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Air-conditioning and the adaptation cooling deficit
in emerging economies
Filippo Pavanello 1,2, Enrica De Cian 2,3✉, Marinella Davide 2,4, Malcolm Mistry 2,3,5, Talita Cruz 6,

Paula Bezerra 6, Dattakiran Jagu 2, Sebastian Renner 7, Roberto Schaeffer 6 & André F. P. Lucena 6

Increasing temperatures will make space cooling a necessity for maintain comfort and pro-

tecting human health, and rising income levels will allow more people to purchase and run air

conditioners. Here we show that, in Brazil, India, Indonesia, and Mexico income and humidity-

adjusted temperature are common determinants for adopting air-conditioning, but their

relative contribution varies in relation to household characteristics. Adoption rates are higher

among households living in higher quality dwellings in urban areas, and among those with

higher levels of education. Air-conditioning is unevenly distributed across income levels,

making evident the existence of a disparity in access to cooling devices. Although the

adoption of air-conditioning could increase between twofold and sixteen-fold by 2040, from

64 to 100 million families with access to electricity will not be able to adequately satisfy their

demand for thermal comfort. The need to sustain electricity expenditure in response to higher

temperatures can also create unequal opportunities to adapt.
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As global temperatures rise, a growing number of people
around the world will be exposed to the potential harm
caused by heat stress1. Adaptation through the use of air-

conditioning2 has been the subject of a recent and growing lit-
erature that looks at patterns of potential needs and demand
across major cities3,4, countries5,6 and world regions7,8. Low- and
middle-income countries in the tropics or sub-tropics are under
the spotlight9. About two to four billion people living in those
places have no space-cooling devices in their homes and air-
conditioning usage is highly concentrated among high-income
households10. In a warming climate, air-conditioning could
contribute to maintain labor productivity11–13 and to enhance the
accumulation of human capital14 in the long-term. Better
understanding how many of those people at risk will or will not
be able to adopt air-conditioning remains an important area for
future research.

The adoption of air conditioners follows the “S”-shaped pat-
tern that characterizes the uptake of other durable goods, such as
automobiles and refrigerators15,16. In developing countries, the
growth of this curve tends to start off slowly, because of credit
constraints, followed by a steeper rise once income levels reach a
certain threshold. Stylized “S”-shaped functions have also been
used to project future air-conditioning adoption and energy
requirements in India5 and in other low-income countries17,18.
The expansion of households’ air-conditioning will put increasing
pressure on future energy demand especially in hot developing
countries19–21, and accounting for this additional driver of energy
demand will help improve the aggregate projections and scenarios
needed for managing long-term investments22–24. Demand-side
actions will be an important element in the transition towards net
zero emissions over next few decades25, but most models used to
support policy making lack the characterization of adaptation-
energy feedback mechanisms. How energy use for adaptation

might influence the design of effective mitigation actions remains
to be studied26,27.

Here we provide a multi-country, comparative analysis of how
income and climate drive air-conditioning adoption in Brazil,
India, Indonesia, and Mexico, in relation to a comprehensive set
of country-specific household characteristics, and evaluate with a
top-down approach28 how future changes in climate and socio-
economic conditions centered around 2040 will influence air-
conditioning adoption and electricity. We show that in emerging
economies the decision to purchase air-conditioning in response
to warmer climatic conditions is strongly anchored to a house-
hold’s socio-economic conditions and demographic character-
istics. Not explicitly accounting for other characteristics of
households can significantly bias the estimates of the marginal
contribution of income and climate, which would appear larger.
Although the penetration of air-conditioning is expected to
increase in the future, an adaptation cooling deficit, characterized
by millions of less well-off electrified households that need but
cannot obtain air conditioners, will remain. Increasing the use of
electricity for residential space cooling is a form of adaptation
that helps relieve the population from heat stress, but the
recurring electricity expenditure required limits the opportunities
among the lowest income deciles. In the long run, if left to
uncoordinated and autonomous actions, space cooling runs the
risk of exacerbating local and global negative externalities and of
widening existing inequalities.

Results
An up-to-date database of households and climate. Our results
are based on the analysis of a new database that combines the
up-to-date household-level survey data covering 2172 subna-
tional regions in Brazil, Mexico, India, and Indonesia over the
2003–2018 period, with gridded cooling degree days (CDDs).

Fig. 1 Climate, air-conditioning, and income characteristics in four selected emerging economies. a A 30-year average of gridded wet-bulb cooling
degree days (CDDs), up to the second wave of household data used in the study (2009 for Brazil and 2012 for all other countries). b Rates of air-
conditioning (AC) ownership in relation to per capita total expenditure (2011 US constant dollars at PPP) and comparison to other cooling devices in the
second wave of household data. The black dashed line shows the distribution of households (HH) across income levels. Maps are generated using the sp,
rgdal, and raster R packages.
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We respond to recent demands to account for the influence of
relative humidity7,8 by using wet-bulb temperature as a more
accurate measurement of thermal discomfort that, contrary to
dry-bulb temperature, does not overestimate temperature at
low humidity levels29. To better reflect tropical conditions, we
use a higher baseline temperature of 24 °C as opposed to the
18 °C value used in most studies on air temperature impacts
and building energy demand30. Because temperature set-
points can vary across households4, we also consider a lower
temperature threshold of 22 °C as a robustness test. The
combination of two temperature thresholds with calculations
based on dry-bulb and wet-bulb temperatures makes it pos-
sible to evaluate the sensitivity of the results for different
countries to the climate metric used. For the sake of clarity, in
the remainder of this paper, CDDs refer to those computed
with wet-bulb temperature and at a base temperature of 24 °C
(see section “Climate Data” in Supplementary Information,
where results based on CDDs computed with dry-bulb tem-
perature are also shown). Brazil, Mexico, India, and Indonesia
are all tropical countries characterized by relatively high
average wet-bulb CDDs, though there is significant variation
from one country to another (Supplementary Fig. 1). Climate
variation remains significant even within each of the four
countries considered. The highest long-term average values of
wet-bulb temperature are observed in Indonesia and India,
although climate heterogeneity between and within countries
highlights the presence of high-CDD regions even in Brazil
(Fig. 1a). The diffusion of air-conditioning units across dis-
tricts and states closely mirrors patterns of hot climate con-
ditions in the climate maps, though urbanization and access to
electricity play a mediating role (see Supplementary Fig. 1). In
India, for example, the highest CDD values, observed in the
states of West Bengal, Assam, Uttar Pradesh, and Orissa, are
not associated with the most widespread use of air-
conditioning. Households in those regions are mostly rural
and often lack access to electricity, as implied by low owner-
ship rates of refrigerators. Fans, which consume less energy
and do not require a stable connection, are more widespread
throughout the country. In Brazil, the state of Rio de Janeiro
shows relatively high adoption rates for air conditioners,
despite the lower number of annual CDDs compared to its
northern states, where urbanization is low. Although Indo-
nesia has the highest values of CDDs, households rarely own
air-conditioning units, except for the districts of Jakarta and
the Riau Islands.

Climate is only part of the story, as shown by India and
Indonesia. For the same level of total expenditure per capita, air-
conditioning ownership rates are the highest in India and the
lowest in Indonesia (Fig. 1b). In these Asian regions, average
annual total expenditure per capita, which we use as an indicator
of lifetime income, is below 10,000 USD for nearly all households.
The expenditure distribution has a larger variance in Brazil and
Mexico where, on average, of at least a quarter of households
reports annual total expenditure per capita above 10,000 USD.
Across all countries air-conditioning ownership is quite low (12%
in India in 2012, 14% in Mexico in 2016), even in Indonesia and
Brazil where more recent data are available (8% in Indonesia in
2017, 20% in Brazil 2018). By comparison, fans and refrigerators
are more widely used. In India, as early as 2012, fans were owned
by 73% of households, even among those with very low-income
levels. Refrigerators have the highest adoption rates in Brazil and
Mexico (See Supplementary Table 4 for descriptive statistics).
Electricity expenditure reflects the ownership patterns of energy-
consuming durables. Absolute values are the highest in Brazil and
Mexico though, in relative terms, Indian households spend the
largest share of their budget on electricity, between 3.4 and 4.5%.

Drivers of air-conditioning adoption. We estimate adoption
models for air conditioners for each individual country by using
the two most recent survey waves available with a logit model (see
“Methods”). To understand how adoption patterns differ from
more commonly owned goods, we also look at the adoption of
refrigerators and fans. While fans can substitute air conditioners
in the space cooling service they provide, air conditioners are
more comparable to refrigerators in terms of the budget required
to purchase them. By using two waves, we can control for
country-specific, time-varying unobservable trends that affect all
households, such as changes in the prices of appliances and
country-level regulations.

Income conditions and climate are both important drivers of
the decision to adopt air conditioners across all countries
(Table 1), but their relative contribution varies in relation to
other household characteristics (Supplementary Table 7). The
marginal effect of total expenditure is always larger than that of
CDDs (except for fans in Mexico), but climate remains an
important factor, especially in Brazil and Mexico. Fans, which in
the short-term have the lowest costs, are generally more sensitive
to CDDs as compared to air-conditioning. Especially in the
warmer countries, India and Indonesia, education and the quality
of dwellings correlate with a household’s wealth and are more
strongly related to the adoption of refrigerators and air-
conditioning, the most expensive goods. The extent to which
climate affects the decision to adopt also depends on a
household’s average income level. The interaction term between
CDDs and total expenditure (Supplementary Table 5) indicates
that households respond to rising temperature levels by
purchasing a new air-conditioning unit only when their average
annual income is sufficiently high (Fig. 2a). Moreover, as income
increases, households tend to substitute fans with air-
conditioning. Refrigerators provide a different service that is
desirable across all climates but, as income increases, refrigerators
become less sensitive to climate. The adoption of refrigerators
responds to CDDs at low-income levels in Brazil and Mexico—
where adoption is higher—and at medium income levels in India
and Indonesia—where adoption is still quite low.

Demographic and infrastructural characteristics are also
important factors in explaining adoption patterns, and their
relative contribution, compared to income and climate, varies
across countries and the type of good considered (Supplementary
Table 6). Urbanization increases the probability of adopting
cooling durables, and so does home ownership, though this factor
is of less importance in comparison to living in major urban
centers. Since for Brazil we lack information on districts,
regressions only consider households located in the strata of
capital and urban regions because for these strata, the
geographical climate information are more accurate. The
regressions for Brazil, therefore, do not include the urbanization
variable. Education substantially enhances the propensity to
adopt all types of goods considered in all countries. The housing
index, which combines information on the quality of roofs, toilet
and walls, shows a positive relationship with adoption propensity,
indicating that households occupying higher-quality homes are
more likely to install an air-conditioning unit. Demographic
factors show a robust influence across goods and countries.
Household size has a negative sign, whereas the presence of
members under 16 years of age has a positive influence.
Households with older family heads are more inclined to have
a cooling appliance, probably because such persons spend more
time at home. Employed household heads, who spend less time at
home, are less interested in owning air conditioners. Findings on
gender are mixed, and whether having a male head increases or
not the propensity to adopt and use of cooling devices varies
across countries. Not including this rich set of households’
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characteristics would significantly bias income and CDD
elasticities, which would be estimated to be larger (Supplementary
Table 11). Over time, the ability of households to adapt to climate
conditions increases. When adoption behaviors are estimated by
using only the most recent wave, income and CDD elasticities are
significantly larger (Supplementary Table 11), indicating that, for
the same income level, climate conditions, as well as all other
covariates (ceteris paribus), households have a higher probability
to adopt air-conditioning in the most recent waves. The higher
adaptive capacity of households could also reflect the rapid
decline in air-conditioning prices observed over the last twenty
years31, though we cannot formally test this hypothesis with our
current data.

While new technologies widen the space of adaptation options
available to households, contributing to enhancing their adaptive
capacity, actual adaptation depends on behaviors and specifically
on how electricity is used. Although we do not observe the
specific consumption of electricity for space cooling, we know the
total electricity consumption of households. Not only can air-
conditioning be reasonably assumed to be more sensitive to
changes in temperature than other final usages, but it is also much
more energy-intensive compared to fans32. Most of the factors
that positively influence the adoption of air-conditioning
adoption—CDDs, income, urbanization, education, home own-
ership and housing index—are also positively related to electricity
consumption (Supplementary Table 9).

As CDDs increase above historical levels, air-conditioning
generally rises more rapidly than fans and refrigerators, especially
in Brazil (Fig. 2b). In India and Indonesia, the speed of diffusion
aligns with that of other devices. In Mexico, fans reach a
saturation point very rapidly, reflecting the relatively higher
correlation with CDDs in a country characterized by very
heterogeneous climate conditions.

Even within tropical regions, temperature measurements based
on dry-bulb temperature can over-estimate CDD elasticities,
depending on how air-conditioning is distributed across sub-
regions with different micro-climates and humidity levels
(Supplementary Table 12). If climatic conditions are measured
with dry-bulb CDDs, the estimated CDD elasticities are
significantly larger in Mexico and India and only slightly so in
Brazil. Mexico and India have a high concentration of air-
conditioning in the regions characterized by a particularly arid
climate (warm arid and very hot dry climate conditions). Overall,
our results are robust in relation to the use of different
temperature thresholds, as well as to different measurements.

Future adoption of air-conditioning around mid-century. We
simulate how changes in future climate and socio-economic
conditions will influence a household’s air-conditioning adoption
and electricity use around 2040 (see “Methods”) by combining
the change in CDDs simulated under two scenarios of moderate
and vigorous warming, as described by the mean climate model
representative concentration pathways (RCPs) 4.533 and 8.534

with changes in income described by five different shared socio-
economic pathways35,36. In India CDDs increase by a factor of
1.9–2.3, while total expenditure increases by a factor of 4–7 across
SSPs. In Indonesia (Brazil), CDDs increase by a factor of 5–9
(6–8) across RCPs while total expenditure by a factor of 3–4
(1.6–2.5) across SSPs. In Mexico CDDs and total expenditure
increase by a factor of 1.7–2.5 across SSPs and RCPs.

Increase in the adoption of air-conditioning is substantial
(Fig. 3 and Supplementary Tables 18–21). In India, the average
adoption rate across Indian states increases from 12% in 2012 to
49–69%, across SSPs and RCPs, in 2040; in Indonesia, from 8% in
2017 to 43–61%, in Mexico from 14% in 2016 to 35–42%, and inT
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Brazil from 20% in 2018 to 65–85%. In Brazil, the largest increases
are observed in its more affluent states in the southern and
southeastern parts of the country, such as São Paulo, where air-
conditioning rises from 16 to 78% in SSP5, RCP8.5, and Mato
Grosso do Sul, which, starting from 28%, achieves full saturation
(90% in SSP5, RCP8.5; results across SSPs and RCPs are available in
the Supplementary Material). Brazil’s northern states have higher
historical ownership rates and therefore see a relatively smaller
increase, though they achieve the largest shares by 2040. To
mention a few examples, Amazonas, with the contribution of the
city of Manaus, Pará, and Tocantins range from 69%, 23%, and 29%
in 2018, respectively, to full ownership. In Mexico, the average
ownership rates in its hotter states are comparatively high already in
the historical records, reaching 73% in Sonora or 77% in Sinaloa.
The country’s average increase in air-conditioning ownership is
mediated by the inland regions, which are characterized by very low
CDDs and hence no use of air-conditioning. In India, hetero-
geneous conditions in the access to electricity contribute to
determining a more diverse situation across states. We do not
model expansion in electricity access and therefore our projections
represent households that already have access to electricity at

present. This is not an issue for Mexico and Brazil, as they
practically coincide with the total survey population (more than
97%). It might lead to an underestimation of AC expansion in
Indonesia and India where many households still lack access. The
largest increases in air-conditioning are seen in the northeastern
part of the country, close to the border with Bangladesh, in states
such as Assam, Bihar, Nagaland, and Meghalaya, where CDDs
reach the highest values in the country. In India, 6 out of its
35 states, Delhi, Chandigarh, Haryana, Punjab, Rajasthan, and Uttar
Pradesh, are expected to achieve full ownership, though only Delhi,
Haryana, and Punjab do so across all scenarios. Indonesia exhibits
the smallest variation in air-conditioning ownership rates across
states. Compared to the other three countries, nearly all states show
high CDDs. Still, air-conditioning ownership rates remain relatively
low when economic growth is considered. Only Jakarta will come
close to full ownership across all scenarios considered in 2040,
starting from its 2017 average adoption rates of 30%. Increasing
electricity demand also appears to be a ubiquitous form of
adaptation (Supplementary Fig. 7), and the interquartile range of
the estimated growth factor is always positive (Supplementary
Tables 14–17).

Fig. 2 Drivers of air-conditioning adoption. a Marginal elasticity of air-conditioning adoption to a one-hundred increase in CDDs across income levels. b
Predicted adoption rates of AC and other cooling devices for varying CDDs wet-bulbs. All other drivers are assumed at their historical mean value (full
regression results shown in Supplementary Table 5). The vertical dashed line marks the country-specific, long-term historical average of CDDs. Shaded
areas represent the dispersion in predicted adoption levels across households.
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How temperature is measured and how the comfort setpoint is
defined are two important sources of uncertainty that could
generate different projections, arising from the interaction
between the estimated elasticities and the changes in the
temperature variables and the associated degree days. When the
estimated elasticities are combined with future CDDs, future
projected air-conditioning can be lower when using wet-bulb
CDDs (Mexico) because of the lower estimated elasticities, but
they can also be higher (Brazil) because only slightly smaller
elasticities interact with a larger increase in wet-bulb CDDs
relative to the historical period compared to dry-bulb CDDs.
Since historical wet-bulb CDDs are much lower than dry-bulb
CDDs, their growth rate is higher. Projections based on the 22 °C
temperature threshold tend to underestimate projections based
on the 24 °C temperature, especially when using wet-bulb
measurements (Supplementary Table 12 and Fig. 8).

Adaptation cooling deficit. Changes in climate and income
conditions will allow more households to have an air con-
ditioning unit by 2040, even when considering the uncertainty
characterizing future socio-economic conditions. Yet, a non-
negligible fraction of the population will be left behind. Our
findings show that in 2040, between 64 and 100 million house-
holds (in SSP5-RCP8.5 and SSP3-RCP45, respectively) out of the
total number of households living in the four countries con-
sidered in the latest waves of 343 million will face an adaptation
cooling deficit. These households will face climate conditions
warmer than their own country average, measured in terms of a
country-specific CDD exposure ratio, and yet they will not be able
to protect themselves with air-conditioning, as indicated by an
air-conditioning availability ratio. We measure total CDD expo-
sure as in Biardeau et al.7 by multiplying country- and state-level

CDDs by the total number of households. We then compute the
CDD exposure ratio for each subnational state across the four
countries. When state-level CDD exposure is higher than the
country median, the ratio takes a value larger than one and
proportional to the distance from the median. This exposure ratio
is compared to the AC ratio, which is defined in a similar way.
When the state-level average AC ownership rate is smaller than
the country median, the ratio takes a value smaller than one,
proportional to the distance from the median. When the state-
level average air-conditioning ownership rate is larger than the
country respective median, the ratio takes a value greater than
one and proportional to the distance from the median.

By combining these two ratios, Fig. 4 divides the four countries’
states into four groups, for the historical (left panel) and future
period (right panel). The imaginary diagonal running from the
top-left to the bottom-right quadrant sheds light on the cooling
inequality characterizing these countries. States in the top-left
quadrant have high adoption rates relative to the country median,
despite having lower-than-average CDDs. The state of Rio de
Janeiro in Brazil is an example. States in the bottom-right
quadrant raise concerns because they have lower-than-average
adoption rates despite the higher-than-average exposure to hot
climate conditions.

Since socio-economic conditions improve at a faster rate than
the increase in CDDs, in comparison with the historical data, the
number of states with households experiencing a cooling deficit
declines. Brazil and India potentially experience the largest
reduction in the adaptation cooling deficit, going from 23 million
in 2018 to 8–13 million across the 2040 socio-economic and
warming scenarios in Brazil, and from 54 million in 2012 to
29–58 million households in India. In Indonesia, the change is
from 26 million households in 2017 to 20–28 million. In Mexico,
the historical situation would not change significantly, and it

Fig. 3 Future average air-conditioning adoption rates across country states in 2040 under RCP8.5-warming. States are ranked from top to bottom,
based on historical ownership rates. State-level adoption rates are computed as weighted average of household-level projected adoption rates (see
“Methods”).
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could even worsen (from 5 million in 2016 to 4–6 million
households). States with high urbanization levels, hot and humid
climate, or with generally poor economic conditions are more
likely to face a cooling deficit. Consider, for example, the state of
Jharkhand in northeastern India. Because air-conditioning does
not keep pace with population and CDDs growth, its position
shifts from the top to the bottom-right panel.

The greatest increase in the adoption of air conditioners will be
among middle-class and wealthy families, though actual elec-
tricity use will rise especially among the wealthiest households
(Fig. 5). Electricity use increases with income (Supplementary
Tables 9 and 10), though families sharing similar socio-economic
conditions might still have very different usage patterns due to
building characteristics, appliance efficiency, climate, and infra-
structure conditions, which we can only imperfectly account for.
The adaptation cooling deficit persists, especially within the
lowest income groups. In 2040, median adoption rates in the first
total expenditure decile vary between about 1% (SSP3, RCP4.5)
and 27% (SSP5, RCP8.5) in India, between less than 0.1 and 40%
in Brazil, between 0 and 3% in Mexico, and between less than 0.1
and 5% in Indonesia. The wealthiest households drive the
aggregate implications in terms of energy use, which are
substantial. Electricity increases by about two to three times in
Indonesia and India, while the increase is less dramatic in the
Latin American countries (Supplementary Tables 14–17). Results
show a higher sensitivity to socio-economic scenarios. The
distribution of projected air-conditioning and electricity growth
rates are not statistically different across climate scenarios,
whereas they are across SSPs.

Discussion
While rising temperature and increasing income are likely to
exert a positive pressure on the adoption and use of air-con-
ditioning, here we show that the dynamics of air-conditioning are
country-specific and relate to demographic and infrastructural
characteristics, including education and housing conditions.
Access to air-conditioning is highly uneven, indicating that
households’ ability to adapt to climate change through the use of
energy is linked to their socio-economic conditions.

The empirical evidence obtained for Brazil, India, Indonesia,
and Mexico contrasts in three key respects with the result from
the more studied wealthier countries. First, income has a com-
paratively more important role than climate in explaining the
adoption of air-conditioning, and income critically determines a
household’s ability to respond to increased exposure to CDDs. By
contrast, findings from more developed countries suggest that
climatic conditions play a relatively larger role in comparison to
income37–39 since, on average, industrialized countries are above
the income threshold at which CDD elasticities rise. Second,
better educated heads of households have a consistently stronger
propensity to adopt and use air-conditioning. This finding may
suggest that the influence of better education goes hand in hand
with income and is not associated with a greater awareness of the
environmental implications of using air-conditioning, which is in
contrast with what is found in richer countries. Third, the relative
role of urbanization is an important factor in air-conditioning
use, though it plays a smaller role in Brazil, India, Indonesia, and
Mexico than in the OECD countries.

With respect to the role of relative humidity, we show that
projections based on CDDs computed with the 24 °C wet-bulb
temperature threshold lead to higher adoption rates and increases
in electricity demand compared to simulations based on lower
temperature thresholds or dry-bulb-temperature (Supplementary
Fig. 8). India and Mexico are two exceptions. We conclude that
whether temperature measurements based on dry-bulb-
temperature lead to larger or smaller elasticities and projections
depends on how air-conditioning is distributed across sub-
regions with different micro-climates and humidity levels, and
therefore is country-specific. Moreover, the higher density of wet-
bulb CDD distribution around small values, especially in Brazil
and Mexico, contributes to determining a wider dispersion in the
simulated rates of future adoption and electricity consumption.

Aggregate results are in line with the evidence provided by
recent single-country studies, such as Gertler and Davis5 for
Mexico. We extend to India, Indonesia, and Brazil concerns
regarding a potentially enormous impact from air-conditioning.
Over the next twenty years, demand for air-conditioning could
rise rapidly with income and CDDs, if households will adjust as
they have been doing in the recent past, and so will their demand

Fig. 4 Adaptation cooling deficit. Current situation (a, latest wave available) and future projections in 2040 with RCP8.5 warming and SSP5 (b) computed
with Cooling Degree Days (CDDs). Bubble size proportional to the current number of households relative to each country’s maximum. For the historical
period, the following waves are used: Brazil, 2018 India, 2012, Indonesia, 2017, Mexico, 2016. Colors are used to differentiate the four countries. See http://
www.energy-a.eu/cooling-deficit/ for the interactive online version.
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for electricity. Average electricity growth factors vary across SSPs
and RCPs: between 1.3 and 1.8 in Brazil, 2.4 and 3.5 in India, 2.3
and 3.2 in Indonesia, and 1.4 and 1.9 in Mexico, with most of the
variation driven by differences across socio-economic scenarios
(SSPs), and not so much by differences across climate scenarios
(RCPs). Urbanization, education, housing conditions, and elec-
trification, which are taken as given in the simulations, can only
further amplify these trends, unless structural changes modify
their relationship with mechanical space cooling.

We emphasize that these countries have a vast unmet demand
for air-conditioning, and that the uneven distribution of eco-
nomic resources prevents less affluent households from acceding
to this means of adaptation. In 2040, these four countries taken

together will face a cooling deficit of up to almost 100 million
households, considering only those that already have access to
electricity. Not only will the cooling deficit persist for a non-
negligible fraction of the population, but even those with air-
conditioning will be exposed to a new condition of vulnerability
related to supply shortage in the power sector40 or degraded
power stability41. It is therefore imperative to manage the
growing appetite for residential space cooling by using a mix of
technology-oriented and behavioral or social measures and
policies42,43.

Multiple sources of uncertainties will play out over the next
twenty years, layered on top of climate and socio-economic
uncertainties, and we account for them by utilizing combinations

Fig. 5 Future increase in air-conditioning and electricity use. Air-conditioning adoption rates (a) and total final electricity use (b) by income decile in the
SSP5 RCP8.5 scenario (historical values refer to the latest available wave, Brazil, 2018; India, 2012; Indonesia, 2017; Mexico, 2016). Horizontal lines show
the historical (thin line) and future (thick line) median share across states, as influenced by changes in total expenditure and CDDs. Colors are used to
differentiate the four countries and shaded areas highlight the increase between today and 2040.
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of models and scenarios (see “Methods”). Behavioral adaptive
responses themselves can change, as suggested by the way our
estimated elasticities vary not only across countries, but also over
time. These differences can reflect changes in technology, char-
acteristics of infrastructure, and market conditions, all of which
contribute to propagating uncertainty. Although our database
makes it possible to check for a wide set of a household’s char-
acteristics, unobserved elements, such as culture, institutions, can
always bias cross-sectional estimates. Electricity costs, as well as
appliance costs, certainly play a role in a household’s decisions
concerning adoption and utilization. Our estimates can only
include fixed effects that are meant to capture the influence of a
state’s fixed characteristics, as well as time varying factors com-
mon to all states within each country. Higher elasticities obtained
when estimating results only with the latest waves could indeed
suggest that unobserved declining costs of appliances have made
adoption easier over time.

Our simulations for the future focus on the potential influence
of CDDs and income without considering the further adjustments
that could be induced by the evolution of prices, technology, and
by structural changes. Our estimates for air-conditioning adop-
tion and electricity demand can be used as inputs by quantitative
system models to analyze the macroeconomic consequences
induced by the simultaneous adjustments across multiple sectors.
Integrated assessment models (IAMs) or computable general
equilibrium models (CGEs) can also be used to examine the
tension between adaptation and mitigation in terms of economic
costs, welfare implications, policy effectiveness, and design.

Methods
Empirical analysis. McFadden’s basic utility framework (1974, 1982)44,45 provides
the theoretical framework describing the adoption behavior of households. The
utility of household i is modelled as a function of expenditure and ownership of
goods under the budget constraint given by the household’s resources. We dis-
tinguish between a vector of cooling durables, ki with price p and expenditure on
all other items ci :

Ui ¼ Uðci; kiÞ
s:t: ci þ p0ki ¼ yi

ð1Þ

A household’s preferences with respect to the decision to purchase a cooling
durable goods are revealed by the latent variable k*i;j with 2 fAC; FANS;REFg,
which can be modelled as a function of a vector of explanatory variables Xiβ and a
random independent error term, εj:

k*ij ¼ Xiβþ εj ð2Þ
The latent variable is revealed once adoption of a given technology is observed.

We model the decision to adopt a cooling durable as a dichotomous variable, kj,
determined by the following decision rule:

kij ¼
1 if k*ij > 0

0 otherwise

(
ð3Þ

and the probability of a household’s purchasing device j as a logistic function:

Pðkij ¼ 1jXÞ ¼ expðXiβÞ
1þ expðXiβÞ ¼ ΛðXiβÞ ð4Þ

where Λ() is the logistic cumulative distribution function.
In our specification we want to focus on the relative contribution of climate and

income, proxied by total expenditure and their interaction. Following a number of
studies evaluating the electricity-temperature response function in Brazil46 and
India47, as well as that of AC ownership5 showing how adjustments in electricity
demand to climate change vary with income, we assume that the marginal effect of
CDDs on the adoption of cooling assets depends on the level of income (y). The
marginal effect of income, approximated by total household expenditure, also
depends on climatic conditions:

Pðkij ¼ 1jCDD; yi;XiÞ ¼ Λðβ1CDDþ β2yi þ β3CDDyi þ XiβÞ ð5Þ

∂Pðkij ¼ 1jCDD; yi;XiÞ
∂CDD

¼ Λð:Þ0½β1 þ β4yi� ð6Þ

∂Pðkij ¼ 1jCDD; yi;XiÞ
∂yi

¼ Λð:Þ0½β2 þ β4CDD� ð7Þ

This specification implies that the marginal effects of climate and income are
not constant.

The CDD-response function of electricity consumption is estimated for each
individual country by applying Ordinary Least Squares (OLS) with a sandwich
cluster estimator to the most recent wave available for each country. We model
electricity use in average annual kilowatt-hours for each household, qi, as a function
of CDDs, income, yi, and a set of control variables, Xi:

lnðqiÞ ¼ β1CDDi þ β2yi þ β3CDDiyi þ Xiβþ ϵi ð8Þ
By omitting the ownership of air-conditioning and other energy-using

appliances, the model captures the long-term response of electricity use to climate
and income, as discussed in Depaula and Mendelsohn46. Not including air-
conditioning, fans, and other appliances means that we are assuming they can
change over time, and the effect of the changes in these variables is implicitly
captured by the coefficient of the CDD variable. The energy demand literature has
long made a distinction between the so-called intensive margin, i.e. how electricity
demand varies with temperature for a given stock of equipment, and the extensive
margin, namely how the adoption of appliances changes with temperature, income,
and other covariates. Earlier studies discuss how the two decisions are jointly
related, and how not accounting for common determinants can lead to biased
estimates48. Unfortunately, the data gathered for the four countries do not make it
possible to develop a two-stage approach that accounts for the short-term effect of
air-conditioning on electricity consumption, as in Randazzo et al.38. We can,
therefore, only evaluate the long-term responses.

Data. We build a household-level database using survey data over the 2003–2018
period for four emerging and developing countries—Brazil, India, Indonesia, and
Mexico. Three waves are available for Brazil, Indonesia, and Mexico, including the
most recent years (2016–2018), whereas only two waves are available for India. In
Table 1, we estimate adoption models for air conditioners, fans, and refrigerators
for each individual country by using the two most recent survey waves available.
The use of two waves makes it possible to include time dummies that check for
country-specific, time-varying unobservable variables. However, our projections, as
shown in Figs. 3–5 for both air-conditioning and electricity, are based on regression
results that only use the most recent wave, since it better reflects the most recent
conditions of these fast-growing countries. Supplementary Table 11 shows the
sensitivity of CDDs and total expenditure elasticities when different waves are used.

Validation. We evaluate the predictive power of our logit models by using the area
under the receiver operating characteristic curve (AUC and ROC)49. The most
important component of our model is the AC adoption model, which is based on a
logistic regression that studies determinants of a dichotomic outcome, such as
having or not having air-conditioning. Validation techniques for approaches based
on logistic regressions exploit a classifier algorithm. Predicted probabilities are
computed for all observations, and then the classifier algorithm assigns each pre-
dicted probability to class 0 or 1, based on a threshold (usually 0.5). If the predicted
probability is larger than 0.5 the observation is classified in class 1, namely as
having air-conditioning. If the predicted probability is smaller than 0.5 the
observation is classified in class 0, namely as not having air-conditioning. The
results are predicted classes for all the observations that are subsequently compared
with the truly observed classed, in order to check the accuracy of the model. The
justness of a logistic regression is evaluated by building a confusion matrix, a table
of fitted versus observed observation classes that makes it possible to identify, after
choosing the classification threshold, the number of false positives and negatives
that the model predicts. Since the threshold choice for classification is arbitrary, the
validation practice computes such a confusion matrix for multiple thresholds and
visualizes the results by using a ROC curve displaying the two types of errors for all
possible thresholds. The overall performance of the logistic regression is evaluated
over an infinite number of thresholds by computing the area under the ROC curve,
called AUC. The AUC has a value of between 0.5 and 1. The larger the AUC the
better the performance of the logistic regression. We first train our logistic
regression on a training dataset defined as a random subsample of our dataset—
containing 3/5 of total observations—and then we predict households with air-
conditioning in the test dataset, as the remaining subsample of 2/5 of total
observations. For three countries, the ROC exhibits an area under the curve (AUC)
of more than 0.9 (it is 0.83 which is still very good in Brazil) for air-conditioning,
and more than 0.8 for both fans and refrigerators (Supplementary Fig. 2). This
suggests a good performance of our models in predicting owners of a cooling asset.

Projections. We use the shared socioeconomic pathways (SSPs) and representative
concentration pathways (RCPs), a set of five socioeconomic and GHG emission
scenarios that have been developed by the research community to make scenario-
based mitigation and impact studies more comparable across the literature36. The
socio-economic scenarios (SSPs) describe five plausible and internally consistent
storylines, named SSP1 to SSP5, that narrate how socio-economic variables might
unfold over the century35. Representative concentration pathways (RCPs) are
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trajectories of total future radiative forcing that have been used as input by climate
models that generate projections of temperature and other climate variables36.

We use nationwide growth rates of per capita gross domestic product (GDP),
considering a long-term average GDP per capita between 2020 and 2060, and
assuming that household expenditure will increase at the same rate. In all countries,
per capita GDP grows the most in SSP1 and SSP5, followed by SSP2, which is the
continuation of historical trends. Growth rates are particularly high for India
(between 289 and 528% compared to 2010) and Indonesia (263–409%), whereas in
Mexico and Brazil GDP per capita approximately doubles.

Projections of future dry-bulb (CDDdb) and wet-bulb (CDDwb) cooling degree-
days are obtained by using two different sources of meteorological variables from
climate model simulations. Data for bias-corrected daily mean temperature dry-
bulb (Tdb) for 2021–2060 mid-century are from NEX-GDDP. NEX-GDDP is a
broad combination of downscaled and biased-corrected 0.25 gridded daily
meteorological fields from 21 global climate models (GCMs) that simulate vigorous
(RCP 8.5) and moderate (RCP 4.5) warming under the coupled model
intercomparison, phase V (CMIP5) climate modelling exercise. Because the NEX-
GDDP does not include projections of humidity, CDDwb are computed by using
variables from the ISIMIP2b scenarios50, which include bias-corrected data51 from
four CMIP5-models over the same period and for the same two RCP scenarios
(GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC5). The multi-model
median CDDwb of the four GCMs (21 GCMs in the case of CDDdb) are then
utilized for the subsequent aggregation to sub-national levels in each country. The
projections of the subnational-level population weighted degree-days for the four
countries use population data from Jones and O’Neill52, who provide decadal
population (2020–2100) at 0.125° gridded resolution, for the five SSPs. We utilize
projected populations for the year 2040 in each SSP as being representative of the
midpoint of our mid-century projections. The 0.125° gridded population are
matched to the gridded degree-days by using CDO remapping operators, with a
prior weighting of the degree-days by population to the district level boundaries in
R53.

To predict the percentage of households with air-conditioning we estimate a
logit model by using the latest available wave for each country. We then replace
each household’s current total expenditure and CDDs with the projected CDDs
and expenditure around the year 2040. Projected CDDs are computed by applying
state-level growth rates to the historical (as simulated by climate models
1986–2005) district-level CDDs. Projected household-level expenditure is
computed by scaling up household expenditure with the country-level income
growth projected by different SSPs. We use the fitted equation from the logit model
to calculate the adoption probability for each household. In Fig. 4, to estimate the
future number of households with air-conditioning, we used the 0.5 probability
cutoff. Figure 5 shows state-level averages in air-conditioning ownership rates by
expenditure decile computed from the household-level adoption rates. To predict
future household-level electricity demand, we have fitted the estimated OLS
equations with updated income and CDD values, keeping all other covariates to
their historical value. The increase in electricity demand shown in Fig. 5 and in
Supplementary Tables 9–10 has been computed at the household level, and then
aggregated to the state level by taking the mean value.

Data availability
The output data generated in this study are available in the Github repository: [https://
github.com/Energy-a/Comparative_paper_NatComms]. No access code is required and
the following DOI can be used for citation: [https://zenodo.org/badge/latestdoi/
363125121]. This repository also contains R-scripts to regenerate all figures in this paper.
An interactive visualization of the adaptation cooling deficit is available at [http://
www.energy-a.eu/cooling-deficit/]. The input data used in this analysis are available at in
the Data Mendeley repository: [https://data.mendeley.com/datasets/ws7cmwbnfg/1] and
can be cited using the following https://doi.org/10.17632/ws7cmwbnfg.1. Additional raw
input data used in this analysis are available at the following public locations: NASA/
NOAA GLDAS: [https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.0/
summary?keywords=GLDAS_NOAH025_3H_2.0]; CMIP5-NASA NEX GDDP climate
data: [https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-
gddp]; ISMIP: [https://esg.pik-potsdam.de/projects/isimip2b/]; GDP and population for
the Shared Socioeconomic Pathways: [https://tntcat.iiasa.ac.at/SspDb]. Spatial population
data for the historical period: [https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-
population-count-rev10]; Spatial population projections for the SSPs: [https://doi.org/
10.7927/H4RF5S0P]. The raw data for Indonesia are protected and are not available due
to data privacy laws.
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