<u>The International Society of Nephrology's International Consortium of Collaborators on Chronic Kidney Disease of</u> <u>Unknown Etiology: Report of the working group on approaches to population-level detection strategies and</u> <u>recommendations for a minimum dataset</u>

Authors:

Ben Caplin, Chih-Wei Yang, Shuchi Anand, Adeera Levin, Magdalena Madero, Rajiv Saran, Saroj Jayasinghe, Marc De Broe, Karen Yeates, Marcello Tonelli, Kristina Jakobsson, Luisa Strani, Agnese Ruggiero, Jason Glaser, Ekti Martin, Neil Pearce and Eranga Wijewickrama On behalf of International Society of Nephrology's International Consortium of Collaborators on Chronic Kidney Disease of Kidney Disease of Unknown etiology (i3C)

Emails:

b.caplin@ucl.ac.uk; Chih-Wei Yang <cwyang00@gmail.com>; Shuchi Anand <sanand2@stanford.edu>; ALevin@providencehealth.bc.ca; madero.magdalena@gmail.com; rsaran@med.umich.edu; sarojoffice@yahoo.com; marc.debroe@uantwerpen.be; Karen Yeates <yeatesk@queensu.ca>; Marcello Tonelli <mtonelli@ualberta.ca>; kristina.jakobsson@amm.gu.se; LStrani@theisn.org; ARuggiero@theisn.org; jason@laislafoundation.org; ekitimartin@gmail.com, neil.pearce@lshtm.ac.uk; erangasw@gmail.com.

Word count

Abstract: 105 Manuscript: 1561

<u>ABSTRACT</u>

There is an epidemic of chronic kidney disease of unknown cause (CKDu) clustering in rural communities of lowand-middle income countries. The International Society of Nephrology's International Consortium of Collaborators on CKD of Unknown Etiology established a workgroup to develop uniform approaches to detecting CKDu at a population-level. The group have outlined methodologies to detect CKDu using routine data or population-based studies along with elements of minimal data sets that could be used to provide robust and comparable measures of CKDu burden. Use of these common approaches will allow the international nephrology community to speak with a single voice when advocating for resources to support research, prevention and treatment of CKD in low-income settings and CKDu specifically.

1. INTRODUCTION

There is an epidemic of chronic kidney disease (CKD) clustering in rural communities, predominantly in a number of low-and-middle income countries¹. Tens of thousands of working-aged adults are estimated to have died from the disease in Central America² with similar numbers in Sri Lanka³. Similar diseases have been reported elsewhere, e.g. rural regions or communities in India⁴, North⁵ and West⁶ Africa. Those affected do not have common risk factors or underlying conditions that lead to CKD, e.g. diabetes, immune-mediated glomerulonephritis or structural renal disease. In instances where histopathology is available, the predominant feature is tubular atrophy and interstitial fibrosis⁷⁻¹⁰. Although it is currently unclear whether there is a unified underlying cause, these conditions have been collectively termed CKD of unknown cause ("CKDu"). Other terms used include CKD of non-traditional Cause¹¹, Mesoamerican Nephropathy¹², Chronic Intestinal Nephritis in Agricultural Communities¹³ and Kidney Disease of Unknown Cause in Agricultural Laborers¹⁴ but we have chosen CKDu as the most agnostic terminology.

The current clinical and research landscape in CKDu consists of multiple similar, but non-concordant approaches to individual-level diagnosis^{11,15} and detection at the population-level¹⁵⁻¹⁷. In combination with the ongoing lack of treatment or prevention strategies the heterogeneity in identification of CKDu is a significant obstacle to combating the disease.

A uniform approach to detecting CKDu on a population-level would allow comparisons between studies and regions, providing valuable data for healthcare agencies and a basis for understanding key risk factors for disease. However even when "gold-standard" diagnostic investigations are available, no single approach will capture CKDu with complete certainty, and, depending on the reasons for evaluation, clinicians or researchers may accept differing levels of uncertainty. Nonetheless a uniform approach enables comparability and allows the international nephrology community to speak with a single voice in attempts to advocate for research, prevention and treatment resources.

To this end the International Society of Nephrology's International Consortium of Collaborators on Chronic Kidney Disease of Unknown Etiology (i3C) created a workgroup to guide a common approach to the detection of CKDu. This work shares many goals, and aims to be complementary to, the recent Resolution on Chronic Kidney Disease¹⁸ from the Pan American Health Organization. We list different study populations that might be of interest alongside kidney-specific and other measures that could be used to determine the burden of disease.

Finally, we recommend a number of elements for a 'minimum dataset' endorsed by the i3C, for use in studies aimed at quantifying and comparing disease burden.

Key to this work is the recognition that there is currently no consensus on the case definition(s) for CKDu, and existing definitions may be refined in future^{11,19}. Therefore the aim should be to obtain key information that can be used in a variety of definitions of CKDu now and going forward. Hence this approach is designed to estimate the extent of ESRD or impaired kidney function in a specific region of interest, and then determine the proportion of that estimate attributable to the "CKDu" as later defined.

We selectively focus on detection, rather than surveillance, as an initial step to building consensus approaches. Although the methodologies described could be part of wider surveillance efforts, systems required for continual monitoring, real-time data interpretation and reporting are not discussed. Furthermore we also recognize diagnosis of CKDu in individuals can be challenging, particularly in resource-constrained settings; potential strategies are discussed further in the Supplementary Material.

We have divided detection efforts into:

(i) *Passive detection* based on routine data collected for clinical or administrative purposes, and,
(ii) *Active detection* undertaken specifically for the purposes of determining disease prevalence (based on prospective epidemiological studies or extant datasets for the study of non-communicable diseases in general).

Recommended approaches and the minimum dataset are highlighted in the tables.

2. PASSIVE DETECTION.

Death certification, and end-stage renal disease (ESRD) registries are potential data sources (Table 1) that can help identify regions as "hot spots" of kidney disease. Indeed, such approaches have been a key first step in recognising existing CKDu epidemics ^{20,21}. Two issues arise when using routine data:

1. Scarce and poor-quality routine data collection in many of the potentially affected regions. The World Health Organization (WHO) and Institute for Health Metrics and Evaluation have published global estimates on causespecific deaths included those attributed to kidney disease²². The methodology underlying WHO estimates of cause-specific mortality is available elsewhere²² however data-quality, including that based on verbal autopsybased diagnosis of CKD²³, from almost all regions likely to be impacted by CKDu is suboptimal (Figure 1).

2. Difficulty differentiating whether recorded kidney disease is due to the CKDu. Misattribution of cause, a major challenge worldwide but particularly in settings where biopsies are not routinely obtained, could lead to misclassification as CKDu where a biopsy would have provided a diagnosis (e.g. IgA Nephropathy).

Additionally, CKDu is unlikely to be recorded specifically in death registries so underlying knowledge of diabetes, (and ideally rates of CKD attributed to diabetes) are key to generate useful estimates (as diabetes is the commonest cause of ESRD). Dialysis and transplant registries usually record cause-specific diagnoses albeit subject to misclassification as well; however terminology may vary and in most low-resource settings, the registries capture only a small fraction of patients reaching ESRD.

3. ACTIVE DETECTION

Active detection of CKDu will involve the systematic survey of populations to detect disease. This may involve new studies focused on CKDu or the use of existing datasets or plans for non-communicable disease surveillance, where minimum requirements are met. Indeed, there may be significant gains to be made in terms of rapid acquisition of prevalence data by accessing or modifying existing studies/processes (e.g. WHO STEPS²⁴ instruments or USAID Demographic and Health Surveys²⁵).

Populations and study design

The possible populations and study approaches to active detection are outlined in Table 2. A critical feature of the reporting of all efforts is a description of the geographical area along with both the source population and the study responders so that conclusions about the representativeness of the study sample be drawn. These summary response rate data should be stratified by sex and age with adequate granularity to detect response bias (e.g. 10-year age bands).

Numerator (determined by measures of kidney dysfunction)

As alluded to in the introduction our aim is not to presuppose a definition of CKDu, but to provide a framework for the collection of data that will allow detection of CKD in a reproducible manner, to which a number of

definitions of CKDu to be applied (e.g. using different thresholds of kidney function or presence or absence of proteinuria or comorbidity). Importantly The Kidney Disease Improving Global Outcomes collaboration provides internationally accepted criteria for the clinical identification of CKD²⁶. Given the asymptomatic nature and other attributes of CKDu population-based detection methods for this disease need to be based on measures of kidney function (estimated glomerular filtration rate, eGFR). Although the KDIGO definition of CKD requires two-measurements of eGFR²⁶ the multiplicative increase in resources required to re-contact participants after a prolonged period means that, in common with a large body of CKD-epidemiology, the i3C workgroup recommends accepting initial detection efforts based on a single eGFR estimate only. Furthermore, definitions of CKD use a threshold of GFR, however to allow maximum flexibility i3C advocates collection and reporting of the entire distribution of GFR values along with numbers below a particular (CKD) threshold. The different methods to quantify renal dysfunction are outlined in Table 3.

Other important data items

Key associations of CKDu at a population level are the absence of heavy proteinuria, and other causes of, or risk factors for, CKD and the socio-demographic characteristics of those that are affected. Therefore, information on these variables are needed to produce informative prevalence estimates (Table 3). The recommendations have been kept to a *minimum* to ensure minimal resource implications and allow the use of extant datasets.

4. APPLICATION OF SUGGESTED APPROACH

There is an urgent need for data that are comparable regionally and internationally, and the aim of a minimum data set(s) is/are to obtain the key information that can be used to define CKDu currently and in future (see supplementary material for an example). Such a dataset is contingent upon an international agreement to collect uniform data but it is **presumed and expected that researchers, agencies and service providers should collect additional data to meet their own specific needs**.

Active or passive approaches may be more or less appropriate for these different aims including:

- 1. Alerting health services/communities/researchers to a possible problem of CKDu,
- 2. Estimating scope and scale of CKDu within populations
- 3. Determining secular trends in CKDu
- 4. Insight into disease aetiology

Therefore, it may be appropriate to apply two (or more) approaches in any single region. A protocol using a similar minimum dataset to undertake population-level detection has recently been published and is already being used in a number of settings in South Asia, Latin America and Sub-Saharan Africa²⁷.

5. SUMMARY

A uniform approach to detecting CKDu on a population-level allows the understanding key risk factors for disease, provides valuable data for healthcare agencies and establishes a basis for comparisons between regions and research studies. This document elaborates the methodology to detect CKDu via passive or active detection and suggests criteria for minimum data set. Such a common approach would allow the international nephrology community to speak with a single voice in attempts to advocate for research, prevention and treatment resources for CKD in general, and for CKDu in specific areas.

6. FIGURE LEGENDS AND TABLES

Figure 1. Map showing data-quality of cause-of-death by WHO member state as assessed by the 2016 Global Health Estimates project. Data from http://www.who.int/healthinfo/global_burden_disease/en/. WHO advises data from countries labeled in green (high completeness and quality) can be used for time or country comparisons whereas data from countries labeled yellow (moderate quality issues) or orange (severe quality issues) should only be used with caution. Estimates of cause-of death from countries labeled red (unavailable or unusable) should not be used for comparisons or policy purposes. Note: The impact of the availability of treatment for ESRD in a region may impact on estimates of the burden of chronic kidney disease (of any cause) from death registries as patients receiving renal replacement therapy may have a non-kidney related primary cause of death recorded and ESRD only recorded as a contributory cause (or not at all).

Table 1 Passive detection approaches

Mortality registry	Deaths attributable to kidney disease#	National or regional mortality	Age-standardize* Subtract deaths attributable to diabetic kidney disease, or if not available, adjust for age- standardized diabetes prevalence^ Include only CKD not AKI	High-income countries mortality registries	A high-level, resource efficient approach to identify hot spots	Sometimes difficult to disaggregate to regional or state level Data are non-specific and not be able to differentiate CKDu from high rates of cause- specific kidney disease (e.g., IgA nephropathy).	Cause of ESRD or cause of kidney disease leading to death Data on the proportion of (non- CKD) deaths of unknown cause should also be reported as a quality indicator
Dialysis and transplant registry	Prevalent or incident numbers of patients with ESRD of unknown cause	Prevalent or incident ESRD population	Age standardize* Only include those with 'unknown' cause if registry provides these data	USRDS, ERA-EDTA, ANZDATA	A high-level, resource efficient approach to identify hot spots May also able to give a regional or state-level estimate if data are available.	Not available, or not representative of entire burden of (untreated) ESRD, in many low- and middle-income countries Attribution of kidney disease cause may be incorrect (or both known causes and CKDu may coexist)	Occupation of persons with ESRD Family history of persons with ESRD

We propose, that to the extent feasible, the data should be disaggregated to regional (in addition to national) levels and presented by age- and sex-strata so localized clustering can be identified.

[#]The latest WHO and IHME Global burden of disease estimates include age-specific kidney disease attributable death estimates

*To referent World population as recommended by WHO http://www.who.int/healthinfo/paper31.pdf?ua=1

^These data are available on a national level at least via the IDF for many countries; the WHO also provides estimates for age-specific deaths due to diabetic kidney disease

Population	Selection approach	Advantages/disadvantages	Recommended
			by i3C
Geographically defined community (aged>18)	Random (or stratified random) sample or alternatively whole population*	Representative of population prevalence Fieldwork can be challenging and response variable Requires new or existing census data	Yes
Self-presenting or volunteer community population	All comers	Not representative and prone to major issues in interpretation due to selection bias	No
Workplace population	Random sample, whole population	Can be easier to capture participants than community based studies Investigators need to be sensitive to differing incentives between employees and employers to take part in studies Unlikely to be representative of community as a whole and may be misleading with regard to population prevalence and risk factors	May be useful if appropriate comparators can be identified

Table 2 Stud	dv populations	(denominator)) and samplind	i approach
1 4010 2 0144	ay populations	(acrioriniacor)	ana bannpinng	approact

GFR Measures	Advantages/disadvantages	Recommended by i3C for minimum data set
eGFR from creatinine - SINGLE MEASURE (CKD-EPI formula)*	Serum creatinine measures available in most countries IDMS referenced methods critical to allow comparison between centres Population specific non-renal sources of creatinine affect estimates (meat consumption, muscle mass/breakdown)**	Yes, if IDMS referenced measures
eGFR from creatinine - REPEAT MEASURE	As above Reduces misclassification of AKI as CKD, aligns with KDIGO clinical guideline Requires recontact of all those with abnormal results after > 3 months.	Yes if resources allow but not as part of a minimum dataset
eGFR from cystatin C	Cystatin C based eGFR may be less dependent on non-renal factors Impact of ethnicity on equations used to calculate the eGFR	Not yet but may become the international standard
	using cystatin C are unknown No accepted method for standardization across laboratories yet Expensive	Bio banking samples may be advised
measured GFR	Likely overcomes the ethnicity dependent bias in eGFR Not dependent on non-renal sources of analyte Invasive Expensive	No

Table 3 Kidney function measures (to determine the numerator)

We acknowledge that comparing GFR between populations internationally is problematic as the normal distribution of this variable is unknown in many of the groups/regions²⁸ and the implications for health of a particular GFR is also unknown. These issues are felt to be beyond the remit of the i3C and require substantial global efforts to address but are nonetheless accepted. Beyond this issue, the GFR is generally estimated from serum markers (the eGFR) and the GFR estimating equations have not been validated in many of the relevant populations²⁹, a particular issue when comparing eGFR distributions internationally as this will lead to ethnicity-specific differential bias. Validated eGFR equations in all relevant populations are unlikely to be available in the short term so this is again accepted as a limitation of the proposed collaborative approach. Furthermore although the i3C suggest estimates of the prevalence of impaired eGFR for the purposes of regional or international comparisons can be based on a single eGFR measurement only this does not detract from the responsibility to refer those with an abnormal finding (e.g. elevated creatinine, hypertension, protein/glycosuria) at initial survey to local health services and, it is recognized that investigators with resources may want to perform repeat measures in participants with abnormal results after an interval >3 months to reduce misclassification of episodes of acute kidney injury as CKD.

*CKD-EPI equation although not validated in many populations of interest has been shown to be more precise in the normal and near-normal GFR range that will be predominant in prevalence studies.

** Measures such as self-report of meat intake/vegetarianism³⁰ and estimates of body composition e.g. DEXA or bioelectrical impedance³¹ measurements may be useful in adjusting for the impact of non-renal sources of creatinine when comparing eGFR distributions between populations. Similarly sampling should ideally occur in the morning, i.e. prior to large meals or physical work.

Table 4 Other important data items.

Non-GFR	Rationale / Advantages / Disadvantages	Method	Recommended by i3C for
measures			minimum data set
Age	Rates of CKD and CKDu are age- dependent	Self-report	Yes
Sex	Rates of CKD and CKDu are sex-dependent	Self-report	Yes
Ethnicity / racial	Rates of CKD and CKDu are ethnicity	Self-report	Yes
group	dependent		
	Can be difficult to capture and may be		
	sensitive in some populations		
Occupation	CKDu has been mainly described in agricultural	Self-report	Yes, although it is acknowledged
	communities/workers.		that international comparisons of
			occupational categories are likely to
	Occupational history can be very difficult to		be difficult
	capture in many populations unless using		
Education and	detailed questionnaires	Salf report	Vac. can be reported as
income	between social deprivation and CKDu	Self-report	primany/secondary education
income	Reasonably simple to capture using		and/or quartiles/quintiles of income
	questionnaires.		and, of quarties, quinties of moorie
Address or	CKDu has generally been described in rural	Self-report or cluster level	Yes, can be captured at individual or
geolocation	populations and at low-altitudes	data	population level.
Average	CKDu has been described in tropical regions	Regional routine data (e.g.	Yes
temperatures		average daytime and	
Dishataa		nighttime temperatures)	Van diaminata tana 1 (inculia
Diabetes	Although diabetes might co-exist with CKDu	Self-report of diagnosis or	Yes, discriminate type 1 (insulin
	means most estimates of CKDu have excluded	medication	if possible
	those with diabetes*		ii possible
		Glycosuria	No, except if performing urinalysis
		Fasting glucose or HbA1c,	If resources allow
Hypertension	Severe hypertension appears atypical in CKDu	Self-report of diagnosis or	Yes
	and may indicate alternative causes of CKD.	medication	
		Direct measurement	Yes (using calibrated devices and
			trained personnel).
Nephrotoxic drugs	Drugs may cause CKD (or CKDu)	Self-report	If resources allow, recognising that
and traditional			international comparisons are likely
remedies			to be difficult
Infections	Likely to differ by population	Self-report	NO
Snako hito	Important cause of kidney injury	Self-report	If resources allow where relevant
History or cause of	Many of those with CKD are unaware or even	Self-report	No
CKD	if aware may not know the cause	Sen report	110
Family history of	Family history of CKD has been described in	Self-report	If resources allow as prone to
CKD	CKDu		misclassification
Water source/			If resources allow, recognising that
intake			simple assessments are likely to be
۸:	Participants may have multiple water sources	Self-report	prone to misclassification
Agrichemical	Difficult to capture	Sell-report	ii resources allow, recognising that
exposure			nrone to misclassification
Dipstick	No or low-level proteinuria typical for CKDu	Urinalysis	Yes, or ACR
proteinuria	urinalysis cheap but affected by urinary		
	concentration		
Quantified	more expensive but quantitative	Albumin/creatinine ratio	Yes, or urinalysis
Quantified	Less specific than ACR	Protein/creatining ratio	No
proteinuria			110
Haematuria	May help exclude other forms of CKD e.g.	Urinalysis	Yes, if performing urinalvsis for
	Schistosomiasis	,	protein
Imaging	Smooth small kidneys; operator dependent	Ultrasound	No
	expensive and difficult at scale		

* Note that CKDu can be seen in patients with diabetes, so although an individual with diabetes might be excluded from the denominator used in detection efforts a clinical diagnosis of CKDu may still be appropriate.

<u>Figure 1</u>

References:

- 1. Chatterjee, R. Occupational hazard. *Science* **352**, 24-27 (2016).
- 2. Cohen, J. Mesoamerica's mystery killer. Science 344, 143-147 (2014).
- 3. Wanigasuriya, K. Update on uncertain etiology of chronic kidney disease in Sri Lanka's north-central dry zone. *MEDICC Rev* **16**, 61-65 (2014).
- 4. Ganguli, A. Uddanam Nephropathy/Regional Nephropathy in India: Preliminary Findings and a Plea for Further Research. *American journal of kidney diseases : the official journal of the National Kidney Foundation* **68**, 344-348 (2016).
- 5. Barsoum, R.S. Burden of chronic kidney disease: North Africa. *Kidney Int Suppl (2011)* **3**, 164-166 (2013).
- 6. Seck, S.M., Doupa, D., Gueye, L. & Dia, C.A. Prevalence of chronic kidney disease and associated factors in senegalese populations: a community-based study in saint-louis. *Nephrourol Mon* **6**, e19085 (2014).
- 7. Wijkstrom, J., *et al.* Morphological and clinical findings in Sri Lankan patients with chronic kidney disease of unknown cause (CKDu): Similarities and differences with Mesoamerican Nephropathy. *PloS one* **13**, e0193056 (2018).
- 8. Lopez-Marin, L., *et al.* Histopathology of chronic kidney disease of unknown etiology in Salvadoran agricultural communities. *MEDICC Rev* **16**, 49-54 (2014).
- 9. Wijkstrom, J., et al. Renal Morphology, Clinical Findings, and Progression Rate in Mesoamerican Nephropathy. *Am J Kidney Dis* **69**, 626-636 (2017).
- 10. Wijkstrom, J., *et al.* Clinical and pathological characterization of Mesoamerican nephropathy: a new kidney disease in Central America. *American journal of kidney diseases : the official journal of the National Kidney Foundation* **62**, 908-918 (2013).
- 11. Ferreiro, A., *et al.* Confirmed clinical case of chronic kidney disease of nontraditional causes in agricultural communities in Central America: a case definition for surveillance. *Revista panamericana de salud publica = Pan American journal of public health* **40**, 301-308 (2016).
- 12. Correa-Rotter, R., Wesseling, C. & Johnson, R.J. CKD of unknown origin in Central America: the case for a Mesoamerican nephropathy. *Am J Kidney Dis* **63**, 506-520 (2014).
- 13. Jayasumana, C., *et al.* Chronic interstitial nephritis in agricultural communities: a worldwide epidemic with social, occupational and environmental determinants. *Nephrol Dial Transplant* **32**, 234-241 (2017).
- 14. Subramanian, S. & Javaid, M.M. Kidney Disease of Unknown Cause in Agricultural Laborers (KDUCAL) Is a Better Term to Describe Regional and Endemic Kidney Diseases Such as Uddanam Nephropathy. *Am J Kidney Dis* **69**, 552 (2017).
- 15. International Expert Workgroup on CKDu. Designing a step wise approach to estimate the burden of CKDu in Sri Lanka. (2016).
- 16. Jayatilake, N., Mendis, S., Maheepala, P., Mehta, F.R. & Team, C.K.N.R.P. Chronic kidney disease of uncertain aetiology: prevalence and causative factors in a developing country. *BMC Nephrol* **14**, 180 (2013).
- 17. Lozier, M., Turcios-Ruiz, R.M., Noonan, G. & Ordunez, P. Chronic kidney disease of nontraditional etiology in Central America: a provisional epidemiologic case definition for surveillance and epidemiologic studies. *Revista panamericana de salud publica = Pan American journal of public health* **40**, 294-300 (2016).
- 18. Hoy, W. & Ordunez, P. Epidemic of Chronic Kidney Disease in Agricultural Communites in Central America. Case defnitons, methodological basis and approaches for public health surveillance. (Washington, 2017).

- 19. Designing a step-wise approach to estimate the burden and to understand the etiology of CKDu in Sri Lanka. (World Health Organization, 2016).
- Athuraliya, T.N., Abeysekera, D.T., Amerasinghe, P.H., Kumarasiri, P.V. & Dissanayake, V. Prevalence of chronic kidney disease in two tertiary care hospitals: high proportion of cases with uncertain aetiology. *Ceylon Med J* 54, 23-25 (2009).
- 21. Trabanino, R.G., Aguilar, R., Silva, C.R., Mercado, M.O. & Merino, R.L. [End-stage renal disease among patients in a referral hospital in El Salvador]. *Revista panamericana de salud publica = Pan American journal of public health* **12**, 202-206 (2002).
- 22. Global Helath Estimates. Disease burden by Cause, Age, Sex, by Country and by Region, 2000-2015. (Geneva, 2016).
- 23. Jha, V. & Modi, G. Uncovering the rising kidney failure deaths in India. *Lancet Glob Health* **5**, e14-e15 (2017).
- 24. World Health Organisation. STEPwise approach to surveillance (STEPS). Vol. 2016 (2014).
- 25. ICF International. Survey Organization Manual for Demographic and Health Surveys. (MEASURE DHS, Maryland, 2012).
- 26. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. *Kidney Int Suppl* **3**, 1-150 (2013).
- 27. Caplin, B., *et al.* International Collaboration for the Epidemiology of eGFR in Low and Middle Income Populations Rationale and core protocol for the Disadvantaged Populations eGFR Epidemiology Study (DEGREE). *BMC Nephrol* **18**, 1 (2017).
- 28. Glassock, R.J., Warnock, D.G. & Delanaye, P. The global burden of chronic kidney disease: estimates, variability and pitfalls. *Nat Rev Nephrol* **13**, 104-114 (2017).
- 29. Stevens, L.A., *et al.* Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. *Kidney Int* **79**, 555-562 (2011).
- 30. Preiss, D.J., Godber, I.M., Lamb, E.J., Dalton, R.N. & Gunn, I.R. The influence of a cooked-meat meal on estimated glomerular filtration rate. *Ann Clin Biochem* **44**, 35-42 (2007).
- 31. Macdonald, J.H., *et al.* Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. *Nephrol Dial Transplant* **21**, 3481-3487 (2006).

SUPPLEMENTARY MATERIAL

Current clinical case definitions

Although the i3C does not aim to agree on clinical or epidemiological case definitions, the World Health Organization, Centers for Disease Control (CDC), and other expert epidemiology organizations have created a template for a typical case definition for "an outbreak" investigations. It is arguable whether CKDu classifies as an outbreak but it is instructive to review these concepts and consider how they may apply to CKDu. The CDC for example advises that a case definition with two components: clinical and laboratory. The clinical criteria typically lay out person, place, and time. In addition to varying by levels of certainty (Annex Table 2), case definitions can (and likely should) vary over time as more information—typically diagnostic testing—becomes available.

Annex Table	2 CDC	outbreak	investigation	categorisation
		0 0 0 0 0 0 0 0 0		041000110411011

		Advantage	Disadvantage	Applicable to CKDu?
Suspect	Typically based on one	Could be very sensitive—	Not specific, could	Probably, in specific
	or two clinical criteria	i.e., capture any and all at	be misleading by	areas if certain
	alone	risk populations	inflating numbers	'criteria' can be
		Useful in highly	of afflicted persons	agreed upon
		transmissible diseases, for		
		purposes of isolation and		
		prevention of further		
		spread		
Probable	Based on several	Offers an acceptable	Requires additional	Yes, if can be
	clinical criteria +/- one	range of sensitivity and	resources	operationalized to
	or two laboratory	specificity		'field conditions' in
	criteria			low-resource
				settings, for the
				purposes of
				surveillance, and
				management
				planning for
				nephrology services

Confirmed	Based on meeting all	Offers the highest	Not feasible or	Yes, for clinical
	of the clinical criteria,	specificity	practical in many	management,
	and (typically) a		instances	especially if a
	diagnostic, "gold			specific diagnostic
	standard" laboratory			tool that does not
	criterion			require biopsy can
				be developed.
				Biopsy
				confirmation—the
				current gold
				standard—not
				feasible in many
				areas

Recently, experts from Mesoamerica created a clinical and epidemiological definition for CKDu using a Delphi process, and further cited in the Pan American Health Organization's Resolution on Chronic Kidney Disease in Agricultural Disease. At a World Health Organization coordinated conference held in Sri Lanka in October 2016, experts proposed a 'suspected' and 'confirmed' classification system which builds on different sources of information to classify the condition (Annex table 3). These definitions are not identical, and the positive predictive value of these definitions against a biopsy is unknown but they indicate examples of systematic diagnoses and surveillance tools for CKDu.

Unique considerations that may be important in creating a clinical case definition of CKDu include:

- *Defining place or time period:* It is possible CKDu is unique to certain regions (Mesoamerican, Sri Lankan, Indian and other regions) and that "place or residence" needs to be part of the case definition. The limitations of this are that geography may change.
- *Limitations of diagnostic testing:* no "gold standard" except kidney biopsy, the availability of which is limited in Mesoamerican countries in particular
- The existence of CKD without a known cause is widespread in clinical practice globally: but must be differentiated from the epidemic levels of disease seen in rural communities as the former reflects late diagnoses and rarer diseases and in almost all cases will be a different clinical entity to CKDu
- Low –income regions affected: meaning agreed efforts aimed at labeling a patient as having CKDu need to be possible with limited resources

Comparison of case definitions for confirmed, suspect and probable cases of CKDu by Mesoamerican and Sri Lankan expert societies

	Meso America	Sri Lanka
Confirmed		l
Confirmed Presence of	 eGFR < 60 and/or albuminuria (30-to <3000 mg/g) and/or Urinary sediment abnormalities including hematuria And/or Renal tubular disorder And Age 2 to 59 And No ultrastructural abnormalities on kidney 	 eGFR < 60 and/or albuminuria > 30 mg/g and histopathological features consistent with CKDu on the biopsy
	Ultrasound	
Exclusion of	 Diabetes with microvascular disease Hypertension with target organ damage or BP >= 160/100 Autoimmune, hematologic, urologic or hereditary kidney disease Repeated exposure to contrast 	Criteria listed under suspect and probable CKDu
Suspect		l
Presence of	 CKD as measured by eGFR < 60 ml/min or albuminuria > 30 mg/g Age < 60 years 	 eGFR < 60 or albuminuria > 30 mg/g
Exclusion of	 Type 1 diabetes Self reported hypertension Self reported Autoimmune, hematologic or hereditary kidney disease 	 Diabetes (self reported or diagnosed in clinic) Hypertension on treatment or BP >=160/100 on two measurements Proteinuria > 2 g/day

Probable		
Presence of	• A suspect case with CKD on repeat testing	• A suspect case with CKD on
		repeat testing performed 12
		weeks later
Exclusion of		Ultrastructural abnormalities on
		ultrasound
		Clinical suspicion of other known
		causes of CKD
		Diabetes based on fasting plasma
		glucose < 126 mg/dL.
		• Hematuria

References:

https://www.cdc.gov/ophss/csels/dsepd/ss1978/lesson1/section5.html http://apps.who.int/iris/bitstream/10665/43541/1/9241547073_eng.pdf

Clinical diagnosis of CKDu

The i3C recognizes the challenges for nephrologists working in endemic regions and tasked with evaluating patients detected as having abnormal kidney function via population-based screening programs, or those presenting with symptoms of kidney disease. Given the controversy in consensus on a case definition, how does a nephrologist decide whether such a patient has CKDu (with the corresponding tubulo-interstitial disease), especially if kidney biopsy is not available? Another important diagnostic tool, urine albumin to creatinine ratios, is expensive and variably available in endemic regions.

With these considerations in mind, we outline the following principles if a non-biopsy based diagnosis is sought:

- Confirmation of persistently abnormal serum creatinine (with repeat serum creatinine and eGFR assessment) is critical*. Proteinuria alone without abnormal serum creatinine is unlikely to be correlated with tubulo-interstitial kidney disease on biopsy. Since the diagnosis relies heavily on serum creatinine measurement, efforts to use laboratory equipment calibrated to IDMS standards are also essential.
- Urinary assessment is required even if performed with a dipstick alone. Substantial proteinuria or hematuria should prompt work up for other forms of kidney disease. More and more data indicate that CKDu, especially in its earlier stages, is not associated with significant proteinuria or hematuria.

- 3. Diabetes and hypertension can co-exist with CKDu. In patients with these comorbidities, living in endemic areas but without significant proteinuria or hematuria, or evidence of end-organ damage from these diseases, CKDu should be considered.
- 4. Where possible, kidney biopsy confirmed diagnosis is ideal.

Based on these principles, one possible algorithm for a diagnosis of CKDu in endemic is presented below.

*Within the framework of a clinical diagnosis, it is important to recognize that an acute tubulo-interstitial disease with some degree of recovery has recently been described in endemic regions. Patients are typically symptomatic with back pain or fever, and leukocytosis. Biopsy could be considered in such cases, especially if evidence of acute and persistent rise in serum creatinine is noted, albeit only for a short period.

Example reporting of eGFR data from an active detection study using different definitions

Once primary data are acquired a number of analyses can be performed using both the distribution of eGFR in a population or numbers of participants below a certain threshold. For example, the prevalence of CKDu (as opposed to CKD of other causes) could be better approximated by excluding participants with diabetes or similarly restricting to those without heavy proteinuria. These criteria could be refined as additional information about the epidemiology of CKDu becomes available. Summary data from a simulated sample obtained from a hypothetical population with a high prevalence of CKDu amongst working age men is shown in the table below.

Population		Definition 1: All		Definition 2: Excluding self-		Definition 3: As definition 2		
				reported hypertension or		but also excluding		
				diabetes1	diabetes1		ACR>300mg/g	
	n	eGFR (SD)	n (%) with	eGFR (SD)	n (%) with	eGFR (SD)	n (%) with	
			GFR<60		GFR<60		GFR<60	
Men								
18-30	97	112 (16)	12 (12)	115 (17)	11 (11)	115 (17)	11 (11)	
31-40	102	109 (15)	20 (20)	110 (18)	18 (18)	108 (18)	17 (17)	
41-50	89	99 (15)	13 (15)	101 (15)	10 (11)	104 (15)	9 (10)	
51-60	78	99 (13)	12 (15)	100 (13)	8 (10)	99 (13)	6 (8)	
>60	97	88 (17)	19 (20)	95 (18)	10 (10)	88 (17)	6 (6)	
Women								
18-30	111	121 (14)	4 (3)	125(10)	2 (2)	125(9)	2 (2)	
31-40	101	119 (15)	4 (4)	123 (11)	2 (2)	120 (10)	1(1)	
41-50	96	117 (14)	4 (4)	120 (11)	1(1)	118 (10)	1(1)	
51-60	89	101 (15)	5 (6)	110 (13)	2 (2)	110 (13)	1(1)	
>60	101	89 (16)	7 (7)	95 (14)	3 (3)	95 (14)	3 (3)	

¹ It is important to underline the i3C group is not suggesting those with diabetes or high blood pressure cannot also get CKDu. However, the aim of this pragmatic type of analysis is to determine whether there is an excess of low eGFR across a population that is not attributable to another cause rather than to provide a clinical diagnosis at an individual level (for which approaches are outlined in Annex 2).

Data, collected with the same methodology, presented in this format can then be compared across time points and between regions. Further stratification by urban/rural residence or other proposed CKDu risk factors might be informative. Additional adjustment for meat-intake and body composition indices is likely to reduce bias due to nonrenal sources of creatinine in these estimates.