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1 Proof of GWRS consistency

We prove Theorem 1 (consistency of GWRS).

|Wn(Sn)− θ(S0)|

=|Wn(Sn)−Wn(S0)|+ |Wn(S0)− θ(S0)|

=|(1A)|+ |(1B)|,

where in what follows we show each term is oP (1).

|(1A)| =
∣∣∣∣ 1

n1n2

∑
i∈G1

∑
j∈G2

ζ(I1,i, I2,j|X1,i, X2,j;Sn)− ζ(I1,i, I2,j|X1,i, X2,j;Sn)

∣∣∣∣
=

∣∣∣∣ 1

n1n2

∑
i∈G1

∑
j∈G2

Pr(T̊1,i < T̊2,i|T̊1,i ∈ I1,i, T̊2,i ∈ I2,i, X1,i, X2,i;Sn)

+
1

2
Pr(T̊1,i = T̊2,i|T̊1,i ∈ I1,i, T̊2,i ∈ I2,i, X1,i, X2,i;Sn)

− Pr(T̊1,i < T̊2,i|T̊1,i ∈ I1,i, T̊2,i ∈ I2,i, X1,i, X2,i;S0)

− 1

2
Pr(T̊1,i = T̊2,i|T̊1,i ∈ I1,i, T̊2,i ∈ I2,i, X1,i, X2,i;S0)

∣∣∣∣
=

1

n1n2

∣∣∣∣∑
i∈G1

∑
j∈G2

∫ τ

0

{Šn(t|I1,i, X1,i)− Š0(t|I1,i, X1,i)}dSn(t|I2,i, X2,i)

− 1

2
{Sn(τ |I1,i, X1,i)− Š0(τ |I1,i, X1,i)}Sn(τ |I2,i, X2,i)

+

∫ τ

0

Š0(t|I1,i, X1,i)d{Sn(t|I2,i, X2,i)− S0(t|I2,i, X2,i)}

− 1

2
S0(τ |I1,i, X1,i){Sn(τ |I2,i, X2,i)− S0(τ |I2,i, X2,i)}

∣∣∣∣
≤ 1

n1n2

∑
i∈G1

∑
j∈G2

sup
t

∣∣∣∣Šn(t|I1,i, X1,i)− Š0(t|I1,i, X1,i)

∣∣∣∣
+ sup

t

∣∣∣∣Sn(t|I2,i, X2,i)− S0(t|I2,i, X2,i)

∣∣∣∣
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=
1

n1n2

∣∣∣∣ ∫ τ

0

∑
i∈G1

{Šn(t|I1,i, X1,i)− Š0(t|I1,i, X1,i)}d
∑
j∈G2

Sn(t|I2,i, X2,i)

− 1

2

∑
j∈G1

{Sn(τ |I1,i, X1,i)− Š0(τ |I1,i, X1,i)}
∑
j∈G2

Sn(τ |I2,i, X2,i)

+

∫ τ

0

∑
j∈G1

Š0(t|I1,i, X1,i)d
∑
j∈G2

{Sn(t|I2,i, X2,i)− S0(t|I2,i, X2,i)}

− 1

2

∑
j∈G1

S0(τ |I1,i, X1,i)
∑
j∈G2

{Sn(τ |I2,i, X2,i)− S0(τ |I2,i, X2,i)}
∣∣∣∣

≤ sup
t

∣∣∣∣ 1

n1

∑
i∈G1

{Šn(t|I1,i, X1,i)− Š0(t|I1,i, X1,i)}
∣∣∣∣

+ sup
t

∣∣∣∣ 1

n2

∑
i∈G2

{Sn(t|I2,i, X2,i)− S0(t|I2,i, X2,i)}
∣∣∣∣.

We further show that supt∈[0,τ ]

∣∣∣∣PnŠn(t|I,X)1(X∈Gl)
Pn1(X∈Gl)

− PnŠ0(t|I,X)1(X∈Gl)
Pn1(X∈Gl)

∣∣∣∣ = oP (1), l = 1, 2,

where PnŠn(t|I,X)1(X∈Gl)
Pn1(X∈Gl)

= 1
n1

∑
i∈G1

Šn(t|I1,i, X1,i).

sup
t∈[0,τ ]

∣∣∣∣PnŠn(t|I,X)1(X ∈ Gl)

Pn1(X ∈ Gl)
− PnŠ0(t|I,X)1(X ∈ Gl)

Pn1(X ∈ Gl)

∣∣∣∣ (1)

= sup
t

Pn{(Šn(t|X, I)− Š0(t|X, I)}1(X ∈ Gl)

P1(X ∈ Gl)(1 + oP (1))
(2)

≤ sup
t,x
|Pn{Šn(t|X, I)− Š0(t|X, I)}|λ−1

l (1 + oP (1))

≤ sup
t,x

∣∣∣∣Pn1(t ∈ [L,R))

{
Š0(t|X)− Š0(R|X)

Š0(L|X)− Š0(R|X)
− Šn(t|X)− Šn(R|X)

Šn(L|X)− Šn(R|X)

} ∣∣∣∣
≤ sup

t,x

∣∣∣∣Pn 1(t ∈ [L,R))

Š0(L|X)− Š0(R|X)

{
Š0(t|X)− Š0(R|X)− Šn(t|X) + Šn(R|X)

} ∣∣∣∣
+ sup

t,x

∣∣∣∣Pn 1(t ∈ [L,R))

Š0(L|X)− Š0(R|X)

{
Š0(L|X)− Š0(R|X)− Šn(L|X) + Šn(R|X)

} ∣∣∣∣
≤4

∣∣∣∣ sup
t,x

{
Šn(t|x)− Š0(t|x)

} ∣∣∣∣ sup
t

Pn
1(t ∈ [L,R))

Š0(L|X)− Š0(R|X)

≤4

∣∣∣∣ sup
t,x

{
Šn(t|x)− Š0(t|x)

} ∣∣∣∣(1 + oP (1))

=oP (1),

where the last inequality is due to
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Pn
1(t ∈ [L,R))

Š0(L|X)− Š0(R|X)

=Pn
1(t ∈ [L,R))

S0(L|X)− S0(R|X)
for continuous S0,

=

∫
1(l ≤ t < r))

Pr(l ≤ T < r|X = x)
dPn(l, r, x)

=

∫
1(l ≤ T < r)

Pr(l ≤ T < r|X = x)

1(l ≤ t < r)

1(l ≤ T < r)
dPn(T, l, r, x)

≤

√∫
1(l ≤ T < r)

Pr(l ≤ T < r|X = x)
dPn(T, l, r, x)

√∫
1(l ≤ t < r)

1(l ≤ T < r)
dPn(T, l, r, x)

≤
√√√√√
∫ ∫

1(l ≤ T < r)

Pr(l ≤ T < r|X = x)
dPn(T, l, r|X = x)︸ ︷︷ ︸

=1+oP (1)

dPnX(x)

×

√∫
1(l ≤ t < r)

1(l ≤ T < r)
dPn(T, l, r, x) with the denominator ≤ 1 with probability 1.

≤1 + oP (1).

Now we show (1B) = oP (1) to conclude proof of Theorem 1.

|(1B)| =|Wn(S0)− θ(S0)|

=

∣∣∣∣ ∫ τ

0


1

n1

∑
i∈G1︸ ︷︷ ︸

=:Pn,1

S0(t|I1,i, X1,i)

 d


1

n2

∑
j∈G2︸ ︷︷ ︸

=:Pn,2

S0(t|I2,i, X2,i)


− 1

2

{
1

n1

∑
j∈G1

S0(τ |I1,i, X1,i)

}{
1

n2

∑
j∈G2

S0(τ |I2,i, X2,i)

}

−
∫ τ

0

S0(t|X ∈ G1)dS0(t|X ∈ G2) +
1

2
S0(τ |X ∈ G1)S0(τ |X ∈ G2)

∣∣∣∣
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=

∣∣∣∣ ∫ τ

0

{Pn,1S0(t|I,X)− S0(t|X ∈ G1)} dPn,2S0(t|I,X)

− 1

2
{Pn,1S0(τ |I,X)− S0(τ |X ∈ G1)}Pn,2S0(τ |I,X)

+

∫ τ

0

S0(t|X ∈ G1)d{Pn,2S0(t|I,X)− S0(t|X ∈ G2)}

− 1

2
S0(τ |X ∈ G1){Pn,2S0(t|I,X)− S0(τ |X ∈ G2)}

∣∣∣∣
≤

2∑
l=1

sup
t

sup
t
|Pn,lS0(t|I,X)− S0(t|X ∈ Gl)|

=oP (1).

To see the last equality, we have

sup
t
|Pn,lS0(t|I,X)− S0(t|X ∈ Gl)|

= sup
t

∣∣∣∣PnS0(t|I,X)1(X ∈ Gl)

Pn1(X ∈ Gl)
− PS0(t|I,X)1(X ∈ Gl)

P1(X ∈ Gl)

∣∣∣∣
≤ sup

t

∣∣∣∣(Pn − P )S0(t|I,X)1(X ∈ Gl)

Pn1(X ∈ Gl)

∣∣∣∣+ sup
t

PS0(t|I,X)1(X ∈ Gl)

P1(X ∈ Gl)

∣∣∣∣(Pn − P )1(X ∈ Gl)

Pn1(X ∈ Gl)

∣∣∣∣
=oP (1),

by the law of large numbers and Slutsky’s lemma.

2 Proof of GLR consistency

We prove Theorem 2 that states consistency of the GLR statistic.

Note that LRn(Sn) = g(

Y1(·;Sn)

Y2(·;Sn)

) and ρ(S0) = g(

S0(·|G1)

S0(·|G2)

), where g is a con-

tinuous map from D[0,1][0, τ ] to R+ and D[0,1][0, τ ] is the space of cadlag (right-continuous

with left-hand limits) functions bounded by 0 and 1 with support [0, τ ]. The continuity of

g can be shown without difficulty using convergence theorems for integration maps (see,

e.g., Proposition 7.27 of Kosorok [2007]). If we show supt,l |Yl(t;Sn) − S0(t|Gl)| →p 0, by

the functional continuous mapping theorem, LRn(Sn)→p ρ(S0). Thus, it remains to show

supt,l |Yl(t|Sn)− S0(t|Gl)| →p 0.
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Let λl = limn→∞ λn,l, l = 1, 2. For each l = 1, 2, we have the following decomposition.

Yl(t;Sn)− S0(t|Gl)

=
PnSn(t|X, I)1(X ∈ Gl)

Pn1(X ∈ Gl)
− PS0(t|X)1(X ∈ Gl)

P1(X ∈ Gl)

=
(Pn − P )Sn(t|X, I)1(X ∈ Gl)

Pn1(X ∈ Gl)
(2A)

+
P{(Sn(t|X, I)− S0(t|X, I)}1(X ∈ Gl)

Pn1(X ∈ Gl)
(2B)

+
P{S0(t|X, I)− S0(t|X)}1(X ∈ Gl)

Pn1(X ∈ Gl)
(2C)

+ PS0(t|X)1(X ∈ Gl)

{
1

Pn1(X ∈ Gl)
− 1

P1(X ∈ Gl)

}
. (2D)

In (2A), since Sn(t|X, I) is a stochastic process that is monotone in t, by Lemma 9.10 of

Kosorok [2007], this process {Sn(t|X, I) : t} has VC-dimension 2 and, thus, is a Glivenko-

Cantelli class. Also since any finite number of fixed sets form a Glivenko-Cantelli class

and any collection of elementwise products of Glivenko-Cantelli classes that are bounded

are again a Glivenko-Cantelli class, {Sn(t|X, I)1(X ∈ Gl) : t, l = 1, 2} is Glivenko-Cantelli.

Thus by the Glivenko-Cantelli Theorem,

sup
t
|(1A)| ≤ {(Pn − P )Sn(t|X, I)1(X ∈ Gl)}λ−1

l (1 + oP (1))→ 0,

where we used the fact that Pn1(X ∈ Gl) = λl(1 + oP (1)) and the numerator being

asymptotically bounded by twice the denominator in absolute values.
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sup
t
|(2B)| = sup

t

P{(Sn(t|X, I)− S0(t|X, I)}1(X ∈ Gl)

P1(X ∈ Gl)
(1 + oP (1)) (3)

≤ sup
t
|P{Sn(t|X, I)− S0(t|X, I)}|λ−1

l (1 + oP (1))

≤ sup
t

∣∣∣∣P1(t ∈ [L,R))

{
S0(t|X)− S0(R|X)

S0(L|X)− S0(R|X)
− Sn(t|X)− Sn(R|X)

Sn(L|X)− Sn(R|X)

} ∣∣∣∣
≤ sup

t

∣∣∣∣P 1(t ∈ [L,R))

S0(L|X)− S0(R|X)
{S0(t|X)− S0(R|X)− Sn(t|X) + Sn(R|X)}

∣∣∣∣
+ sup

t

∣∣∣∣P 1(t ∈ [L,R))

S0(L|X)− S0(R|X)
{S0(L|X)− S0(R|X)− Sn(L|X) + Sn(R|X)}

∣∣∣∣
≤4

∣∣∣∣ sup
t,x
{Sn(t|x)− S0(t|x)}

∣∣∣∣ sup
t
P

1(t ∈ [L,R))

S0(L|X)− S0(R|X)

≤4

∣∣∣∣ sup
t,x
{Sn(t|x)− S0(t|x)}

∣∣∣∣
=oP (1),

where the last inequality is due to

P
1(t ∈ [L,R))

S0(L|X)− S0(R|X)

=

∫
1(l ≤ t < r))

Pr(l ≤ T < r|X = x)
dP (l, r, x)

=

∫
1(l ≤ T < r)

Pr(l ≤ T < r|X = x)

1(l ≤ t < r)

1(l ≤ T < r)
dP (T, l, r, x)

≤

√∫
1(l ≤ T < r)

Pr(l ≤ T < r|X = x)
dP (T, l, r, x)

√∫
1(l ≤ t < r)

1(l ≤ T < r)
dP (T, l, r, x)

≤

√√√√√
∫ ∫

1(l ≤ T < r)

Pr(l ≤ T < r|X = x)
dP (T, l, r|X = x)︸ ︷︷ ︸

=1

dPX(x)

×

√∫
1(l ≤ t < r)

1(l ≤ T < r)
dP (T, l, r, x) with the denominator ≤ 1 with probability 1.

≤1.
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sup
t
|(2C)| = sup

t

{
P{S0(t|X, I)− S0(t|X)}1(X ∈ Gl)

}
λ−1
l (1 + oP (1))

≤ sup
t

{
P{S0(t|X, I)− S0(t|X)}

}
λ−1
l (1 + oP (1))

=0,

where the last equality is from the fact that both S0(t|X, I) and S0(t|X) can be written

as expectation with only difference in the conditioning argument that are marginalized out

by the population average operator P (the double expectation). Finally,

sup
t
|(2D)| = sup

t
PS0(t|X)1(X ∈ Gl)

{
1

Pn1(X ∈ Gl)
− 1

P1(X ∈ Gl)

}
≤P1(X ∈ Gl)

{
1

Pn1(X ∈ Gl)
− 1

P1(X ∈ Gl)

}
≤P1(X ∈ Gl)− Pn1(X ∈ Gl)

Pn1(X ∈ Gl)

=oP (1).

Therefore, the desired result holds.

3 Proof of uniform consistency of interval censored

recursive forests

3.1 Overview of the proof of Theorem 3

It suffices to prove the theorem for a single iteration, because, for a large sample, terminal

node size becomes arbitrarily small with the potential splitting bias being eliminated and

as a result recursion does not add to bias reduction.

We borrow the strategy used in Cho et al. [2020] in establishing the uniform consistency

of random survival forests, which uses empirical process theory for right censored data.

There is a unique challenge in applying the approach to interval censored survival regression
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problems—namely the identifiability issue. In Cho et al. [2020], the Z-estimator theorem

(Theorem 2.10) in Kosorok [2007] could be used without such an issue, since the self-

consistency algorithm gives a unique solution for right-censored data. However, for interval

censored data, the self-consistency algorithm may not identify the global maximum of the

likelihood. Thus, a careful handling of the identifiability condition is required.

The main technique used to guarantee identifiability is to restrict the class of candidate

survival functions to those which satisfy the identifiability condition given data. If one can

show that the unrestricted class of the estimating equations is Glivenko-Cantelli [Kosorok,

2007, van der Vaart and Wellner, 2013], the resulting theoretical property—uniform con-

vergence of empirical processes—is inherited to smaller, restricted classes. This is true

even if the restriction is done in a data-dependent fashion, since any subset of a Glivenko-

Cantelli class is also a Glivenko-Cantelli class. In this way, the desired result, or uniform

consistency, can be established.

Noting that NPMLEs have uniform-over-time consistency [Groeneboom and Wellner,

1992] in the non-regression context and that the unique NPMLEs can be estimated through

the iterative convex minorant (ICM) algorithms [Groeneboom, 1991, Jongbloed, 1998, Well-

ner and Zhan, 1997], the problem now reduces to incorporating the identifiability restriction

into the estimating equation and extending the uniform consistency results to the regression

context.

3.2 The Z-estimator framework

Now we give a detailed proof of Theorem 3 with an introduction to some basic notation for

self-consistency equations for non-regression settings and extend the notation to regression

settings. The self-consistency equation, without covariates, for case-II censoring with two

monitoring times can be expressed as

Pnψ(m)
S,t = 0 ∀t ∈ [0, τ ], (4)

where we put superscript (m) to denote that this is for marginal, or non-regression, settings,

ψ
(m)
S,t ≡ η1

S(t)−S(U)
1−S(U)

∨ 0 +
(
η2

S(t)−S(V )
S(U)−S(V )

∨ 0
)
∧ 1 + η3

S(t)
S(V )
∧ 1 − S(t), U and V are the
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ordered monitoring times, η1 = 1(T ≤ U), η2 = 1(U < T ≤ V ), η3 = 1 − η1 − η2, ∧

and ∨ are the minimum and the maximum operators, and Pn is the empirical measures of

given data of size n. Pn is, at the same time, used to denote the sample average operator

such that, given a function f : X 7→ R that maps the sample space to the real space,

Pnf =
∫
f(x)dPn(x) = 1

n

∑n
i=1 f(Xi), where Xi is the ith random entry of the data, or

Xi = (Ui, Vi, η1,i, η2,i) in this specific problem.

The following lemma is a restatement of Theorem 2.10 of Kosorok [2007]. In the survival

regression setting, we let Ψ : Θ 7→ L be a map between two normed spaces, where Θ is the

space of all marginal survival functions with time ranging over [0, τ ], L is a normed space

of right-coninuous-over-time functions with support [0, τ ] and range [−1, 1], ‖ · ‖L denotes

the uniform norm over [0, τ ], Ψ is a fixed map, and Ψn is a data-dependent map.

Lemma A1 (Consistency of Z-estimators). Let Ψ(S0) = 0 for some S0 ∈ Θ, and assume

‖Ψ(Sn)‖L → 0 implies ‖Sn−S0‖L → 0 for any sequence {Sn} ∈ Θ. Then, if ‖Ψn(Ŝn)‖L → 0

in probability for some sequence of estimators Ŝn ∈ Θ and supS∈Θ ‖Ψn(S) − Ψ(S)‖L → 0

in probability, ‖Ŝn − S0‖L → 0 in probability, as n→∞.

Now we adapt the lemma to address the identifiability issue by introducing a necessary

and sufficient condition [Gentleman and Geyer, 1994] for an NPMLE S to be unique:

Pnφ(m)
S,t ≤ 1 ∀t ∈ [0, τ ], (5)

where φ
(m)
S,t = η1

1(t≤U)
1−S(U)

+ η2
1(U<t≤V )
S(U)−S(V )

+η3
1(t>V )
S(V )

. This condition guarantees that the NPMLE

Ŝ that satisfies Pnφ(m)
S,t ≤ 1 is the global maximum and thus identifies the true S0 at its limit

given self-consistency. Thus, if we restrict the space to Θn = {S : supt∈[0,τ ] Pnφ
(m)
S,t ≤ 1},

within the resticted space, only the unique NPMLE S = Ŝn satisfies the estimating equation

(4). This space Θn is adaptively defined as it depends on a specific data set. This sequence

of spaces always exists, because, given data, the NPMLE can be uniquely estimated via

the ICM algorithm. Now the lemma is adapted in the following corollary to reflect the

restriction and to be further used for the regression setting.

Corollary A1 (Consistency of Z-estimators). Let Θ be a class of all covariate-conditional

survival functions S : [0, τ ]×X 7→ [0, 1] and let Ψ : Θ 7→ L where L is some normed space

10



of functions S : [0, τ ]×X 7→ [−1, 1]. (i) Let Ψ(S0) = 0 for some S0 ∈ Θ. (ii) Assume that

there exists a sequence of subclasses Θn such that for any sequence {Sn ∈ Θn}, ‖Ψ(Sn)‖L →

0 implies ‖Sn − S0‖L → 0. (iii) Further assume that ‖Ψn(Ŝn)‖L → 0 in probability for

some sequence of estimators {Ŝn ∈ Θn}. Then, if (iv) supS∈Θn
‖Ψn(S) − Ψ(S)‖L → 0 in

probability, ‖Ŝn − S0‖L → 0 in probability, as n→∞.

We first define the regression-version estimating equations, Ψ and Ψn, as below.

Ψ(S) =
PψS,tδx
Pδx

≡ P·|xψS,t,

Ψn(S) =
PnψS,tkx
Pnkx

≡ Pn,·|kxψS,t,

where

ψS,t = η1
S(t|X)− S(U |X)

1− S(U |X)
∨ 0 + η2

S(t|X)− S(V |X)

S(U |X)− S(V |X)
∨ 0 ∧ 1 + η3

S(t|X)

S(V |X)
∧ 1− S(t|X),

(6)

P is the population version of Pn so that, Pf =
∫
f(x)dP (x), δx = I(· = x) is the

unnormalized Dirac measure, and kx the unnormalized forest kernel. To be more specific,

kx = 1
ntree

∑ntree

b=1 1(x ∈ Lb(x)), where ntree is the number of trees in the forest, Lb(x) is

the terminal node of the bth tree of the forest that contains the point x. We use the term

‘unnormalized’ to mean that they are not multiplied by the sample (or the population) size.

By using the subscripts · | x and · | kx we denote the conditional probability measures,

where the latter is a probability measure weighted by the kernel kx.

Note that for ease of theoretical exposition, we assume that the terminal node prediction

of random survival forests is given by the NPMLEs of observations weighted by the forest

kernels, instead of averaging the NPMLEs of each tree. This kernel weighting approach is

often taken in the literature [Athey et al., 2019, Yao et al., 2019] and is equivalent to the

average of tree predictions for non-censored mean outcomes. Although for censored data,

these two approaches are not equal in general, they can be shown equivalent for B >> 1,

as the former can be seen as the average of estimates of random subsamples from the

kernel-weighted population from which the latter is estimated.
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The identifiability condition (5) in the marginal context is now replaced by

PnφS,tkx
Pnkx

≤ 1 ∀t ∈ [0, τ ], x ∈ Rd. (7)

Note that the kernel k not only depends on given data but also has extra randomness

due to subsampling, random variable subsetting, and/or random cut-off selection. In other

words, given data, k is formed as a result of a realized partition of the trees or the forests.

Similarly to the restriction done in the marginal setting, the class Θ of covariate-conditional

survival curves can also be restricted to Θn,k given data and a specific partition (or the

kernel k). In other words, Θn,k = {S : S ∈ Θ, supt∈[0,τ ],x∈X
PnφS,tkx
Pnkx

≤ 1}.

Hence Theorem 3 will follows if we can show that the conditions of Corollary A1 hold.

First, that (i) Ψ(S0) = 0 for some S0 ∈ Θ is trivial. The second condition, (ii) existence

of a restricted set Θn with which ‖Ψ(Sn)‖L → 0 implies ‖Sn − S0‖L → 0 for any sequence

{Sn ∈ Θn,k}, can be shown to be satisfied by verifying the assumptions of Lemma 2 in

Section 3.3. The third condition, (iii), is met, since the kernel-weighed NPMLE is the

solution to ‖Ψn(Ŝ)n)‖L. The last condition, (iv), is checked in Section 3.4 below.

3.3 Uniform identifiability

We introduce additional notation for Lemma 2. Let Q denote the space of all survival

functions on S : [0, τ ] 7→ [0, 1], S0 : X 7→ Q denote the true survival functions, and

Q0 = {S0(x) : x ∈ X} be the collection of S0’s. Let Φ : Q×Q 7→ R be the function that

takes S1, S2 ∈ Q and computes the supremum over [0, τ ] of the absolute value of a certain

estimating equation, where S2 is the true survival function and S1 is the candidate survival

functions.

Assumption A1 (Closed covariate space, compact and continuous true survival space).

(i) X is closed, (ii) Q0 is compact with respect to the uniform norm on Q, and (iii) for all

sequence {xn} ∈ X such that xn → x1, ‖S0(xn)− S0(x1)‖∞ → 0.

Assumption A2 (local identifiability). For every sequence S∗n ∈ D (and also in Θn), and

every seqeunce {xn} ∈ H : xn → x1, we have that Φ(S∗n, S0(xn))→ 0⇒ ‖S∗n−S0(x1)‖∞ →

0.
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Lemma A2 (uniform identifiability). Assume Assumptions 1–2. Suppose ∀x ∈ X , Sn(x)

is a sequence ∈ Q and suppose supx∈X Φ(Sn(x), S0(x)) → 0. Then supx∈X ‖Sn(x) −

S0(x)‖∞ → 0.

Proof. Assume that supx∈X Φ(Sn(x), S0(x))→ 0 but supx∈X ‖Sn(x)− S0(x)‖∞ 6→ 0. Then

there exists a subsequence n′ and an associated sequence xn′ such that ‖Sn′(xn′)−S0(xn′)‖∞ →

c > 0. Also, there exists, for this subsequence, n′′ such that xn′′ → x1 for some x1 ∈ X (by

compactness of Q0).

By Assumption 2, with S∗n′′ = Sn′′(xn′′), we obtain that Φ(S∗n′′ , S0(xn′′)) → 0 ⇒

‖Sn′′(xn′′) − S0(xn′′)‖∞ → 0. This is a contradiction. Thus, the conclusion of the lemma

holds.

Assumptions 2 and 3 (Lipschitz continuity and bounded and closed covariate space) are

sufficient for Assumption A1. Specifically, (ii) is obtained from the Ascoli-Arzelá Theorem.

If we show that the interval censored recursive forest satisfies Assumption 2, the result

of Lemma 2 holds. While this identifiability result is valid with Φ function, the second

condition of Corollary A1 which relies on Ψ function, or the first term of the Φ function,

is always satisfied within the restricted class Θn. Such a sequence Θn of spaces exists,

because, given data, the NPMLE can be uniquely estimated via the ICM algorithm.
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3.4 Consistency of the estimating function

Finally, we show how the last condition is fulfilled. We decompose the quantity into three

components and bound the error.

sup
S∈Θn

‖Ψn(S))−Ψ(S)‖L

≤ sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣PnψS,tkxPnkx
− PψS,tkx

Pkx

∣∣∣∣+ sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣PψS,tkxPkx
− PψS,tδx

Pδx

∣∣∣∣
≤ sup

S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣(Pn − P )ψS,tkx
Pnkx

∣∣∣∣︸ ︷︷ ︸
=(3A)

+ sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣PψS,tkx{ 1

Pnkx
− 1

Pkx
}
∣∣∣∣︸ ︷︷ ︸

=(3B)

+ sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣PψS,tkxPkx
− PψS,tδx

Pδx

∣∣∣∣︸ ︷︷ ︸
=(3C)

.

We use empirical process theory to bound the error of (3A). The class of functions

{ψS,t : S ∈ Θn, t ∈ [0, τ ]} can be shown to be a Donsker class. To see this, notice that each

of the four terms in (6) is a monotone stochastic process and, thus, is a VC class according

to Lemma 9.10 of Kosorok [2007]. As a finite sum of VC classes is a VC class and a

VC class endowed with a bounded envelope—in this case F = 1—is Donsker, the class of

ψS,t functions is a Donsker class. Next, since kx can be shown to be a Donsker class by

Proposition 6 (Bounded entropy integral of the tree and forest kernels) of Cho et al. [2020]

and is bounded above by 1, the class of their products {ψS,tδx : S ∈ Θn, t ∈ [0, τ ]} is again

Donsker. Consequently, supS∈Θn,t∈[0,τ ]

∣∣∣∣(Pn − P )ψS,tkx

∣∣∣∣ = OP (n−1/2). Meanwhile since the

denominator Pnkx � nβ−1 by the assumption of terminal node size, we have (3A) = oP (1)

(3B) = oP (1) can also be shown similarly.

(3B) = sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣PψS,tkx{ 1

Pnkx
− 1

Pkx
}
∣∣∣∣

= sup
S∈Θn,t∈[0,τ ],x∈X

∣∣∣∣ PψS,tkxPnkx︸ ︷︷ ︸
=OP (1)

(Pn − P )kx
Pnkx

∣∣∣∣
=OP (1)OP (n−1/2−(β−1)) = oP (1).
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Finally, we show (3C) = oP (1). We first note that

P· |kxψS,x

= 1−GU(t|kx)−
∫ ∞
u=t

{1− S0(u|kx)}
1− S(t|x)

1− S(u|x)
dGU(u|kx)

+

∫ t

u=0

∫ ∞
v=t

S0(u|kx)dG(u, v|kx) +

∫ t

0

S(t|x)

S(v|x)
S0(v|kx)dGV (v|kx)

−
∫ t

u=0

∫ ∞
v=t

S(u|x)− S(t|x)

S(u|x)− S(v|x)
(S0(u|kx)− S0(v|kx))dG(u, v|kx)− S(t|x)

= 1−GU(t|kx)− S(t|x)

−
∫ ∞
u=t

R1(t, u, x){1− S0(u|kx)}dGU(u|kx)

+

∫ t

u=0

∫ ∞
v=t

S0(u|kx)dG(u, v|kx) +

∫ t

0

R2(t, v, x)S0(v|kx)dGV (v|kx)

−
∫ t

u=0

∫ ∞
v=t

R3(t, u, v, x)(S0(u|kx)− S0(v|kx))dG(u, v|kx),

where 0 ≤ R1(t, u, x), R2(t, v, x), R3(t, u, v, x) ≤ 1 are decreasing in u and increasing in v.

Thus,

(3C) = sup
S∈Θ,x∈X

|P· |kxψS,x − P· |xψS,x|

= sup
S∈Θ,x∈X

∣∣∣∣ ∫ ∞
u=t

R1(t, u, x){1− S0(u|kx)}dGU(u|kx)−
∫ ∞
u=t

R1(t, u, x){1− S0(u|x)}dGU(u|x)

∣∣∣∣︸ ︷︷ ︸
=(3C1)

+ sup
S∈Θ,x∈X

∣∣∣∣ ∫ t

u=0

∫ ∞
v=t

S0(u|kx)dG(u, v|kx)−
∫ t

u=0

∫ ∞
v=t

S0(u|x)dG(u, v|x)

∣∣∣∣︸ ︷︷ ︸
=(3C2)

+ sup
S∈Θ,x∈X

∣∣∣∣ ∫ t

0

R2(t, v, x)S0(v|kx)dGV (v|kx)−
∫ t

0

R2(t, v, x)S0(v|x)dGV (v|x)

∣∣∣∣︸ ︷︷ ︸
=(3C3)

+ sup
S∈Θ,x∈X

∣∣∣∣ ∫ t

u=0

∫ ∞
v=t

R3(t, u, v, x)(S0(u|kx)− S0(v|kx))dG(u, v|kx)

−
∫ t

u=0

∫ ∞
v=t

R3(t, u, v, x)(S0(u|x)− S0(v|x))dG(u, v|x)

∣∣∣∣︸ ︷︷ ︸
=(3C4)

We show supS∈Θ,x∈X (3C1) = oP (1). Then (3C2)–(3C4) can be shown to be oP (1) using
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similar arguments.

(3C1) ≤
∣∣∣∣ ∫ ∞

u=t

R1(t, u, x){1− S0(u|kx)}dGU(u|kx)−
∫ ∞
u=t

R1(t, u, x){1− S0(u|x)}dGU(u|kx)
∣∣∣∣

+

∣∣∣∣ ∫ ∞
u=t

R1(t, u, x){1− S0(u|x)}dGU(u|kx)−
∫ ∞
u=t

R1(t, u, x){1− S0(u|x)}dGU(u|x)

∣∣∣∣
=

∣∣∣∣ ∫ ∞
u=t

R1(t, u, x)︸ ︷︷ ︸
∈[0,1]

{S0(u|x)− S0(u|kx)}dGU(u|kx)
∣∣∣∣

+

∣∣∣∣ ∫ ∞
u=t

R1(t, u, x){1− S0(u|x)}︸ ︷︷ ︸
∈[0,1]

d{GU(u|kx)−GU(u|x)}
∣∣∣∣

≤
∫ ∞
u=t

sup
u′∈[0,∞)

|S0(u′|x)− S0(u′|kx)|dGU(u|kx)

+

∣∣∣∣[R1(t, u, x){1− S0(u|x)}{GU(u|kx)−GU(u|x)}
]∞
u=t

∣∣∣∣
+

∣∣∣∣ ∫ ∞
u=t

{GU(u|kx)−GU(u|x)}d
[
R1(t, u, x){1− S0(u|x)}

]∣∣∣∣
≤ sup

u∈[0,∞)

∣∣∣S0(u|x)− S0(u|kx)
∣∣∣+
∣∣∣GU(t|kx)−GU(t|x)

∣∣∣
+

∫ ∞
u=t

sup
u′∈[0,∞)

∣∣∣GU(u′|kx)−GU(u′|x)
∣∣∣d[ R1(t, u, x){1− S0(u|x)}︸ ︷︷ ︸

increasing in u, bounded by 0 and 1.

]
≤ sup

u∈[0,∞)

∣∣∣S0(u|x)− S0(u|kx)
∣∣∣+
∣∣∣GU(t|kx)−GU(t|x)

∣∣∣+ sup
u∈[0,∞)

∣∣∣GU(u|kx)−GU(u|x)
∣∣∣

≤ sup
x∈X

sup
x′∈kx

LS‖x− x′‖1 + 2 sup
x∈X

sup
x′∈kx

LG‖x− x′‖1

= oP (1).

The last inequality comes from Assumption 2 (Lipschitz continuity) and the subsequent

equations result from Assumptions 5 (shrinking terminal node) and 4 (random and regular

splits). The derivation for a unit hypercube with a bounded density is given in the proof

of Theorem 3 of Wager and Walther [2015].
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4 Computational cost

Computation of ICRF is affected by the choice of the splitting and splitting rules, the

sample size, and the bandwidth in kernel-smoothing. We discuss the effects of choice of

the rules and the sample size from the simulations done in Section 5. Larger bandwidths

require more computation having a linear relationship with the number of operations.

First, we discuss the computational cost of ICRF with respect to the splitting and

prediction rules. We use the Scenario 1 current status data (M = 1) with sample size

of n = 300, 10 forest iterations, and 300 simulation replicates. First, different splitting

rules do not make noticeable differences than having different prediction rules as can be

seen in Figure A1. This is because the computationally expensive NPMLEs should be

obtained for all n/nmin terminal nodes. The computation time for NPMLE is almost a

quadratic function of sample size due to its O(nk) EM-iterations and O(n log2 n) steps

for preprocessing (sorting and indexing), where n is the sample size which is nmin in our

application and k is the number of Turnbull intervals [Anderson-Bergman, 2017]. Assuming

k ' cnmin for some constant c > 0 and nmin = nβ, the total computational burden of quasi-

honest ICRF is O(nfoldn
1+β). In contrast, the exploitative ICRF implements the NPMLE

computation only once at the initial step, saving the constant nfold and the set-up cost of

n1−β many NPMLE calculations.

Compared to existing splitting rules, SWRS and SLR, the new splitting rules cost

slightly more computationally. However, as mentioned above, the prediction rule is the

predominant determinant of computation over the splitting rule. Given a pair of two

samples of sizes nl, l = 1, 2 and k time points of evaluation for numerical integration, the

computational burden of GWRS and GLR is O(kn1n2) and O(k(n1 + n2)), respectively.

Although GWRS and GLR do not make a large difference in computation time in Figure

A1, for large samples, GWRS may be computationally more burdensome.

Figure A2 illustrates the trend of computation time in terms of sample size. The trend

is mildly superlinear supporting the total burden of O(nγ) for some 1 < γ ≤ 2.
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Figure A1: Running time for fitting ICRFs with different splitting and prediction rules.

5 The National Longitudinal Mortality Study data

analysis

We use the NLMS dataset with six years of follow-up recorded around April 2002. The

dataset includes 745,162 subjects with their time to mortality, demographic information

such as age, sex, and race, socioeconomic information such as income and housing tenure,

and other covariates. The censoring rate of this dataset is very high (97% survived six

years), as this is a general population, and only administrative censoring is observed. We

narrow our focus to the aged population (age ≥ 80 in years) with complete covariate records

(n = 3, 630). The proportion of missing data is 20.7% for the whole data and 65.9% for

the aged group data. Thus, it should be noted that this data analysis is for performance

comparison among the methods and that the results obtained from this regression analysis

are limited to the tracked population. The administrative censoring rate is 69.6%, and the

distribution of the data is summarized in Table A1.
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Figure A2: Running time for fitting ICRFs with different sample sizes. The blue curve is

a quadratic line that minimizes the mean squared error.

Since the observed failure time is sparse after the follow-up time of 1500, we set τ = 1500.

We induce current status censoring where the monitoring time is dependent on age and

number of households. The monitoring time is randomly drawn from the model

C ∼ N(1000 + 100(10−Xage/10 +X# households), 3002) ∨ 0 ∧ τ.

The analysis framework is largely the same for the avalanche data analysis, except that

with the large sample size, the terminal node size is allowed to be larger (nmin = 20 for

random forests and nmin = 40 for trees).
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variable min 1Q median mean 3Q max

failure time 2 315 633 694.9 1003 1739

censoring censored 69.6%

age (years) 81 83 85 84.8 86 90

number of households 1 1 2 1.9 2 13

adjusted weight 14 251 432 471 633 1982

sex male 34.8%, female 65.2%

race white 85.6%, black 10.1%, others and unknown 4.4%

Hispanic Mexican 3.4%, other Hispanics 3.6%, non-Hispanics 93.0%

relationship A. 25.6%; B. 46.7%; C. 13.6%; D. 13.2%; E. 0.9

adjusted income 1. 6.6%; 2. 11.4%; 3. 14.1%; 4. 11.6%; 5. 8.5%;

6. 12.6%; 7. 8.6%; 8. 5.7%; 9. 4.1%; 10. 3.5%;

11. 3.8%; 12. 2%; 13. 3.0%; 14. 4.6

social security number present 56.9%

housing tenure owner 76.4; rent 21.1; non-cash rent 2.5

health in general A. 5.1; B. 17.1; C. 32.5; D. 27.8; E. 17.4”

health insurance type A. 0.6; B. 75.2; C. 7.1; D. 7.5; E. 9.5

urban urban 73.1; rural 26.9

citizenship native citizen born in mainland US 88.3%; others 11.7%

Table A1: The NLMS data. Failure time, non-censored time in days; Relationship, rela-

tionship to the reference person (A: reference person with other relatives in household, B.

reference person with no other relatives in household, C. spouse of reference person, D.

other relative of reference person, E. non-relative of reference person); Adjusted income, 1.

< $5,000, 2. < $7,499, 3. < $10,000, 4. < , 4. < $12,500, 5. < $15,000, 6. < $20,000,

7. < $25,000, 8. < $30,000, 9. < $35,000, 10. < $40,000, 11. < $50,000, 12. < $60,000,

13. < $75,000, 14. ≥ $75,000; health in general, A. Excellent, B. Very good, C. Good, D.

Fair, E. Poor; health insurance type, A. Medicare, B. Medicaid, C. governmental healthcare

(ChampUS, ChampVA, etc), D. employer-based, E. private non-employer-based.
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