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Abstract  

Background - Brazil is one of the countries worst affected by the COVID-19 pandemic with over 20 

million cases and 557,000 deaths reported. Comparison of real-time local COVID-19 data between 

areas is essential for understanding transmission, measuring the effects of interventions and 

predicting the course of the epidemic, but are often challenging due to different population sizes 

and structures.  

Methods –We describe the development of a new app for the real-time visualisation of COVID-19 

data in Brazil at the municipality level. In the CLIC-Brazil app, daily updates of case and death data 

are downloaded, age standardised and used to estimate reproduction number (Rt). We show how 

such platforms can perform real-time regression analyses to identify factors associated with the rate 

of initial spread and early reproduction number. We also use survival methods to predict the 

likelihood of occurrence of a new peak of COVID-19 incidence.  

Findings – After an initial introduction in São Paulo and Rio de Janeiro states in early March 2020, 

the epidemic spread to Northern states and then to highly populated coastal regions and the 

Central-West. Municipalities with higher metrics of social development experienced earlier arrival of 

COVID-19 (decrease of 11·1 days [95% CI:13·2,8·9]  in the time to arrival for each  10% increase in 

the social development index). Differences in the initial epidemic intensity (mean Rt) were largely 

driven by geographic location and the date of local onset. 

Interpretation - This study demonstrates that platforms that monitor, standardise and analyse the 

epidemiological data at a local level can give useful real-time insights into outbreak dynamics that 

can be used to better adapt responses to the current and future pandemics. 

Funding - This project was supported by a Medical Research Council UK (MRC-UK) -São Paulo 

Research Foundation (FAPESP) CADDE partnership award (MR/S0195/1 and FAPESP 18/14389-0)  
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Introduction  

COVID-19 is a new respiratory and multi-organ illness caused by infection with the severe acute 

respiratory syndrome coronavirus type-2 (SARS-CoV-2) which emerged in December 2019 in Wuhan, 

China. As of 4th August 2021  over 200  million COVID-19 cases and over 4·2 million deaths have been 

reported worldwide 
1
. Brazil is one of the worst affected countries with over 20 million cases and 

557,000 deaths reported 1. Heterogenous patterns of propagation of the virus across the country 

have been driven by a complex intersection of causative factors including; continued movements of 

people between urban centres throughout the epidemic, differential imposition of interventions 

designed to reduce transmission and relative isolation of municipalities from the major population 

centres2. Currently the country is experiencing a second wave of the epidemic driven by a viral 

variant which arose in the Amazonas region and has quickly spread throughout the country
3
.  

 

Comparisons of incidence between different local areas can give important insights into the patterns 

of spread and the burden of an epidemic and help to separate generalisable from context specific 

transmission trends. Such comparisons are complicated by differences in the characteristics of local 

populations that affect the risk of disease even if levels of infection are equal. In particular, age is a 

major risk factor for infection with SARS-CoV-2 and subsequent COVID-19 disease. Consequently, 

differences in the age distribution need to be taken into account when comparing local areas,4–6 The 

differences in epidemic severity between places could also be driven by sociodemographic factors, 

ethnicity, the relative isolation of different regions and the levels of implementation and 

effectiveness of non-pharmaceutical interventions. A serosurvey conducted in May and June of 2020 

in cities across Brazil found evidence that prevalence of SARS-Cov-2 antibodies, an indicator of prior 

infection, was higher for those; living in crowded conditions, of non-white ethnicity and those in the 

lowest socio-economic groups
7
. In contrast a study of data from the early stages of the epidemic in 

Brazil , up to May 2020, found that the those in higher socio-economic groups were more likely to 

have a positive test for COVID-19
8
. This may imply a changing risk profile over time or may reflect 

differential access to testing among socio-economic groups. 

 

With the increased roll-out of vaccinations, local differences in vaccine uptake also need to be 

considered
9
. All of these aspects could impact on the rate of spread and onset time of the epidemic 

in a given locality. Quantifying the role of these components, and the interplay between them, is 

important for understanding patterns of past infection and the likely severity of future waves of 

infection. 

 

The field of real-time analysis of infectious disease data is rapidly expanding, in part due to greater 

automation, digitisation and online sharing of data
10

. Projects such as the Johns Hopkins University 

Covid-19 Dashboard11. aim to provide a global overview of cases and deaths with the goal of making 

international comparisons12. and a number of sub-national-level real-time data dashboards have also 

been established for finer scale domestic comparisons such as that for Italy13. Such dashboards are 

useful for rapid situation reports, yet direct comparison between regions with differing age 

distributions and onset times offers limited epidemiological insight into the rate of spread and local 

burden of the epidemic.   

 

Websites such as EpiForecasts14,15  the CDC Covid-19 Forecasting Hub16–18 and ‘Short-term forecasts 

for multiple countries’
19

 aim to make and compare short-term projections of disease incidence using 

mathematical and statistical models. As part of this process, some models aim to estimate the 

effective reproduction number Rt, an estimate of the average number of new infections that will 

occur from each infected person. Real-time estimates of Rt over time20,21 are useful for planning 

interventions to mitigate the impact of the epidemic
22

.     Accurate estimation of Rt is complicated by 

the need to correct for the delays between infection and reporting of cases of disease and under-

ascertainment of cases. Due to the computational resources required to run these forecasting 
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models , most existing analysis dashboards  only give predictions at the national or first 

administrative level (e.g. State in Brazil) and are not updated daily to reflect the latest situation23. 

 

There is a need for a new class of dashboards that are able to perform basic data standardisation to 

account for differing population age structures and allow for regional comparisons. Additionally, 

such dashboards should provide local summaries of key epidemiological parameters and support 

rapid data analyses of outbreak dynamics whilst retaining the contemporary focus of real-time data 

streams. In response to this we have developed an online application for the real-time visualisation 

of COVID-19 cases and death data in Brazil at the municipality (second-level administrative division) 

level. This allows real-time comparisons of the development of the epidemic in Brazil to be made at 

a local level to allow local decision makers to track and compare epidemic progression rates 

between different areas. The COVID-19 Local Information Comparison (CLIC Brazil) 

[https://cmmid.github.io/visualisations/lacpt] has been active since May 2020, early in the Brazilian 

epidemic. The data underlying the app are updated daily and relevant local data summaries and 

analytics re-computed.  Here we describe the CLIC Brazil application and the insights about the early 

evolution of the COVID-19 outbreak in Brazil that it has helped reveal. 

 

Methods 

Context  

Brazil is the largest and most populous country in South and Latin America , with a total population 

estimated at over 213 million in 202124. The country is composed of 26 states and the Federal 

District and 5570 municipalities.  

 

Data Sources 

The numbers of COVID-19 cases and deaths, aggregated by municipality were automatically 

downloaded daily from the Brazil.io COVID-19 project repository
25

. This repository contains data 

extracted from the bulletins of state health secretariats. Data on the distribution of the population 

by age and the sociodemographic characteristics of each municipality were obtained from the most 

recent national demographic census, run by  the Instituto Brasileiro de Geografia e Estatística (IBGE) 

in  2010
26

. To allow age standardisation of cases, data on the age distribution of COVID-19 cases 

were derived from case reports throughout Brazil between 2nd February and 25th March 2020, 

collected by the Brazilian Ministry of Health and were used with their permission. Using this data 

enabled consistent standardisation throughout the epidemic. In order to assess the effect of  

geographical remoteness from major cities,  the travel time in hours from each municipality to the 

most populous metropolitan area in the state was calculated using WorldPop population data27,28 

and the Malaria Atlas Project travel time friction surface using the Malaria Atlas28  accumulated cost 

route finding algorithm  within the  MalariaAtlas R package29,30. The socio-demographic Index (SDI) is 

a composite average of the rankings of the incomes per capita, average educational attainment, and 

fertility rates scaled between 0 (lowest) and 1 (highest)31. The geographic region in which each place 

was located  was assigned using a standardised designation which groups the States and the Federal 

District of Brasilia into five macro regions of national planning32 (Fig 1). Data uploaded to Brazil.IO 

between 25-Feb-2020 and 14-Jul-2021 was used for the analyses reported here, updated data can 

be downloaded from the CLIC-Brazil app. Data on the types of non-pharmaceutical interventions 

implemented , and the dates of their announcement were extracted from data collated by the Cepal 

Observatory with edits and updates on timing of interventions at the municipality and state level by  

de Souza Santos et al 3,8. These were used to compare the dates for the implementation and arrival 

of the epidemic locally. Full details of the data sources and data processing are included in the 

Supplementary Materials. 
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Features of the application 

The homepage of the app shows a map of Brazil showing the number of cases in each municipality 

and a timeline for the development of the national epidemic . A series of tabs provide the following 

functionality to users: a comparison of standardised COVID-19 incidence between municipalities, 

trends in the association between sociodemographic variables and incidence, changes in Rt between 

selected municipalities over time, predictions of the likelihood that a particular municipality has 

reached peak incidence and the ability to download incidence estimates , Rt predictions and 

sociodemographic variables. 

 

Development of the application 

The COVID-19 Local Information Comparison (CLIC Brazil) application was developed using the R 

package “shiny”, version 1.5.0 33. CLIC Brazil provides users with options for graphical display of 

information and all computation required is handled remotely. Plots are generated using the R 

package “ggplot2” version 3.3.2 34. Spatial data presented in the form of maps are portrayed using 

the “leaflet” R package version 2.0.3 35.  Screenshots from the app are shown in Figures S3 to S5 in 

the Supplementary materials.  All code described in the paper can be downloaded from this github 

repository -  https://github.com/Paul-Mee/clic_brazil . 

 

Analytical methods  

Calculating the comparable measure of standardised incidence - To enable comparison of COVID-19 

case counts between municipalities with different age structures and thus different probabilities of 

disease given infection, we standardised each municipality's incidence to the national-level age 

structure.  (See Supplementary Materials for details). When comparing the progression of the 

epidemic in different municipalities over time, a comparable outbreak start criterion has to be 

established. We defined the arrival of COVID-19 in a given municipality as the day in which 

cumulative standardised incidence first exceeded 1 case per 10,000 residents. 

 

Rt Estimation - The raw case count data was adjusted to account for the differential probabilities of 

COVID-19 cases being reported on each day of the week (heaping). (See Supplementary Materials 

for details). The EpiFilter algorithm was used to estimate Rt 
36

, this method uses a recursive Bayesian 

filter to derive estimates from a time series of all incident cases. The serial interval (SI), defined as 

the time between the onset of symptoms in the source of infection and in the recipient,  was 

modelled as a gamma distribution with a mean of 6·5 days with a standard deviation of 4·03 days37. 

A fixed value of 10 days was used for the delay between symptom onset and case reporting , this 

was consistent with an average value of 10·2 days for  2,420,904 suspected COVID-19 cases reported 

between March 1st and August 18th 2020 in all the state capitals and Federal District of Brazil in the 

e-SUS notification system38. Predictions were only made for municipalities with more than 30 days of 

data and more than 200 COVID-19 cases reported, to allow sufficient data for the algorithm to give 

reliable estimates39. The resultant Rt curves were plotted to enable comparison between selected 

cities in the CLIC Brazil app.  

 

Regression analyses - Using data from the CLIC Brazil app, two regression models were formulated 

to quantify how the timing of arrival and growth rate of the COVID-19 epidemic in each municipality 

could be explained by sociodemographic characteristics and spatial connectivity. Initially a series of 

univariable regression models were developed to test whether each covariate was individually 

associated with the outcome. The variables included were; population density,  the percentage of 

residences with i) piped water and ii) piped sewage, the travel time to the largest city in the state 

and the socio-demographic index (See Data Sources section in the Methods). Additionally the 

geographic region (Central-West, North, North-East, South, South-East) in which the municipality 

was located was included as a fixed effect to partially for residual confounding based on other 

unmeasured geographically associated characteristics. Following this, both forward and backward 
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stepwise regression approaches were used to develop multivariable models. (See Supplementary 

Materials. ) 

 

Analysis of factors associated with time for the epidemic to arrive in a municipality.  - To assess 

which characteristics of a municipality were associated with arrival time of COVID-19 we first defined 

date of arrival in each municipality as the date when standardised incidence first exceeded 1 case 

per 10,000 residents. These dates where then compared to the date of arrival of COVID-19 in Brazil 

which we define as 31st March 2020 (the date on which the first municipality exceeded an incidence 

of 1 per 10,000 residents) to calculate the number of days for arrival which formed the response 

variable for the Tobit regression analysis40 as implemented in the R package VGAM41.  A Tobit 

regression formulation was necessary due to censoring, i.e. unknown days for arrival for 

municipalities that were not yet infected. To assess the sensitivity of our findings to our definition of 

COVID-19 arrival we repeated our analysis with a range of threshold incidence values (5 to 15 cases 

per 10,000). 

 

 

Analysis of factors associated with the rate of growth in the early stages of the epidemic. - To 

assess the which factors were associated with growth rate of epidemic in municipalities after COVID-

19 had arrived, we calculated the mean value of Rt over the period 30-150 days post arrival in each 

municipality. Calculating Rt using data within this time window balanced the need to include enough 

data for accurate estimation39 with the need to estimate Rt before the build-up of substantial 

immunity or reactive interventions (therefore approximating R0). To test the sensitivity of our 

findings to the chosen width of this estimation window, we repeat the analysis with the end point 

for the mean Rt estimation varying between (100 and 180 days).  Estimated mean Rt was then 

included as the response variable in a standard log-linear regression model using the “glm” function 

in base R with covariate selection as described above. In addition to the set of covariates described 

above we included the calendar time period in which the local epidemic commenced to control for 

residual temporal confounding. Initial univariate analyses suggested grouping calendar time period 

into three roughly equal categories, all within 2020 (14th March to 1st May, 2nd May to 21st May and 

22
nd

  May to 6
th

 Nov)  captured variation appropriately and that an interaction between calendar 

time period and geographic region should be considered as a separate (selectable) covariate. 

 

Predicting whether a new maximum incidence will occur – Here we used Cox regression as 

implemented in the “coxph” function of the “survival” package in R 
42

 Click or tap here to enter 
text.to estimate the probability of each municipality surpassing its previous maximum weekly 

standardized incidence (i.e. a new “record” incidence) within the following 4 weeks.  The analysis 

time was the number of weeks since the start of the epidemic (cumulative standardised incidence 

exceeded 1 case per 10,000 residents). The event of interest was the setting of a new record 

incidence, which in general occurs more than once. (See Supplementary Materials. ) 

 

The reporting guidelines in the reporting of studies Conducted using Observational Routinely-

collected health Data (RECORD) Statement were used43. Click or tap here to enter text.The 

completed RECORD checklist is included in the Supplementary Materials. 

 

Results 

To compare the spatial progression of the COVID-19 epidemic in Brazil, we mapped cumulative 

standardised disease incidence in Fig. 1 
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Figure 1: Spatial progression of the COVID-19 epidemic in Brazil. Standardised case incidence is a 

measure that allows comparison between municipalities with different population sizes and age 

structures. Standardised incidence for all 5570 municipalities has been aggregated to microregion 

(n = 557) by population-weighted averaging for visualisation purposes. The bottom right panel 

includes a map of the six macro regions of Brazil for reference. 

 

Despite the first introductions and local SARS-CoV-2 transmission events occurring in São Paulo and 

Rio de Janeiro states in early March 2020
44

 Click or tap here to enter text.the focus of the outbreak 

quickly shifted to the North region of the country where the first big outbreaks occurred in late 

May/early June, particularly in the border states of Amazonas, Roraima and Amapá (Fig. 1). By 

August 2020, COVID-19 transmission was widespread across the North region and began to spread 

to major coastal cities, particularly in the Northeast. By October, transmission had spread along the 

highly populated coastal areas and into the Central West region. Between August and October,SARS-

CoV-2 spread to the final transmission free areas in sparsely populated inland regions and in the far 

South. By December 1
st
, transmission was widespread throughout the whole country. During 

November-December 2020 the re-emergence of large outbreaks occurred throughout the Central-

West region alongside renewed growth in coastal cities of the South East and South. From February 

to July 2021, incidence remained high in the North and increased elsewhere, such that as of  July 
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2021, most areas had cumulative standardised incidence rates comparable to some of the worst 

affected areas in the North. 

 

To compare the trajectory of COVID-19 outbreaks in local areas once the first wave of epidemic had 

begun, we plotted cumulative standardised case counts per municipality in different states and 

regions in Brazil (Fig. 2). This revealed that the outbreak was comparatively faster growing and 

reached higher cumulative incidence in the North region of Brazil (Fig. 2A and F). Within this region, 

the most northerly states of Amazonas, Amapá and Roraima were the most severely affected with 

some municipalities experiencing cumulative case incidence rates as high as 45%. Areas in the 

Southeast and, until recently, South regions had  slower growing outbreaks in the earlier stages of 

epidemic (Fig. 2D-F). Outbreak trajectories in the Central-West and Northeast regions were between 

the high rates observed in the North and low rates observed in the South in the first wave, but have 

since increased to the high levels seen elsewhere. (Fig. 2F). Despite these trends, there was 

considerable within region and within state heterogeneity in outbreak trajectories, suggesting 

factors other than just geographical location were important in shaping the trajectory of the 

epidemic. Plots for specific municipalities can be viewed in the CLIC Brazil app 

[https://cmmid.github.io/visualisations/lacpt] 
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Figure 2: Comparison of outbreak trajectories in different regions of Brazil. Each line represents a 

municipality within the geographical area. Cases per municipality have been age- and population-

standardised, plotted cumulatively and aligned to the date of detection of the first COVID-19 cases 

in each municipality (defined as an incidence of greater than 0·1 standardised cases per 1,000 

residents). Only municipalities that have reported 50 or more cases are shown. Panel F compares 

region median trajectories.  

 

Between 28
th

 February and 27
th

 March 2020, a range of state-level restrictions were announced to 

limit the spread of SARS-CoV2 including declaring an emergency, industry, retail, service and 

transport restrictions and school closures. At the time these interventions were announced, only a 

very small number of municipalities had reported a single COVID-19 case (51 of 5,570 

municipalities). This indicates that the announcement of interventions in Brazil occurred before the 

first COVID-19 cases appeared in the majority of municipalities (mean of 54.8 days before the first 

case was reported in pre-emptive municipalities). Even in municipalities where interventions were 

announced reactively there was only a mean 2·2 days between reporting the first case and their 

announcement (red area in Fig. 3). 
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Figure 3: Timing of announcement of interventions relative to the first COVID-19 cases being 

reported locally (dashed black vertical line). Dots in black represent municipalities where 

restrictions were announced prior to any cases being reported, while dots in red show 

municipalities where restrictions were announced after cases were reported. 5,547 municipalities 

were included in this analysis.
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Table 1 Tobit regression analysis of time to outbreak for each municipality (days since 31st March 

2020). - Starting incidence 1 case per 10,000 residents - Epidemic onset incidence = 10 cases per  

10,000 residents. 

 

Characteristic of the 

municipality 

Frequency  

 

Median value 

(Interquartile 

range) 

 

Unadjusted 

(univariable) model 

estimates 

[95% CI]  

Adjusted 

(multivariable) model 

estimates 

[95% CI] 

Geographic 
region 

Central West  444 
 

- - 

North 449 
 -32·1 [-36·7,-27·5]  -34·0 [-38·6,-29·5]  

North East  1775 
 -15·7 [-19·4,-12·1]  -3·6 [-7·3,0·2]  

South  1157 
 3·7 [-0·1,7·6]  20·8 [16·9,24·6]  

South-East  1653 

 4·4 [0·7,8·1]  26·9 [23·1,30·8]  

Population density  (logn) 

(population/km
2
) 

 
 

 

3·20  
(2·45 - 3·96) -5·8 [-6·5,-5·2]  -8·5 [-9·2,-7·7]  

Percentage of residences with 
piped water 

 

72·30  
(56·29 - 84·59) 0·0 [-0·1,0·0]  0·0 [-0·1,0·0]  

Percentage of residences with 
piped sewage or septic tanks 

 

37·70  
(12·75 - 70·25) 0·0 [0·0,0·0]  -0·2 [-0·2,-0·1]  

Travel time (logn) by road  to 
most populous municipality in 
the state (hours)  

 

2·96  
(2·34 - 3·44) -1·0 [-2·5,0·5]  3·6 [2·2,5·1]  

Social Development Index 

(SDI)  
 

0·25  
(0·22 - 0·27) 

-140·1 [-163·4,-
116·7]  -111·1 [-132·8,-89·3]  
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Analysis of factors associated with time for the epidemic to arrive in a municipality.   

 

Our “outbreak” threshold (standardised incidence of 10 cases per 10,000 residents ) was first 

exceeded on April 12
th

 2020. By the censoring date for this study of July 14
th

 2021 all municipalities 

had exceeded the threshold incidence. 

 

Consistent with the patterns of observed spread in Figures 1 and 2, the univariable analyses 

suggested that municipalities in the North region exceeded the outbreak threshold earlier, followed 

by those in the Northeast and Central-West regions and finally those in the South and Southeast 

regions (Table 1).  After adjusting for geographic region, the epidemic can be seen to have arrived 

earliest in those municipalities with higher population density, higher social development index (SDI) 

and greater percentage of residences with piped sanitation. There was evidence that municipalities 

further from the main population centres in the state had a later arrival of the epidemic. 

Considering the magnitudes of the effect estimates, a 10% increase in the population density 

shortened the arrival time by 0·9 days [95% CI:0·8,0·9]. An increase of 10% in the travel time to the 

largest city in the State was associated with a delay in arrival of 0·4 days [95% CI:0·2,0·5 ] . An 

increase of 10% in the SDI was associated with a decrease of 11·1 days [95% CI:13·2,8·9]  in the time 

to arrival. 

 

Sensitivity analyses were carried out to investigate the effect of changing the threshold incidence for 

epidemic arrival from 5 to 15 cases per 10,000 residents  (Tables S1 and S2 Supplementary 

Materials). The interpretation of the direction of the effect of the included covariates remained the 

same within this range, whilst there were variations in the magnitude of the effect (Table S3 

Supplementary Materials).  
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Table 2. Summary of unadjusted and adjusted multivariate mean Rt linear regression model. Mean 

Rt is calculated over a window from 30 to 150 days since the arrival (standardised incidence > 1 

case per 10,000 residents) of COVID-19 in the respective municipality.  

Characteristic of the municipality 

 

Median value 

(Interquartile 

range)    

Freq    

 

Unadjusted 

(univariable) 

model estimates 

(95% CI)  

Adjusted 

(multivariable) 

model estimates 

(95% CI)  

Geographic 

Region
 

Central West   228 1 - 
1
 

North  314 1·464 [1·288,1·665]  - 
1
 

North East   993 1·328 [1·191,1·48]  - 
1

 

South   470 1·301 [1·155,1·465]  - 
1
 

South-East   752 1·323 [1·184,1·48]  - 
1
 

Date of local 

epidemic start  

(standardised 

incidence > 1 

case per 

10,000 

residents) 
 

14-Mar to 1-May 

2020   875 1 
- 
1
 

02-May to 21-May 

2020  913 0·859 [0·802,0·920]  
- 
1
 

22-May to 6-Nov 

2020  969 0·675 [0·631,0·723]  
- 
1

 

 

Population density (logn)  

(population/km
2
) 

3·31 (2·52 - 

4·21)  1·096 [1·078,1·116]  1·067 [1·042,1·092]  

 

Percentage of residences with 

piped water 

72·76 (56·12 

- 85·20)  1·004 [1·003,1·005]  1·003 [1·001,1·004]  

 

Percentage of residences with 

piped sewage or septic tanks 

36·71 (12·45 

- 70·80)  1·003 [1·002,1·004]  1·003 [1·002,1·005]  

 

Travel time (logn) by road  to most 

populous municipality in the state 

(hours)  

2·96 (2·32 - 

3·46)  1·022 [0·981,1·065]  1·012 [0·966,1·062]  

 

Social Development Index (SDI) 

0·25 (0·22 - 

0·28)  3·834 [1·978,7·441]  3·300 [1·652,6·593]  

1
 As model contains an interaction between geographic region and start day the effect estimates for 

the interaction terms are shown in the expanded table below 
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Figure 4 Estimated marginal mean values of Rt mean in the final adjusted multivariate linear 

regression model *.  

 

*  The Codes for geographic region are ; North (N), Northeast (NE), Central-West (CW), Southeast (SE) 

and South (S) see map in Figure1.  

Analysis of factors associated with the rate of growth in the early stages of the epidemic. 

To measure the intensity of the epidemic in each municipality after arrival we calculated the mean 

reproduction number (Rt ) over the early phase of the epidemic. A total of 2757 municipalities 

contained sufficient data for Rt  calculation (i.e. at least 30 days of data from the first case report and 

more than 200 cumulative cases) with the inter-quartile range for the estimated values ranging from 

0·852 to 1·094.  

From the unadjusted analyses (Table 2), it can be observed that the early epidemic was more intense 

on average in all other regions than the Central West, with regression coefficients indicating that 

mean Rt ranged from an increase by a factor of 1·46 in the North region to 1·30 in the Southern 

region. Epidemic intensity decreased in the two latter time periods compared to the first, though the 

effect was significantly smaller than that for geographic region; the regression coefficients for the 

latter two time periods indicated that the effect of time was to decrease mean Rt by factors of 0·86 

and 0·68 respectively .  In the multivariable model, a high degree of heterogeneity across space and 

time in mean Rt  was seen (Fig 4).  In the Central West region mean Rt decreased from 1·02 to 0·61, 

over the three time periods. In the North the comparative decrease was from 1·13 to 0·72 and in the 

South-East from 0·77 to 0·54. There was no statistical evidence for a change in the North-East or 

South regions. 

The effects on mean Rt of covariates other than geographic region and time period were relatively 

small  indicating that a large amount of the variation was not explained by these factors. From the 

univariable analysis it was seen that municipalities that were more densely populated, with higher 

levels of provision of piped water and sanitation or a higher SDI had higher mean Rt  values  (Table 

2), whilst those further from the main population centre in the state had lower values.  In the 

adjusted multivariable analysis these associations were retained with marginally lower effect 
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estimates. There was no evidence that mean Rt was associated with the travel time to the most 

populous municipality in the state (adjusted coefficient = 1·02 [95% CI 0·966,1·062]  

A sensitivity analysis was carried out in which the end date for the calculation of mean Rt was 

adjusted over a range from 100 to 180 days. The unadjusted and adjusted models for the extreme 

values are presented in Tables S4 and S5 in the Supplementary Materials. Whilst there were small 

changes for the effect estimates the trends in the associations see for the 30 to 150 day range 

remained unchanged , increasing the strength of evidence for the findings reported. 

 

Predicting new maximum values of incidence 

Figure 5 shows the values of the area under the ROC curve (AUC) for the ability to predict a new 

maximum incidence in the following 30 days.  The values are generally between 0·70 and 0·90, 

corresponding to accuracy described previously as “useful for some purposes”45. For the Central 

West region, AUCs are high (between 0·8 and 0·9) after a spike in incidence in late 2020, indicating 

that the lack of subsequent peaks was predictable. Overall, the AUC values are associated with 

incidence, suggesting that the method is better able to learn across municipalities when higher or 

lower rates are propagating across the country, i.e. that increases elsewhere helped predict peaks in 

each index municipality.  From each ROC curve, values of sensitivity and specificity were chosen to 

maximize the sum of these two parameters.  For sensitivity, averaging over time, the regions had 

similar values, between 70 and 73%.  For specificity, the average values ranged from 63% for the 

South-East region to 74% in the North.   

 

Figure 5.  Area under the curve (AUC) for prediction of a new maximum incidence in the following 

30 days (left vertical axis, blue line) against calendar time (horizontal axis).  The daily number of 

incident cases (rolling fortnightly average) is shown in the green line, right axis.  The dashed line 

shows the lower end of the range 0·70-0·90.  There is one panel for each region (Central-West, 

North, North-East, South and South-East), with the “BR” panel showing all Brazil.
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Discussion 

We describe the development of an online application, CLIC Brazil, that allows comparison of the 

spread and impact of the COVID-19 epidemic in Brazil between local areas (municipalities). We show 

how basic analyses, largely available through the application can be used to identify pathways and 

determinants of spread. Further we identify and explain heterogeneities in burden and assess the 

relative timeliness of reactive interventions.  Underlying the app is a portable data processing and 

analysis pipeline which enables real-time comparisons of spatially disaggregated COVID-19 epidemic 

trajectories over time. The technical framework described is modular and generalisable and could be 

used for monitoring future disease epidemics , provided that real-time geographically located 

surveillance data is available.   

Our analyses show that despite an initial identification of SARS Cov-2 in the large South Eastern cities 

of São Paulo and Rio de Janeiro46,47 the early focus of the epidemic quickly shifted to the Northern 

region before spreading to North Eastern coastal cities and then to the Southern and South Eastern 

regions of the country. This was then followed by a resurgence of transmission and higher levels of 

incidence in the North linked temporally to the emergence of the Gamma (P1)  variant in the same 

area.  Subsequently these higher rates of infection have been seen in most areas of the country and 

remain high currently (August 2021). 

 

It might have been expected that individuals resident in wealthier areas would have experienced a 

less serious impact of the epidemic due to having better access to healthcare for those with serious 

illness and being more likely to be able to adopt social distancing measures designed to mitigate 

infection. Our findings were in contrast to this and suggest that in general, places with higher social 

development indices (SDI) experienced an earlier arrival and more rapid early propagation of the 

epidemic. This finding may be due in part to greater provision of and access to testing in areas with 

higher SDI, particularly given the greater role private sector testing played in the earlier stages of the 

epidemic. Also, the covariates used in the derivation of the social development index may not fully 

reflect the impact of wealth and employment type or the ability of individuals in different areas to 

adopt social distancing and lessen their risk of infection.  

 

A study using data aggregated at the country level from the 5 BRICS countries (Brazil, Russia, China, 

India and South Africa) showed that COVID-19 case numbers were associated with increasing levels 

of poverty48. Other studies have shown that COVID-19 mortality  rates were greater in areas of Brazil 

with lower levels of various socio-economic indicators 49,50. Possible explanations for the differences 

with our findings are that we focussed on the early stages of the local epidemic (time to arrival and 

early rate of propagation) and also that we were comparing trends between municipalities within 

one country. Also we used COVID-19 case incidence rather than mortality as our outcome, it would 

be expected that those in areas with higher levels of poverty experience greater barriers to 

accessing adequate healthcare and hence be likely to experience more severe COVID-19 disease 

outcomes. 

 

Places that were more distant from major population centres experienced later onset though there 

was no evidence that the propagation was slower once the infection became established locally.   

The delayed arrival may be related to transport connectivity, however weaker health infrastructure 

and lower provision of testing may also be relevant. 

 

There were large differences in the mean Rt between local areas and over time that could not be 

explained by the covariates included in our analysis, These differences may be related to differences 

in patterns of social mixing or the imposition of, and the level of adherence to, non-pharmaceutical 
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interventions (NPIs), and the extent to which the roll-out of public measure designed to curb the 

spread of the epidemic was devolved to a local level by national and State authorities 51. 

 

There was evidence, at least for the Central-West, North and South-East regions, that the 

reproduction number was lower in places where the epidemic arrived later. Studies have shown that 

in general individuals are more likely to change their health behaviour if they perceive they are at a 

heightened level of risk 
52

 Hence it may be hypothesised that individuals were more likely to adhere 

to social distancing and other NPIs as their awareness of the severity of COVID-19 infection grew.  A 

recent worldwide assessment of changes in adherence to NPI’s to mitigate COVID-19 indicated that 

whilst this may be  true for interventions with a low economic cost, such as mask wearing, it was not 

the case for adherence to social isolation which had a higher economic cost 
53

. More work on 

adherence to NPIs in Brazil is urgently needed given the unique socio-political approach the country 

took to COVID-19 control, particularly in the early stages of the epidemic. 

 

The algorithm developed to predict the likelihood of a place experiencing a new record  level of 

incidence in the following 30 days showed reasonably good predictive values once the epidemic had 

become established in each region and nationally. This suggests that the approach would be useful 

for use assessing the immediate local impact of measures taken to mitigate the COVID-19 epidemic.  

 

Limitations 

There are several limitations of this study that should be acknowledged. It is likely that the 

consistency of reporting of COVID-19 cases by state health departments differed both between 

places and over time. Also, the travel time covariate, a measure of geographical isolation, estimates 

the time for within state journeys to the most populous city in the state. Those living on the border 

region of a state may be distant from the most populous city in that state but closer to a large city in 

a neighbouring state, however, given the small effect sizes for the association with travel time the 

effect on the outcome would be small. The stratification of municipalities into five broad regions 

whilst providing a reasonable number of strata for the analyses was not able to account for within 

region variation in geographically associated characteristics. Additionally we recognise that as a 

clearer understanding of the determinants of COVID-19 infection in the Brazilian population 

becomes available, future studies comparing disease incidence between different areas should 

include standardisation by a wider range of risk factors possibly including gender , co-morbidities 

and race  

Since December 2020 cases have begun to increase again, initially focussed on cities such as Manaus 

in the Northern Amazonas 
3,54,55

.There is evidence this is driven by the local emergence of a new 

variant of concern, Gamma (P1). which has higher transmissibility and exhibits the ability to evade 

the neutralising effect of antibodies to previous infection 
54

. The Gamma (P1) variant has rapidly 

spread to become the dominant strain in Amazonas state and throughout the country 55. Analyses of 

factors associated with early development of the epidemic may be useful in predicting the spread of 

this new variant. Continual tracking of this next phase of the epidemic using methods demonstrated 

in our analyses will be important to assess similarities and differences in the spatial spread of 

different COVID-19 epidemic waves.  These analyses should include spatially disaggregated data on 

vaccine coverage 9  to assess the impact of the epidemic on vaccination on the development of the 

epidemic. Pairing these outputs with phylogenetic analyses 3,54 of SARS-CoV-2 virus samples would 

enable a more detailed picture of past and present subnational spread of the epidemic.  

Conclusion 

This study demonstrates that by monitoring, standardising and analysing the development of an 

epidemic at a local level, insights can be gained into spatial and temporal heterogeneities. Such 

insights are often impossible using raw case counts or when data are aggregated over larger areas. 
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We show the utility of using age-standardised incidence as a comparable epidemiological metric for 

a variety of analyses and have developed an on-line application that allows a range of stakeholders 

to simply compare and contrast the evolution of the COVID-19 epidemic in different areas. This 

approach could prove useful for real-time local monitoring and analysis of a range of other emerging 

infectious disease outbreaks.  
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