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Abstract 

Background: Innate lymphoid cells (ILC) are lymphoid lineage innate immune cells that do not mount antigen-spe-
cific responses due to their lack of B and T-cell receptors. ILCs are predominantly found at mucosal surfaces, as gate-
keepers against invading infectious agents through rapid secretion of immune regulatory cytokines. HIV associated 
destruction of mucosal lymphoid tissue depletes ILCs, among other immune dysfunctions. Studies have described 
limited restoration of ILCs during the first three years of combined antiretroviral therapy (cART). Little is known about 
restoration of ILCs during long-term cART, particularly in sub-Saharan Africa which hosts increasing numbers of adults 
with at least a decade of cART.

Results: We examined phenotypes and function of ILCs from peripheral blood mononuclear cells after 12 years of 
suppressive cART. We report that ILC1 frequencies (T-BET + CD127 + and CD161 +) were higher in cART-treated HIV-
infected relative to age-matched health HIV-negative adults; P = 0.04 whereas ILC precursors (ILCP) were comparable 
in the two groups (P = 0.56). Interferon gamma (IFN-γ) secretion by ILC1 was higher among cART-treated HIV-infected 
relative to HIV-negative adults (P = 0.03).

Conclusion: HIV associated alteration of ILC persisted during cART and may likely affect the quality of host innate 
and adaptive immune responses during long-term cART.
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Introduction
Innate lymphoid cells (ILCs), a relatively newly identified 
group of innate immune cells of lymphoid lineage with-
out B or T-cell receptors [1], are predominantly found 
at barrier surfaces exposed to infectious agents includ-
ing skin, lungs and intestinal mucosal surfaces [2]. ILCs 
are subdivided into cytotoxic ILCs (NK cells) which par-
allel the functions of CD8 and the non-cytotoxic ILCs 
(ILC1, ILC2 and ILC3). ILC1, ILC2 and ILC3 parallel 

CD4 T-helper cells; TH1, TH2, and TH17 respectively; 
through the specific transcription factors expressed and 
cytokines produced [3]. ILC1 are similar to TH1 cells 
due to their expression of T-BET transcription factor and 
production of IFN-γ cytokine [4, 5], ILC2 are similar to 
TH2 cells through their expression of GATA-3 and pro-
duction of IL-5 and IL-13 cytokines, and ILC3 resemble 
TH17 cells through expression of RORγT and production 
of IL-17 and IL-22 [6–8].

Although ILC are approximately 0.01–0.1% of cells in 
peripheral blood, their specialised ability to produce large 
amounts of cytokines and maintain homeostasis is criti-
cal [2, 9–11]. ILCs rapidly secrete immune-regulatory 
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cytokines to provide protective immunity upon expo-
sure to infection [10, 12]. Upon stimulation by IL-12 
produced by dendritic cells, ILC1 produce IFN-γ against 
intracellular infections [13]. During parasitic infections 
or exposure to allergens, ILC2 in the lungs are provoked 
by epithelial and myeloid cell derived IL-25 and IL-33 to 
produce large amounts of IL-5 and IL-13 and marginal 
levels of IL-4. IL-4 and IL-5 aid in eosinophil recruitment 
[11, 14], and IL-13 aids mucus production by goblet cells 
to eliminate the parasites [15]. In response to bacterial 
infections, dendritic cells produce IL-23 and lL-1beta 
which synergize for ILC3 stimulation to produce IL-17 
and which in turn recruits neutrophils to fight bacte-
rial infections [16, 17]. ILCs also directly regulate T-cells 
through presentation of peptide antigens on major his-
tocompatibility complex II (MHC-II) [18, 19]. HIV-1 
immune-pathogenesis involves destruction of the gut 
mucosa and disruption of intestinal homeostasis [20], 
consequently affecting immune cell populations includ-
ing the depletion of ILC populations in tissues and circu-
lation [21, 22].

Initiation of cART during chronic HIV infection leads 
to recovery of peripheral CD4 T-cell counts. Although 
some studies have reported persistent dysfunction of 
CD4 T-cells and innate immune cells including irre-
versible depletion of ILC after 2 years of HIV treatment 
[23–27], recovery of ILC beyond two years of cART is 
not well understood, and so are the consequences of 
persistent ILC depletion. Whereas Kloverpris et al. 2016 
studied ILCs among individuals with chronic HIV infec-
tion, after 2 years of cART [28], there is no data on recov-
ery of  ILCs during long-term cART. Moreover, majority 
of the studies on ILCs in chronic HIV infection studied 
cART-treated individuals  without consideration of nadir 
CD4 counts.

This study provides unique data on ILC phenotypes 
and function after over a decade of cART, among indi-
viduals that started cART with a nadir CD4 count below 
200  cells/ul and restored CD4 counts to 500  cells/ul 
and over [25, 26]. CD4 T-cells among individuals with 
chronic HIV infection have been estimated to recover 
with treatment to levels similar to those of HIV-negative 
individuals within seven years of ART [29–31]; hence 
our hypothesis is  that incomplete recovery of ILCs may 
contribute to the phenomenon of incomplete recovery 
of innate immune cells in our cohort with 12  years of 
cART. Persistent depletion and dysfunction of ILC may 
contribute to the observed persistence of T-cell dysfunc-
tion among cART-treated adults despite restoration of 
CD4 counts to relatively normal levels [32]. We there-
fore set out to examine phenotypes and functions of 
ILCs in peripheral blood of HIV-infected adults after at 
least 12 years of cART in an African cohort. Data on ILC 

phenotype distribution and function of ILC in periph-
eral blood will provide insight on the gaps in ILC recov-
ery during long-term cART, in the quest to optimize 
recovery of both innate and adaptive immune responses 
among cART-treated adults in sub-Saharan Africa.

Methods
Study design
This was a sample-based case control study that was 
nested in a cross-sectional study to understand chronic 
inflammation and immune aging among cART-treated 
adults within the Infectious Diseases Institute (IDI) HIV 
treatment research cohort at the Mulago national referral 
hospital in Kampala Uganda.

Study participants
A total of 30 samples were randomly selected from HIV-
infected adults that had received suppressive cART for 
at least 12 years, had CD4 counts ≥ 500 cells/µl (ranging 
from 796 to 1587cells/µl) and no opportunistic infec-
tions in the six months preceding the study. Out of the 
30 participants, a random sample of 17 individuals were 
included in the Innate Lymphoid Cell (ILC) assays. The 
IDI HIV-infected adults were at least 18  years and had 
received first-line cART [two nucleoside reverse inhibi-
tors (NRTI) combined with non-nucleoside reverse 
inhibitors] for at least twelve years at nadir CD4 counts 
below 200  cells/μl in the parent HIV treatment cohort. 
Viral load and CD4 counts had been measured every 
6  months and all patients received cotrimoxazole (or 
dapsone) prophylaxis. Patients were followed up monthly 
for their first year and later every 3 months by the physi-
cians to monitor adherence to medication, drug toxicities 
and acute infections among other clinical and laboratory 
parameters [33]. Adherence to cART was encouraged 
by at least 3 individual and group  counselling sessions. 
Samples from HIV positive adults [median age 51 (IQR 
41–62) years] were randomly selected. Thirty (30) age-
and gender-matched HIV-negative controls (with age of 
HIV-infected adult ± 5  years) were randomly selected 
from family/community members recommended by the 
HIV-infected study participants  and seventeen (17) of 
these were selected [median age 53 (IQR 40–62) years], 
Table 1.

Ethical considerations
Ethical clearance was sought from the School of Bio-
medical Sciences at Makerere University College of 
Health Sciences Research and Ethics Committee. All par-
ticipants provided written informed consent for storage 
and future use of their samples in studies to understand 
host immune recovery during cART. All methods were 
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carried out in accordance with the relevant guidelines 
and regulations.

Experimental procedure
Cryopreserved peripheral blood mononuclear cells 
(PBMCs) were assayed to determine innate lymphoid cell 
phenotypes and function.

Cell surface staining was done using zombie yellow 
BV570 live/dead cell viability staining kit (Biolegend) 
and monoclonal antibodies: Lineage cocktail BV510 
(CD3, CD14, CD16, CD19, CD20 and CD56) (catalogue 
# 348807), CD127 APC (catalogue # 351316), NKp44 
PEcy7 (catalogue # 325116), CRTH2 APC-Cy7 (cata-
logue #350114), CD117 (catalogue # 313221) all from 
Biolegend; and CD161 (catalogue #556081) from BD 
biosciences. Intracellular staining was done for RORγT 
BV412 (catalogue #563282), IFN-γ Alexa flour 488 (cat-
alogue # 557718), IL-17A Alexaflour 700 (catalogue # 
560613) all from BD biosciences, as well as T-BET PerCP-
Cy 5.5 (catalogue #644806), and IL-4 BV605 (catalogue 
# 300828) from Biolegend. Surface staining was done at 
4  °C for 30 min. Cells were washed with staining buffer 
(5% FBS, 0.01% sodium azide and 1X PBS). For function 
of ILCs, cells were stimulated for 12 h with PMA (50 ng/
mL), and ionomycin (1ug/mL) (catalogue No. P8139)]-
SIGMA in the presence of Monensin, 1/1500 and Brefel-
din A 1/250 at 37 °C with 5%  CO2. Monesin and Brefeldin 
A were optimized for 6  h to avoid toxicity to the cells. 
After 12  h incubation and surface staining, cells were 
washed with BD Pharm staining buffer (Cat. No. 554656); 

fixed and permeabilised using fix/perm buffer kit from 
eBioscience (catalogue #00–552,300) to allow specific 
anti-cytokine and transcription factor fluorescence anti-
body conjugates to enter into the cell. Samples were 
acquired on a BD LSRII flow cytometer with BD FACS 
Diva 8.0 software (BD Bioscience) and data analysed 
using FlowJo software (Tree Star, Version 10.1). At least 
2,000,000 events were acquired for each sample. Fluores-
cence minus one controls (FMOs) were applied to stand-
ardise the gating, compensation controls to correct for 
spectral overlap and the unstimulated sample was used to 
subtract the background cytokine expression.

Enzyme linked immuno sorbent assays (ELISA)
Cryopreserved plasma was thawed and analysed for 
C-reactive protein (CRP) using a highly sensitive  kit 
manufactured by R&D systems a biotech brand Cata-
logue number DCRP00.

Statistical analysis
Flow cytometry gates were analysed using FlowJo soft-
ware version 10.1. Total ILCs were determined through 
exclusion of lineage negative cells (CD3-, CD19-, 
CD14-, CD20-, CD56-) and by their expression of 
CD127 + (Fig.  1). The gating strategy used was adopted 
from Spits et  al.2013 “proposal for uniform nomen-
clature” and Hazenberg MD et  al.2014 “Human innate 
lymphoid cells” [2]. We used T-BET for ILC1 cells 
instead of IL-1R and CRTH2 for ILC2 cells and RORγt 
for ILC3 cells. Cells that were lineage negative (Lin-), 

Table 1 Demographic characteristics of HIV-infected adults after 12 years of suppressive cART and age-and-gender-matched healthy 
HIV-negative counterparts from the same community

a All optimal responders started cART at CD4 counts < 200 cell/µl and had sustained viral suppression from the first viral load test after six months of cART 

IQR, Interquartile range; ZDV, zidovudine; 3TC, lamivudine; NVP, nevirapine; EFV, efavirenz

Characteristics Optimal  respondersa

N = 17
Healthy HIV-negative
N = 17

Age [median (IQR)], years 47 (41, 62) 45 (35,62)

Female gender n (%) 13 (76.4) 12 (70.5)

Baseline CD4 count: median (IQR) cells/µl 97 (11, 158) N/A

Current CD4: median (IQR) cells/µl 898 (796, 1587) N/A

BMI; median (IQR) 22.57 (20,25) 25.95 (22, 30)

cART duration in years median (IQR) 13.4 (12.8, 14.2) N/A

Hypertension (%) 1 (5.8) 1 (5.8)

Diabetes (%) 1 (5.8) 0 (0.0)

Fever 0 0

Current regimen

ZDV-3TC-NVP (%) 6.0 N/A

ZDV-3TC-EFV (%) 17.0 N/A

TDF-3TC-EFV (%) 6.0 N/A

TDF-3TC-DTG (%) 71 N/A
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expressing T-BET, CD127 + and CD161 + were denoted 
as ILC1 cells. Cells that were Lin-, expressing CRTH2, 
CD127 + and CD161 + were denoted as ILC2 cells 
and cells that were Lin-, expressing RORγt, CD127 + , 
CD117 + (C-kit) and NKP44 + were denoted as ILC pre-
cursors [34], see Fig. 1. Flowjo data was transferred and 
analysed using STATA version 13.0 and Graph Prism 6. 
The Mann Whitney test for non-parametric variables was 
used to compare ILC phenotypes and cytokine produc-
tion among the cART-treated HIV-infected participants 
and their age-matched healthy HIV-negative counter-
parts. A p value of < 0.05 was considered to be statistically 
significant.

Results
The clinical and demographic characteristics were simi-
lar among the cART-treated adults [median age 51 Inter-
quartile range (IQR), 41, 62  years and 14 (82%) female] 
and age-matched healthy HIV-negative adult controls 
[median age 53 IQR 40, 62  years and 13 (76%) female], 
Table 1.

ILC phenotypes
The frequency of live cells was similar among ART-
treated and healthy HIV-negative individuals (both above 
85%). Total ILCs, as determined by lineage negative 
(CD3-, CD19-, CD14-, CD20-, CD56-) CD127 + cells, 
were on average  0.53% of the total live PBMC.

ILC precursors (ILCP) were denoted as L in-, 
CD127 + and CD117 + (C-kit). Off the ILCP cells, 
T-BET + and CD161 + were gated as ILC1, CRTH2 + , 
CD161 + were gated as ILC2 and ROR-gt + cells were 
gated as ILC3 cells (Fig. 1). ILCP percentages in periph-
eral blood mononuclear cells of cART-treated HIV-
infected adults were comparable to those found in 
age-matched healthy HIV-negative counterparts; p = 0.56 
whereas ILC1 percentages were significantly higher in 
cART-treated HIV-infected adults [median 10.5, IQR 
(0.59, 58.0)], relative to age-matched healthy HIV-nega-
tive individuals [median 4.3, IQR (0.084, 20.00)], P = 0.04 
whereas ILC3 percentages were lower in peripheral blood 
mononuclear cells of cART-treated HIV-infected adults 
[median 0.15, IQR (0.0,10.53)] relative to age-matched 
healthy HIV-negative counterparts [median 9.27, IQR 
(0.18,27.0)] P ≤ 0.0001] (Fig. 2).
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Fig. 1 Identification of CD3-, CD19-, CD14-, CD20-, CD56-, CD127 and CD117 lymphocytes from peripheral blood mononuclear cells (Innate 
Lymphoid cell precursors). These were further subdivided into T-BET + cells that produced IFN-γ and CRTH2 + cells that were able to produce IL-4 
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Cytokine production by ILCs
Interferon gamma production by ILC1 was significantly 
higher among cART-treated HIV-infected individu-
als [median 61.3, IQR (5.62, 100)] compared to healthy 
HIV-negative individuals [median 25.6, IQR (2.09, 43.5), 
P = 0.03. IL-4 production by ILC2 was comparable 
among the two groups (Fig.  3). CRP was higher among 
cART-treated HIV-infected [median 41.59, IQR (5.00, 
75.00)] relative to healthy HIV-negative adults [median 
18.2, IQR (0.0,61.6), P = 0.0005 (Additional file 1: Figure 
S1).

Discussion
Innate lymphoid cells (ILC) produce cytokines similar to 
typical T-cell and NK cell cytokines in primary infection, 
and play roles in tissue homeostasis [35]. We observed 
higher proportions of ILC1 and lower proportions of 
ILC3 in peripheral blood of cART-treated HIV-infected 
individuals after at least 12  years of suppressive cART, 
relative to age-matched healthy HIV-negative individu-
als. Human ILCPs circulate systemically, and differenti-
ate into the diverse ILC phenotypes in specific tissues in 
response to localized cues, to produce various cytokines 
including IFN-g, IL-13, IL-17A, IL-22 [34]. In a healthy 
gut, ILC3 are thought to be the predominant population 
of cells contributing to general immune system homeo-
stasis through production of IL-17 and IL-22 cytokines 
[36]. We attribute our finding of ILC3 in peripheral 
blood of cART-treated HIV-infected individuals to the 
HIV-associated destruction of ILC3 in the gut mucosa 

and plasticity of the ILC3 population; that occur in an 
inflamed environment. Plasticity reflects the capacity of 
cells in development to change their destined mature cells 
to change phenotype and functions in response to fluc-
tuating physiological and pathophysiological stimuli in 
circulation [37]. Some studies report that chronic inflam-
matory conditions downregulate RORγt expression on 
ILC3 and upregulate T-BET expression, as expressed by 
the ILC1 phenotype. ILC3, derived from ILCP, take on a 
more cytotoxic phenotype and switch roles from IL-17/
IL-22 producing cells to IFN-γ and TNF producing cells 
(ex-ILC3s) [38, 39]. We postulate that elevated ILC1 and 
low ILC3 numbers could be due to the plasticity of ILC3 
to ILC1 phenotypes [40] which is accelerated by the on-
going HIV-associated inflammation observed in our 
cohort as evidenced by the high C-reactive protein (CRP) 
levels [41].

During acute HIV infection, there is massive destruc-
tion of lymphoid tissue of the gut mucosa [42], which has 
been associated with loss of ILC in the gut and peripheral 
blood [23]. ILC depletion in lentiviral infections has been 
observed within a week of SIV infection in non–human 
primates; a state that remained so in chronic infection 
[43, 44]. In humans, Kloverpris et al. observed that during 
acute HIV infection circulating ILCs upregulated mark-
ers of apoptosis and the three phenotypes (ILC1, ILC2 
and IL3) were depleted between 7 and 14 days after infec-
tion. However early administration of cART restored all 
the ILC phenotypes and ILC depletion persisted in cases 
where cART was not initiated during early infection. In 
chronic HIV infection, ILC3 were partially restored after 
two years of suppressive cART, ILC1 and ILC2 remained 
completely depleted [24], which is contradictory to our 
findings of lower ILC3 and elevated ILC1 levels among 
HIV-infected relative to healthy HIV-uninfected from the 
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Fig. 2 Innate Lymphoid Cell (ILC) phenotypes in peripheral 
blood mononuclear cells of 17 HIV infected cART-treated and 
17 age-matched healthy HIV –negative adults. ILC precursor 
cells were considered as lineage –(CD3-,CD19-,CD14-,CD29-, 
CD56-lymphocytes), CD127 + and CD117 + cells. ILC1 cells were 
determined by their expression of T-BET, CD161 and lack of 
expression of CRTH2. ILC2 cells were determined by their expression 
of CD161 + and CRTH2. ILC3 cells were determined by their 
expression of CD161 + and RORγt
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Fig. 3 Cytokine production by Innate lymphoid cells (ILC1 and ILC2) 
upon stimulation with PMA/IONMYCIN among 17 cART-treated adults 
and their age-matched healthy HIV-negative counterparts. a shows 
the percentage of ILC1 (CD127 + /CD117 + /CD161 + /T-BET + cells) 
producing interferon gamma. b shows the percentage of ILC2 
(CD127 + /CD117 + /CD161 + /CRTH2 + cells) producing Il-4
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same community, despite 12  years of suppressive cART 
with restoration of CD4 counts to at least 500 cells/
µl. The reasons for low ILC3 populations and elevated 
ILC1 in our study are not clear. Some studies report that 
chronic inflammatory conditions downregulate RORγt 
expression on ILC3 and upregulate T-BET expression, 
as expressed by the ILC1 phenotype. ILC3, take on a 
more cytotoxic phenotype and switch roles from IL-17/
IL-22 producing cells to IFN-γ and TNF producing 
cells (ex-ILC3s) [39, 45]. Additional evidence suggests 
that individuals who had intestinal inflammation due to 
Crohn’s disease had a shift from IL-22 producing ILC3 
to CD127 + IFN-γ producing ILC1 under the influence 
of IL-2 and IL-12 [39]. We postulate that elevated ILC1 
and low ILC3 numbers could be due to the plasticity of 
ILC3 to ILC1 phenotypes [40] which is accelerated by the 
on-going HIV-associated inflammation observed in our 
cohort as evidenced by the high C-reactive protein (CRP) 
levels [46]. CRP was higher among cART-treated HIV-
infected than age-matched healthy HIV-negative adults 
from the same communities; despite more than twelve 
years of suppressive cART, restoration of CD4 counts 
to at least 500  cells/µl and no opportunistic infections 
within the 6  months preceding our study (Additional 
file  1). This therefore leaves an unanswered question of 
the extent to which the cytokine production by ILCs is 
influenced by HIV associated inflammation in both the 
tissue microenvironment and systemic circulation [37].

Similarly, the drivers of the observed inflammation 
during long-term cART remain elusive but could include 
subclinical replication of latent HIV virus in the reticu-
loendothelial system of aviremic cART-treated adults [47, 
48]. Microbial translocation has been shown to contrib-
ute to chronic inflammation with increased loss of ILCs 
through leakage from damaged gut mucosa [24], how-
ever, we previously demonstrated absence of microbial 
translocation after seven years of cART despite evidence 
of damaged gut mucosa [49]. We therefore need to fur-
ther understand the role of HIV reservoir size on persis-
tent inflammation and associated immune dysfunctions 
(both innate and adaptive).

ILC functions were determined by measurement of 
IFN-γ production by ILC1 and IL-4 production by ILC2 
cells. IFN-γ production was higher among cART-treated 
HIV-infected individuals relative to healthy HIV-negative 
individuals. Krammer and colleagues found no differ-
ences in IFN-γ production of HIV-infected relative to 
HIV-negative individuals in a German cohort [50]. ILC1 
produce IFN-γ after being stimulated by IL-12 that has 
been produced by dendritic cells and macrophages [13]. 
IFN-γ produced by ILC1 (converted from ILC3) rather 
than the original ILC1, was shown to be a major cytokine 
in the containment of Salmonella enterica Typhimurium 

within intestines [51]. IFN-γ also plays significant roles in 
the control of intracellular pathogens [52] including toxo-
plasma infections [53] and Listeria monocytogenes [54]. 
Although IFN-γ is beneficial in acute inflammation and 
resolution of many types of infections, it has been impli-
cated in many pathological processes associated with 
chronic immune activation and autoimmune diseases 
including systemic lupus erythematosus, dermatomyosi-
tis and systemic sclerosis [55]. Increased ILC1 and IFN-γ 
production have also been implicated in Crohn’s disease 
[13]. Therefore, our finding of high levels of IFN-γ pro-
ducing cells and ILC1 frequencies could potentially lead 
to a higher inflammatory milieu among cART-treated 
individuals which may contribute to risk of non-AIDS 
illnesses including inflammatory autoimmune disorders 
among cART-treated adults. For further study is IL-10 
production by ILC2, not measured in this study, which is 
accompanied by loss of type 2 functional properties and 
may constitute a separate regulatory ILC lineage defined 
by the transcriptional repressor ID3.

Given the cross-sectional study design, we were una-
ble to provide chronological data on ILC recovery dur-
ing the HIV treatment years, although our report after 
twelve years of therapy with attainment of relatively 
normal CD4 counts [56] provides important insights on 
persistent innate immune dysfunction beyond two years 
of suppressive cART. Unfortunately, we only determined 
ILC in peripheral blood yet the biggest composition of 
ILC is found in tissues [24]. Further studies that deter-
mine tissue ILC compositions during long term cART 
would complement our findings and provide more evi-
dence of the effects of HIV and cART on ILC phenotypes 
and function. CD56 was used as the main lineage marker 
for NK cells because CD56 + NK cells makeup the biggest 
percentage of NK cells (95%) [57]. HIV infection skews 
this to create a big population of CD56- CD16 + NK 
cells but in our cohort receiving suppressive cART for 
12  years, there was no significant difference in CD56-
CD16 + NK cell populations among cART-treated adults 
and their HIV-negative counterparts [25]. Therefore, the 
CD56-CD16 + population among cART-treated adults 
had normalized and did not influence the ILC1 popula-
tion. ILC3 cells were determined using RORgt, as shown 
in Fig. 1, but due to low RORgt expression, we could not 
determine ILC3 function.

Conclusions
ILC1 phenotype (including IFN-γ producing ILC1) and C 
reactive protein were high, and ILC3 were low in periph-
eral blood of HIV-infected adults after at least 12  years 
of suppressive cART with restoration of CD4 counts to 
500  cells/µl and above. Longitudinal studies are needed 
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to understand clinical consequences of HIV-associated 
ILC dysfunction and persistent inflammation among 
adults receiving life-long cART; particularly the risk of 
non-AIDS illness that are increasingly causing morbidity 
and mortality among adults aging with HIV.
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