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Abstract 

Background: Chagas disease remains a significant public health problem in Latin America. There are only two 
chemotherapy drugs, nifurtimox and benznidazole, and both may have severe side effects. After complete chemo-
therapy of acute cases, seropositive diagnosis may revert to negative. However, there are no definitive parasitological 
or serological biomarkers of cure.

Methods: Following a pilot study with seven Bolivian migrants to Spain, we tested 71 serum samples from chronic 
patients (mean age 12.6 years) inhabiting the Argentine Chaco region. Benznidazole chemotherapy (5–8 mg/kg day, 
twice daily for 60 days) was administered during 2011–2016. Subsequently, pre-and post-chemotherapy serum sam-
ples were analysed in pairs by IgG1 and IgG ELISA using two different antigens and Chagas Sero K-SeT rapid diagnos-
tic tests (RDT). Molecular diagnosis by kDNA-PCR was applied to post-treatment samples.

Results: Pilot data demonstrated IgG1 antibody decline in three of seven patients from Bolivia 1 year post-treatment. 
All Argentine patients in 2017 (averaging 5 years post-treatment), except one, were positive by conventional serol-
ogy. All were kDNA-PCR-negative. Most (91.5%) pre-treatment samples were positive by the Chagas Sero K-SeT RDT, 
confirming the predominance of TcII/V/VI. IgG1 and IgG of Argentine patients showed significant decline in anti-
body titres post-chemotherapy, with either lysate (IgG, P = 0.0001, IgG1, P = 0.0001) or TcII/V/VI peptide antigen (IgG, 
P = 0.0001, IgG1, P = 0.0001). IgG1 decline was more discriminative than IgG. Antibody decline after treatment was 
also detected by the RDT. Incomplete treatment was associated with high IgG1 post-treatment titres against lysate 
(P = 0.013), as were IgG post-treatment titres to TcII/V/VI peptide (P = 0.0001). High pre-treatment IgG1 with lysate was 
associated with Qom ethnicity (P = 0.045). No associations were found between gender, age, body mass index and 
pre- or post-treatment antibody titres.

Conclusions: We show that following chemotherapy of early chronic Chagas disease, significant decline in IgG1 anti-
body suggests cure, whereas sustained or increased IgG1 is a potential indicator of treatment failure. Due to restricted 
sensitivity, IgG1 should not be used as a diagnostic marker but has promise, with further development, as a biomarker 
of cure.
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Background
Chagas disease, caused by the protozoan Trypanosoma 
cruzi, remains a major cause of disability in the Ameri-
cas, particularly in the Gran Chaco region of Argentina, 
Bolivia and Paraguay. Trypanosoma cruzi is primar-
ily transmitted via infected faeces of the triatomine bug 
vector, during a blood meal, when the parasite can enter 
the host through mucosal membranes and abraded skin. 
Transmission may also be congenital, by blood or organ 
donation, and orally via triatomine contamination of food 
or drink [1]. The initial acute phase of Chagas disease 
is often asymptomatic or without specific symptoms, 
although fatalities may occur [2]. The subsequent chronic 
phase may develop years later, in about 30% of individu-
als, principally with cardiomyopathy, and/or megasyn-
dromes of the oesophagus and colon [3]. Infection can 
be cleared by a full course of chemotherapy with benzni-
dazole (or nifurtimox). However, both drugs require pro-
longed treatment (30–60  days), and can be interrupted 
by severe adverse effects, particularly in adults. Delivery 
of chemotherapy has gained renewed impetus in the last 
10 years, and treatment is now more accessible to rural 
communities [4–7] and urban centres [8]. However, the 
potential for improving long-term prognosis and for 
controlling transmission is usually lost due to the lack 
of early diagnosis and treatment, and delay in delivering 
insecticide control of infested dwellings, respectively [9].

Serological techniques to identify anti-T. cruzi immu-
noglobulin G (IgG), which are used principally in the 
chronic phase when parasites are sequestered in the tis-
sues and rare in the circulating blood [10], include the 
enzyme-linked immunosorbent assay (ELISA), indirect 
haemagglutination (IHA), indirect immunofluores-
cence (IIF) and several commercial rapid diagnostic tests 
(RDTs), among the most commonly employed [10–12]. 
However, tests vary in practicality, sensitivity and speci-
ficity, and can be discordant between patients from dif-
ferent geographical locations [13]. During the chronic 
phase, other diagnostic techniques can be used, includ-
ing molecular methods, for example kDNA-PCR, which 
amplifies sequences in the T. cruzi kinetoplast, a dense 
network structure of repetitive mitochondrial DNA, but 
these methods may lack sensitivity due to the paucity 
of circulating parasites. Therefore, serological identifi-
cation of T. cruzi-specific IgG antibodies is considered 
the standard. However, the World Health Organization 
recommends at least two tests using different meth-
ods and/or detecting antibodies to different antigens 

and potentially a third test if the results are conflicting, 
in order to make a definitive diagnosis [14, 15]. Many 
biomarkers have been assayed as criteria of cure; how-
ever, reversion of conventional serology from positive to 
negative is considered the best and most reliable indica-
tor of successful parasitological cure [14]. Nevertheless, 
except in treatment of initial acute cases or in the chronic 
phase during early childhood, the decline of conventional 
antibody (IgG) titres may take many years [16, 17], and 
patients therefore remain without confirmation of treat-
ment outcome. Not having a definitive answer soon 
after chemotherapy is a fundamental impediment that 
can complicate patient management, and patients may 
be unwilling to start prolonged drug treatment if there 
is a risk of adverse side effects, with uncertain improve-
ment of clinical prognosis, such as prevention of cardio-
myopathy [18, 19]. Furthermore, with increased national 
and international migration, long-term patient follow-up 
is proving difficult and impractical. Thus, an early bio-
marker of cure is urgently needed [20].

Trypanosoma cruzi is composed of six genetic line-
ages or discrete typing units (DTUs), TcI–VI [21], with 
a possible seventh, TcBat [22]. TcI, TcII, TcV and TcVI 
are the most common in human infections, whilst TcIII 
and TcIV are principally associated with sylvatic cycles. 
It has long been proposed that the differing lineages may 
contribute to the varying clinical forms of Chagas disease 
throughout South America [23].

Various T. cruzi antigens or antigenic fractions that 
elicit a serological response have been evaluated for post-
treatment biomarkers [24–26], with relative success [24]. 
The MultiCruzi assay, a serological assay incorporating 
15  T. cruzi-specific antigens, when used with an inter-
pretation formula, has been proposed for use as a pre-
dictive tool to assess parasitological cure in infants and 
children [27]. In paediatric cases post-chemotherapy, 
antibody titres to the trypomastigote small surface anti-
gen (TSSA) shared by TcII, TcV and TcVI (TSSA-II/V/VI) 
decreased significantly faster than those against crude 
parasite homogenates [28]. Serology with a synthetic 
peptide TSSApep-II/V/VI epitope also revealed an asso-
ciation between seropositivity and severity of chagasic 
cardiomyopathy [29], and ELISAs and RDTs with protein 
G detection had the capacity to resolve host, ecological 
and epidemiological associations in the Argentine Chaco 
[30].

IgG is the most common class of immunoglobulin 
in human serum, the major antibody of the secondary 
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immune response and is split into four subclasses, IgG1, 
IgG2, IgG3 and IgG4. IgG1 is at the highest levels in adult 
sera, with a relative abundance of 60% [31]. In compari-
son, although children are born with a relatively high 
level of IgG1 from the mother, this quickly drops to low 
levels due to non-sustained antigenic stimulation. From 
6  months of age, the level of IgG1 increases, and by 
5  years of age the level of IgG1 is 75% of that found in 
adult sera [32].

During the acute stage of infection, IgG is found at rela-
tively low levels, and IgM is the most abundant antibody; 
however, as the infection changes from acute to chronic, 
there is a switch to IgG [33]. Of the four subclasses of 
IgG, IgG1, IgG2 and IgG3 are found at high titres during 
T. cruzi infection, with IgG1 being the most abundant, 
whereas IgG4 is at relatively low levels [34, 35]. Increased 
anti-T. cruzi IgG1 titres have also been associated with 
increased severity of Chagas disease cardiomyopathy 
[33]. Here we address whether IgG1 may be an early bio-
marker of cure after treatment of chronic Chagas disease. 
Following a pilot study, we assess IgG and IgG1 antibody 
decline in treated early chronic Chagas disease patients 
living in the Argentine Chaco where domestic transmis-
sion was interrupted, using separately whole cell lysate 
and TSSApep-II/V/VI antigens, and we show that IgG1 
is more discriminative as a biomarker for assessing cure 
than IgG, irrespective of antigen.

Methods
Pilot serological study
For a pilot cohort of chronic patients (n = 7, all of Boliv-
ian origin) presenting in Barcelona, Spain, serum sam-
ples at 0, 60 and 365 days (post-treatment) were assayed 
for anti-T. cruzi IgG and IgG1 levels by ELISA against 
T. cruzi lysate (described below). The data from these 
preliminary assays informed and encouraged the wider 
investigation in the main study.

Main study
Sample collection, serological surveillance and treatment 
in Argentina
Field work took place in the rural area of Pampa del 
Indio, Chaco Province, in northern Argentina [36]. In 
this municipality, intense domestic transmission of T. 
cruzi occurred and was suppressed by sustained actions 
against Triatoma infestans, the main vector, as part 
of an ongoing intervention programme launched in 
2007, which virtually eliminated domestic infestation 
by the second year post-interventions [37–40]. During 
2010–2016, we scaled up delivery of serodiagnosis and 
chemotherapy of seropositive people in the rural area, 
divided for operational reasons (areas I–IV) and achieved 
approximately 50% of serodiagnosis coverage of nearly 

9000 inhabitants (Additional file  1: Figure S1). Patients 
included members of the Qom and Creole ethnic groups. 
The seroepidemiology and long-term impact of sustained 
vector control on domestic transmission are described 
elsewhere [40–43].

All serum samples were preserved at −20  °C until 
assayed for T. cruzi infection by conventional serology. In 
Argentina, the WHO guidelines for conventional serol-
ogy are followed: the use of two serological tests, either 
ELISA, or IHA of IIF, detecting different parasite antigens 
or whole parasites [14, 15]. Here, duplicate ELISAs with 
non-recombinant (Chagastest, Wiener) and recombinant 
antigens (ELISA Rec v3.0, Wiener) were used, according 
to the manufacturer’s instructions. A serum sample was 
considered seropositive if reactive in two different assays 
[36]. Two serologically discordant human samples were 
sent to the National Institute of Parasitology “Dr. Mario 
Fatala Chabén” (ANLIS-Malbrán, Buenos Aires, Argen-
tina) for final serodiagnosis, where they were tested by 
IHA, ELISA and IIF.

Benznidazole (5–8 mg/kg day) was administered twice 
daily for 60  days to all seropositive individuals, except 
in 2012 when nifurtimox was used (8–10  mg/kg day) 
(Additional file  1: Figure S1). Chemotherapy rounds 
were launched between 2011 and 2016. For the cohort 
treated in 2011, blood samples by venipuncture were 
taken by local physicians at day 0, 20–30, 60 and 180 
post-treatment. Conventional serological tests were per-
formed, and molecular diagnosis was applied by qPCR 
and kDNA-PCR to determine the infection status of 
the patients in the cohort treated in 2011 [36]. For this 
cohort, pre-treatment samples were collected between 
November 2010 and January 2011. The subsequent post-
treatment samples were collected, as described above, 
when patients were resampled in 2017 in house-to-house 
visits.

Molecular assays
For DNA extraction, samples were mixed immediately 
after collection with an equal volume of 6  M guanidine 
hydrochloride and 0.2 M EDTA in pH 8.0 buffer. Guani-
dine/EDTA blood samples were heated in a boiling water 
bath for 15 min. Total DNA was purified using a DNeasy 
Blood & Tissue Kit (Qiagen, USA) according to manufac-
turer’s instructions, slightly modified to exclude protein-
ase K and buffer AL [44] and eluted in 200 µl of distilled 
water. A total of 24 out of 34 pre-treatment Argentinean 
samples were positive by kDNA-PCR [36].

Chagas Sero K‑SeT RDT
As previously described [29, 30], the Chagas Sero K-Set 
is a novel RDT manufactured by Coris BioConcept using 
TSSApep-II/V/VI (GTENKPATGEAPSQPG) as the 
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antigen and colloidal gold-conjugated protein G detec-
tion of bound IgG. Each test was assessed visually and 
independently by two individuals after 15 min of incuba-
tion. A test was considered valid if the control line was 
present, determined as positive if there was a signal of 
any intensity at the test (antigen) line, and negative if 
there was no signal at the test line. The intensity of signal 
at the test band was assessed visually as strong, weak or 
absent.

ELISA
Immulon 4HBX 96-well flat-bottom ELISA plates  (735–
0465, VWR, UK) were divided into 16 sections of 3 col-
umns × 2 rows of wells, to allow simultaneous assay of 
IgG1 and IgG paired pre- and post-treatment samples, 
as further described below. Wells were coated either 
with  100  μl/well  of 1 × coating buffer  (15  mM  Na2CO3, 
34  mM  NaHCO3, pH 9.6) as a no-antigen control or 
with TSSApep-II/V/VI synthetic peptide  (5  μg/ml)  or 
lysate of  T. cruzi  TcI strain ISAN/US/00/Florida (2  μg/
ml, prepared as described in [45]) diluted in 1× coat-
ing buffer. Following overnight incubation at 4 °C, plates 
were washed three times with PBS/0.05% Tween (PBST), 
then blocked with 200 µl/well of PBS/2% skimmed milk 
powder at 37 °C for 2 h. After three washes, 100 µl/well 
of serum at 1:200 dilution in PBST/2% milk was applied, 
such that for each paired sample per plate section, the 
upper row contained pre-treatment serum, and the lower 
row post-treatment serum. Following incubation at 37 °C 
for 1 h and six washes in PBST, 100 μl/well of horserad-
ish peroxidase-labelled anti-human IgG (709–035-149, 
Jackson ImmunoResearch, USA) or anti-human IgG1 
(ab99774, Abcam, UK), diluted 1:5000 in PBST/2% milk, 
were added  to the second and third columns of each 
section, respectively. The first column of each section   
received        PBST/2%   milk   only.  After 1 h of incuba-
tion and six PBST washes, 100 μl/well of substrate solu-
tion (50 mM phosphate/citrate buffer, pH 5.0) containing 
2  mM o-phenylenediamine HCl (P1526, Sigma-Aldrich) 
and 0.009%  H2O2 (216,763, Sigma-Aldrich) was added to 
the entire plate, which was then incubated in the dark. 
Reactions were stopped with 50 μl/well of 2  M  H2SO4, 
and absorbance values were measured at 490 nm. Dupli-
cate (replica) plates were performed simultaneously, and 
mean results obtained. Cut-off values were calculated 
by subtracting the plate background absorbance values 
from each of the samples, including the negative controls; 
samples that were higher than the mean of the negative 
controls plus three standard deviations were considered 
positive. Only Chagas Sero K-Set RDT-reactive samples 
were assayed with TSSApep-II/V/VI ELISA; other line-
age-specific RDTs are not yet available [30, 46].

Data analysis
Two-tailed paired t-tests (pre- and post-treatment sam-
ples), unpaired two-sample t-tests or one-way ANOVA 
were used to determine statistical significance (GraphPad 
Prism, 8.4.3, San Diego, CA, USA). Values of P < 0.05 were 
considered statistically significant.

A serum sample was considered to decline significantly 
(herein called “clear decline”) if absorbance dropped by 
50% (ELISAs) or exhibited a prominent decrease in RDT 
test line intensity (Additional file 2: Figure S2). For a given 
assay, a reactive serum pre-treatment and non-reactive 
post-treatment was considered seronegativisation. Re-
examined patients (n = 71) were grouped according to 
whether they completed the 60 days of chemotherapy. Thir-
teen of the 71 patients reporting interruption of therapy 
[36] were designated as group B (age range, 2–20  years), 
and those with completed treatment [36] or self-reporting 
completion as group A (age range, 6–19 years), including 
the patient with therapeutic failure [36]. We compared the 
percentage of patients showing clear decline of antibodies 
or seronegativisation between groups by means of Fisher’s 
exact tests. Group B patients were excluded from IgG and 
IgG1 response pre-/post-treatment, but group A and group 
B were compared in the univariate analysis. We merged our 
database with that previously published [36], updating the 
data for corresponding patients, to investigate the associa-
tion of antibody titres with individual patient data (i.e., age, 
body mass index [BMI], ethnic group). The relationship 
between antibody decline (for each serological test) and 
age at treatment, treatment groups and time elapsed since 
treatment (in years) was tested by multiple logistic regres-
sions implemented in R using “lme4” and “sjPlot” packages 
[47–49]. Continuous variables were standardised.

Results
Pilot study shows trend of IgG1 decline in paired pre‑ 
and post‑treatment sera
To assess the trend of IgG subclass titres post-chemother-
apy, sequential serum samples from seven adult Boliv-
ian patients living in Barcelona were assayed by ELISA 
against T. cruzi lysate at 0, 60 and 365 days post-treatment. 
IgG1 antibody titre declined in three (42.3%) participants 
365 days post-treatment (Fig. 1), whilst there was no anti-
body decline for IgG2 or IgG4; one participant showed 
IgG3 antibody decline 365  days post-treatment (data not 
shown).

Main study
Conventional serology remains positive 
after chemotherapy
Conventional serological assays were used with all 71 
samples collected in 2017; all except one remained con-
sistently positive. People re-examined were on average 
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12.6  years of age when treated; 47.9% were female, 
52.1% were Qom descendants, and on average 5.0 years 
had elapsed since treatment. Around a third (34%) of 
the study people had moved from their original house-
hold to a new residence within the municipality when 
revisited in 2017.

Molecular assays
kDNA-PCR was carried out with post-treatment samples 
collected in 2017 to indicate presence of parasitaemia. 
The predicted 330-bp amplicons were produced with 
pre-treatment samples but not produced with post-treat-
ment samples (data not shown). All of the 71 post-treat-
ment samples were negative.

TSSApep‑II/V/VI seropositivity by Chagas Sero K‑SeT RDT
All 71 pre-treatment samples were initially screened with 
this RDT to detect recognition of TSSApep-II/V/VI. 
Fifty-four of the 58 pre-treatment samples from group 
A and 11 of the 13 pre-treatment samples from group 
B were positive by this RDT (Table  1) giving an overall 
seropositivity of 91.5%.

Comparison between treatment groups
We found a significantly higher percentage of patients 
showing a clear decline of antibody titres after treatment 
in group A than in group B when assayed against TSSA-
pep-II/V/VI ELISA with IgG (Fisher’s exact test, P = 0.04; 
OR = 0.04; 95% CI = 1.07–23.33). We found no signifi-
cant between-group differences in the percentage of pos-
itive patients before treatment and in those who became 
seronegative after treatment (Fisher’s exact test, P ≥ 0.1 in 
all cases) (Table 1).

Fig. 1 Pilot study supports IgG1 decline post-treatment: ELISA 
absorbance values are shown for individual participants at 0, 60 and 
365 days post-treatment. Each line represents an individual patient. 
Three of seven show a decline in IgG1

Table 1 Changes in anti-T. cruzi seroreactivity according to assay and treatment group

Group A: completed treatment; group B: reported interruption of treatment
a Only assayed for samples positive by TSSApep-II/V/VI Chagas Sero K-SeT RDT
b Two RDT-positive samples (one each from group A and group B) were not assayed by TSSApep-II/V/VI-ELISA
c Remained seronegative = negative pre- and post-treatment
d One sample seroconverted (changed from negative to positive) in this assay
e–j Statistically significant differences between superscript pairs are discussed in the text

Antigen Number positive/examined (%) by detection assay

Protein G: Chagas 
Sero K-SeT

IgG1 ELISA IgG ELISA

TSSApep-II/V/VI Lysate TSSApep-II/V/VIa Lysate TSSApep-II/V/VIa

Group A (n = 58)

 Positive (pre-treat-
ment)

54/58 (93.1%) 46/58 (79.3%)f 22/53b (41.5%)f 57/58 (98.3%)g 41/53b (77.4%)g

 Clear decline 25/54 (46.3%) 35/46 (76.1%) 22/22 (100%) 21/57 (36.8%) 34/41 (82.9%)e

 Seronegativisation 11/54 (20.4%) 19/46 (41.3%)h 15/22 (68.2%)i 6/57 (10.5%)h 18/41 (43.9%)i

 Remained 
 seronegativec

4/58 (6.9%) 12/58 (20.7%) 30/53d (56.6%) 1/58 (1.7%) 12/53d (22.6%)

Group B (n = 13)

 Positive (pre-treat-
ment)

11/13 (84.6%) 11/13 (84.6%) 7/10b (70.0%) 13/13 (100%) 10/10b (100%)

 Clear decline 5/11 (45.5%) 6/11 (54.5%) 6/7 (85.7%) 6/13 (46.2%) 5/10 (50.0%)e

 Seronegativisation 1/11 (9.1%) 2/11 (18.2%) 5/7 (71.4%)j 1/13 (7.7%) 2/10 (20.0%)j

 Remained 
 seronegativec

2/13 (15.4%) 2/13 (15.4%) 3/10 (30.0%) 0/13 (0%) 0/10 (0%)
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to lysate for IgG1 (paired t-test, P < 0.0001, t(62) = 4.18 
and P < 0.0001, t(70) = 7.35, respectively; Fig.  2). Simi-
larly, in group B patients, ELISA with IgG1 was more 
discriminative than with IgG (Table  1). The seronega-
tivisation percentage was significantly higher with IgG1 
regardless of the antigen employed (Fisher’s exact test, 
P < 0.0001; OR = 5.98; 95% CI = 2.26–17.70 for lysate 
and P = 0.057; OR = 2.74; 95% CI = 0.92–7.64 for TSS-
Apep-II/V/VI) in Group A patients and for the TSS-
Apep-II/V/VI in Group B patients (Fisher’s exact test, 
P = 0.052; OR = 10.00; 95% CI = 1.12–69.44) (Table 1).

In multiple logistic regression analysis, the occur-
rence of antibody decline (both IgG and IgG1) in ELI-
SAs with lysate antigen decreased significantly with 
increasing age at treatment, but not with treatment 
group or time elapsed since treatment (Additional 
file  3: Table  S1). Using TSSApep-II/V/VI as antigen, 
the occurrence of IgG antibody decline was signifi-
cantly associated negatively with age at treatment and 
positively with treatment group. Seronegativisation 
was significantly negatively associated with both age at 
treatment and time elapsed since treatment (Additional 
file  4: Table  S2). IgG1 antibodies assayed with TSSA-
pep-II/V/VI were not included in this analysis, because 
virtually all samples declined.

Fig. 2 IgG1 decline is more discriminative than IgG in paired pre- and post-treatment sera for patients that completed treatment (group A). In each 
panel (a–d), ELISA absorbance values are shown connected for individual sample pairs, and in the insets as composite box and whisker plots, blue 
(pre-treatment) and red (post-treatment). a IgG1 with lysate (P < 0.0001 for pre- versus post-treatment); b IgG with lysate (P < 0.0001); c IgG1 with 
TSSApep-II/V/VI (P < 0.0001); d IgG with TSSApep-II/V/V (P < 0.0001). The dashed line represents each assay cut-off value

Chagas Sero K‑SeT RDT is the least discriminative 
of the TSSApep‑II/V/VI assays
Using the Chagas Sero K-SeT RDT in patients from group 
A, 25/54 (46.3%) of samples showed a clear decrease of 
band intensity post-treatment, in comparison to 22/22 
(100%) or 34/41 (82.9%) by TSSApep-II/V/VI ELISA with 
IgG1 or IgG, respectively (Table 1). A similar trend was 
observed in patients from group B.

ELISA with IgG1 is more discriminative than IgG 
in assessing seronegativisation and decline in antibody 
levels
The sensitivities with pre-treatment samples were sig-
nificantly greater against lysate than TSSApep-II/V/VI 
with both IgG1 and IgG (Fisher’s exact test, P < 0.0001; 
OR = 5.40; 95% CI = 2.31–11.91 for IgG1 and P = 0.001; 
OR = 16.68; 95% CI = 2.76–181.6 for IgG) (Table  1). 
However, the post-treatment decline in IgG1 was 
more discriminative than for IgG, regardless of anti-
gen (Fig.  2). In group A patients, a clear decline in 
IgG1 was observed in 35/46 (76.1%) and 22/22 (100%) 
samples against lysate and TSSApep-II/V/VI, respec-
tively, compared to 21/57 (36.8%) and 34/41 (82.9%) 
for IgG (Table  1). Overall, antibody titres also showed 
a greater decline with TSSApep-II/V/VI compared 
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Univariate associations with serology
Univariate associations between IgG and IgG1 levels and 
lysate or TSSApep-II/V/VI ELISA are shown in Table 2.

The Qom population had a significantly higher pre-
treatment IgG1 titre against lysate. In contrast, the Cre-
ole population had a significantly higher pre-treatment 
IgG antibody titre against TSSApep-II/V/VI. In addition, 
there was a statistically significant association between 
patients not completing treatment and higher pre-treat-
ment IgG titre against TSSApep-II/V/VI (P = 0.049, 
t(61) = 2.01), higher post-treatment IgG titre against 
TSSApep-II/V/VI (P = 0.0001, t(61) = 4.32) or higher 
5-year post-treatment IgG1 titre against lysate (P = 0.013, 
t(69) = 2.56), although titres were not significantly higher 
against TSSApep-II/V/VI. Furthermore, there was a sig-
nificant association between a positive pre-treatment 
kDNA-PCR and higher post-treatment IgG antibodies 
against lysate (Table 2, P(32) = 0.019, t = 2.46). No associa-
tions were found for the Chagas Sero K-Set RDT results 
pre- and post-treatment.

Discussion
In Chagas disease, current methods to establish chemo-
therapeutic parasite clearance are technically demand-
ing and inconclusive. Post-chemotherapy reversion of 
conventional serology from positive to negative may take 
decades to confirm parasitological cure. Failure to deter-
mine cure complicates patient follow-up, because physi-
cians are unable to inform patients on their long-term 
prognosis and risk of developing chagasic cardiomyo-
pathy or intestinal pathology. Furthermore, follow-up of 
patients may be difficult if they migrate to other regions 
or move to new households, and they may be unwilling 
to accept prolonged chemotherapy with potential adverse 
effects and no definitive outcome. Thus, there is a great 
need for identifying a biomarker for a rapid point-of-
care test of cure. Molecular assays may be considered the 
most useful for assessing treatment response in the short 
term. However, there are no commercial molecular assay 
kits available, and typically only a fraction of seropositive 
chronic individuals are PCR-positive before treatment; 
moreover, a negative PCR cannot establish absence of 
infection, although a positive PCR proves treatment fail-
ure [50].

The role of the IgG subclasses as an early diagnostic 
tool, indicator of parasite clearance or predictor of dis-
ease prognosis has been assessed in other protozoan 
infections including malaria [51–54] and toxoplasmo-
sis [55, 56]. In visceral leishmaniasis, the level of IgG1 
response has been shown to be a potential therapeutic 
marker, principally in India; patients considered to be 
cured had significantly lower levels of anti-Leishmania 
IgG1 compared to those with treatment failure or relapse 

[57, 58], possibly due the lack of sustained antigenic stim-
ulus associated with successful chemotherapy.

In a previous report of anti-T. cruzi IgG1 levels follow-
ing accidental infection with T. cruzi, the anti-T. cruzi 
IgG1, IgG3 and IgG4 returned to pre-infection levels 
55  days post-chemotherapy and 80  days after infection, 
whereas the IgG2 titres remained high at 300 days after 
infection [59]. Anti-T. cruzi IgG1 serology has been 
shown to be highly sensitive and specific for screening 
blood donors when conventional serological methods 
(ELISA and IIF) previously gave inconclusive results 
[60]. Similarly, anti-epimastigote IgG1 has been able to 
distinguish between T. cruzi-infected and non-infected 
individuals [61]. Most recently, the Human Chagas-Flow 
ATE-IgG1 has been able to differentiate between TcI, 
TcVI and TcII lineages with high accuracy [62].

Our pilot study of treated Bolivian patients residing 
in Barcelona initially detected a possible trend for a 
decrease in IgG1 titre compared to IgG and the other 
IgG subclasses. In the Argentine cohort of the main 
study, almost all patients remained seropositive post-
treatment as determined by conventional serology, 
namely two commercial ELISAs that detect IgG with 
non-recombinant and recombinant antigens, show-
ing that this could not determine whether treatment 
was successful. We assessed IgG and IgG1 antibody 
decline with ELISA against lysate and TSSApep-II/V/
VI antigens pre- and post-treatment of early chronic 
Chagas disease patients. To our knowledge, there 
are few reports of TSSApep-II/V/VI as an antigen for 
assay with paired samples from chronic patients. Of 
pre-treatment samples screened by Chagas Sero K-SeT 
RDT for TSSApep-V/V/VI infection, 91.5% were posi-
tive, confirming that these are the predominant infect-
ing lineages in the region, as previously reported [30, 
63]. Among the patients who completed chemother-
apy, a proportion of Chagas Sero K-SeT RDT positives 
(43.6%) showed IgG decline post-treatment, by visual 
assessment of band intensity. In contrast, IgG (82.9%) 
and IgG1 (100%) showed substantial decline by TSSA-
pep-II/V/VI ELISA and even seronegativisation (Fig. 2). 
We propose an algorithm for incorporating IgG1 and 
IgG serological assays to infer the treatment outcome 
after chemotherapy when 5 years have elapsed (Fig. 3). 
In the ELISAs, IgG/IgG1 are detected with specific con-
jugates, whereas in the RDTs, antibodies are detected 
with protein G. Developing IgG1 RDTs could provide 
a useful tool for monitoring chemotherapy. Moreover, 
whereas the ELISA uses serum samples at a dilution of 
1:200, RDTs use undiluted samples at the point of appli-
cation, which may also explain the high RDT sensitivity 
with pre-treatment samples and the lower capacity to 
detect decline in antibody response. Modification of 
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sample volume, together with specific IgG1 detection, 
could allow RDT assessment of antibody decline fol-
lowing chemotherapy (Fig.  3). Both antibody decline 
and seronegativisation were also observed in patients 
reporting an incomplete course of chemotherapy. 
Although the number of days of pill intake was miss-
ing for six out of 13 patients (group B), the remain-
ing seven received an average of 20  days of treatment 
(range = 6–31) of the 60 days prescribed, thus on aver-
age less than half the treatment course. Shorter chemo-
therapy courses are now being trialed to avoid adverse 
reactions while sustaining parasiticidal effects [64, 65]. 
Similarly, all patients, including the 13 with incomplete 
treatment, had a negative kDNA-PCR post-treatment, 
suggesting that treatment may be effective with reduced 
length of chemotherapy. However, kDNA-PCR may 
have low sensitivity, and may not yield the correct diag-
nosis if there is a low number of circulating parasites.

We considered whether treatment completion, eth-
nic group, pre-treatment kDNA-PCR result, gender, 
age and BMI were univariate factors associated with 
IgG1 or IgG levels. Significant associations were found 
between post-treatment high IgG1 and failure to com-
plete treatment. High IgG1 has been associated with 
greater deterioration of cardiac function in Chagas 
disease patients [35]. Interestingly, a significant asso-
ciation was found between lower levels of IgG post-
treatment and a negative pre-treatment kDNA-PCR. 
We speculate that there may be higher parasitaemia 
in patients with a positive pre-treatment kDNA-PCR, 
resulting in slower antibody decline. No associations 
were found between pre- or post-treatment antibody 
titres and gender, age or BMI.

The Qom ethnic group had significantly higher IgG1 
titre pre-treatment against lysate. Qom households 
receive a lower level of formal education compared to 
Creoles [66]. Furthermore, the Qom do not use screens 
or apply insecticides as regularly, and their households 
had a higher prevalence of domestic infestation with T. 

infestans [67] and of T. cruzi-infected dogs and cats [66, 
68], increasing the likelihood of repeat infection by T. 
cruzi and therefore increased production of antibodies 
[69]. However, we do not have an explanation for the 
higher pre-treatment titres among the Creole commu-
nity with the less discriminative IgG assay.

Limitations to this study could be addressed with a 
larger study cohort, more representative (broader) age 
distribution and additional intervening time points. 
Employment of qPCR may have revealed a few cases with 
very low parasitemia, not detected by kDNA-PCR [36]. 
We had insufficient pre-treatment ECG data to use in our 
analysis of IgG1 levels, although this would be an inter-
esting aspect of future research. Including a cardiological 
and clinical evaluation may shed light on the current sta-
tus of the study patients.

Conclusion
Here, we show that IgG1 decline is more discriminative 
than IgG. A larger proportion of post-treatment samples 
showed anti-T. cruzi IgG1 decline in comparison to IgG, 
regardless of the antigen employed. Overall, post-treat-
ment samples had significantly lower IgG1. Although 
IgG1 has restricted sensitivity and should not be used 
as a diagnostic assay, with further development it clearly 
has potential as a biomarker of cure. Our results empha-
sise the importance of early diagnosis and treatment of 
affected populations in endemic areas.
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