial
resistance in clinical settings, where factors such as prior antibiotic use, prior hospitalization
and long antibiotic treatment have shown a significant association [20,21]. However, a linear
relationship with a particular class of antimicrobial drugs has not been found yet [22,23].
Despite the limitations of this study to report causal association, our exploratory analysis
did not find a significant correlation with a particular antimicrobial or pathogen resistance
pattern. Furthermore, the increasing number ESKAPE bacteria with different resistance
patterns isolated from community samples has raised alarms about the factors associated
and the influence of the antimicrobial and prescription usage in community settings [3,24].

Although the non-significant correlation between the ESKAPE pathogens resistance
patterns and specific antimicrobials was consistent with other reports [25,26], significant
reduction in the resistance rate of piperacillin/tazobactam and amikacin in Pseudomonas
aeruginosa was observed in the ICU. Likewise, the rate of antipseudomonal drugs used
in the ICU (ciprofloxacin, ceftazidime and imipenem) showed a decreasing trend (>50%).
This may suggest that a decrease in the general consumption of an antimicrobial group
contributes to modifications in the resistance profile [27].
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A positive correlation was observed between the consumption of ceftazidime and
resistance to meropenem in medical wards; similarly, Plüss-Suard et al. reported an as-
sociation between broad-spectrum antimicrobials consumption and the development of
multidrug-resistance in Pseudomonas aeruginosa [28]. Although a significant correlation be-
tween the consumption of carbapenems and carbapenem-resistant Pseudomonas aeruginosa
was not found, a patient-centered study reported a significant relation between ertapenem
usage and the appearance of strains resistant to carbapenems and ureidopenicillins [29]. In
contrast, some ecological studies have suggested that ertapenem consumption (group I
carbapenem without antipseudomonal activity) is not related to the increase in resistance
of antipseudomonal carbapenems in Pseudomonas aeruginosa [30,31]. Although increasing
consumption of ertapenem and tigecycline was a strategy applied to reduce carbapenem
usage and pseudomonal resistance in the ICU, no changes were observed in the Klebsiella
pneumoniae profile [32,33].

A negative correlation was identified between the consumption of ciprofloxacin and
resistance to carbapenems in Acinetobacter baumannii. These results were in contrast with
other studies that showed a positive correlation between quinolone intake with the inci-
dence of imipenem-resistant Acinetobacter baumannii [34]. However, it has been suggested
that the impact of antimicrobial consumption in the Acinetobacter baumannii resistant profile
has low, if any, impact compared with other Gram-negative pathogens [35].

This study has some limitations. First, an individual approach was used and other
risk factors, such as previous antibiotic usage, previous hospitalization or long antibiotic
courses, were not included in the analysis. An ecological approach might contribute
better to understand the dynamics of resistance patterns and microbial genetic, host and
environmental interactions in different hospitalization areas. Second, only phenotypic
resistance profiles were used, which probably had a combination of genetic resistance
mechanisms; thereby, the antimicrobial resistance trend reported cannot be considered
the cause of the specific use of any antibiotic in our hospital. Third, considering the
observational design of this study and the high rate of antimicrobial resistance reported in
clinical settings and even at the community level in Peru, the influence of non-nosocomial
factors in the evolution of the antimicrobial-resistant pattern cannot be ruled out. Another
possible confusing factor that we did not add into the analysis was the influence of the
implementation of the antimicrobial stewardship program in the number of cultures
requested as well as the patients’ characteristics and outcomes in the different wards
included. Finally, the study cohort only involved patients from a referral hospital of the
social health insurance system in Peru and a short follow-up period. Therefore, these
results may not be applicable to all clinical settings in Peru.

Considering the potential positive impact of the antimicrobial stewardship strategies
in reducing antimicrobial consumption and antimicrobial resistance rates, monitoring,
reporting and establishing AMS strategies are essential to improving health care, especially
in settings with a high level of antimicrobial resistance. The AMS program in our hospital
started during the study period (midterm 2017) and the follow-up study was carried out
from 2016 to 2018. Therefore, future studies should include a longer follow-up period with
a robust statistic design that could help to estimate the precise impact of the antimicrobial
consumption and AMS strategies in the ESKAPE antimicrobial resistance profile.

4. Materials and Methods

This is an observational and retrospective study that evaluates the relationship between
the consumption of antimicrobials and the resistance profiles of ESKAPE pathogens in the
clinical, surgical wards and the ICU of the Guillermo Almenara Irigoyen National Hospital
(HNGAI), a referral hospital of the social health insurance system in Peru. This study was
approved by the hospital ethics committee, and was conducted from 2015 to 2018.
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4.1. Antimicrobial Resistance Profiles

Antimicrobial resistance profiles were obtained using the WHONET 5.6 database. We
excluded epidemiological surveillance samples, internal and external quality controls and
duplicate results from the same patient samples that were taken in fewer than 30 days.
Non-susceptible strains from Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumo-
niae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. were interpreted
according to the Clinical & Laboratory Standards Institute (CLSI) cut-off points and the re-
spective version of the year in which each sample was isolated. Antimicrobial susceptibility
was determined by the automated MicroScan Walk Away 96 system.

4.2. Antimicrobial Consumption

The antimicrobial consumption data were obtained from the electronic database of
the pharmacy department and evaluated by hospital areas. The formula for antimicrobial
consumption was based on the Anatomical, Therapeutic, and Chemical (ATC) classification
system and the 2019 World Health Organization (WHO) report that defines daily doses
as DDD/100 bed-days [36]. The statistic unit of the hospital report was the source to
calculate the number of hospital beds and monthly occupancy rate in the medical areas,
including clinical speciality wards and the surgical areas (surgical units and subspecialties).
Pediatrics, neonatology, nephrology units and emergency room were excluded. The DDDs
reference values were ceftriaxone (2 g), ceftazidime (4 g), vancomycin (2 g), ciprofloxacin
(0.5 g), ampicillin/sulbactam (6 g), clindamycin (1.8 g), oxacillin (0.5 g), amikacin (0.05 g),
imipenem/cilastatin (2 g), meropenem (2 g), ertapenem (1 g), piperacillin/tazobactam
(14 g), linezolid (1.2 g), tigecycline (0.1 g), colistin sulfomethate sodium [0.240g~3MU].

4.3. Antimicrobial Consumption-Bacterial Resistance Correlation

Correlations between the following antimicrobial drugs and bacterial resistance profiles
were considered: Staphylococcus aureus and oxacillin, ciprofloxacin, clindamycin; Enterococcus
faecium and vancomycin; Klebsiella pneumoniae and CF3G, carbapenems, ciprofloxacin, amikacin,
piperacillin/tazobactam; Pseudomonas aeruginosa and ceftazidime, piperacillin/tazobactam, car-
bapenems, ciprofloxacin, amikacin; Acinetobacter baumannii and imipenem/cilastatin, meropenem,
piperacillin/tazobactam, CF3G, ciprofloxacin; Enterobacter spp. and CF3G, piperacillin/tazobactam,
carbapenems, amikacin.

4.4. Statistical Analysis

Descriptive analysis of antimicrobial consumption expressed in DDD/100 bed-days
for each service was carried out, indicating the average consumption of the four years of
study and its respective standard deviation. To study the consumption evolution during the
study period, the percentage of change (increase or reduction) was calculated by subtracting
the consumption data (DDD/100 beds-days) from 2018 compared to 2015, dividing by the
consumption in the first-year of study, and multiplying the result by 100 [37]. An increasing
or decreasing trend was considered when the percentage of change with respect to the
previous selected year by therapeutic group varied more than 50% [38].

To evaluate the evolution of the bacterial resistance profile, the proportions (chi-square)
between the first and last year of follow-up were tested. Spearman’s non-parametric
test and its probability value were used to study the correlation between antimicrobial
consumption and bacterial resistance. The statistical analyzes were performed with R
software version 3.4.4 and a p ≤ 0.05 was considered statistically significant. Graphics were
made with the GraphPad Prism 9.0.0.

5. Conclusions

The present study examined the dynamics of antimicrobial consumption and its
possible impact on the antimicrobial resistance of the ESKAPE pathogens group in a
referral hospital in Peru. A significant correlation between the consumption of ceftazidime
and resistance to meropenem in Pseudomonas aeruginosa and between the consumption
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of ciprofloxacin and resistance to piperacillin/tazobactam in Enterobacter spp. was found
only in the medical wards, which might suggest an influence of antimicrobial usage
in the high rates of antimicrobial resistance in this hospital area. This study has room
for further improvement; future work should include a longer follow-up period with a
robust statistical design to gain a better understanding of the impact of the antimicrobial
consumption and the AMS strategies in the ESKAPE antimicrobial resistance profile. Finally,
these findings highlight the importance of improving AMS strategies moving from general
to specific antimicrobial usage monitoring measures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10101221/s1, Table S1: Percentages of antimicrobial resistance of ESKAPE pathogens
and their evolution between the period 2015 and 2018 by areas, Table S2: Consumption and percentage
of change of antimicrobials (DDD/100 bed-days) during the period 2015–2018 by area.

Author Contributions: Conceptualization, G.P.-L. and S.A.-S.; methodology, G.P.-L. and S.A.-S.; data
curation, R.R., R.L., A.M.-M., J.B.-L., B.A.-R. and W.F.-P.; Supervision, L.R.I. and B.A.-R.; writing—
original draft preparation, G.P.-L. and S.A.-S.; writing—review and editing, L.R.I. and B.A.-R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of Guillermo Almenara
Irigoyen National Hospital (HNGAI). (protocol code 003-2019).

Data Availability Statement: The data supporting the reported results are available from the corre-
sponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008,

197, 1079–1081. [CrossRef]
2. Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti-infective Ther. 2013, 11,

297–308. [CrossRef]
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