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Abstract 
Policymakers in Africa need robust estimates of the current and future 
spread of SARS-CoV-2. We used national surveillance PCR test, 
serological survey and mobility data to develop and fit a county-
specific transmission model for Kenya up to the end of September 
2020, which encompasses the first wave of SARS-CoV-2 transmission 
in the country. We estimate that the first wave of the SARS-CoV-2 
pandemic peaked before the end of July 2020 in the major urban 
counties, with 30-50% of residents infected. Our analysis suggests, 
first, that the reported low COVID-19 disease burden in Kenya cannot 
be explained solely by limited spread of the virus, and second, that a 
30-50% attack rate was not sufficient to avoid a further wave of 
transmission.
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Introduction
The potential risk from severe acute respiratory syndrome  
coronavirus 2 (SARS-CoV-2) to Africa was identified early in 
the global pandemic1. As the epicenter of transmission moved 
from East Asia to West Asia and Europe and then to North  
America, there was speculation as to the likely impact of the 
pandemic on the African continent with its young popula-
tions, high infectious disease burden, undernutrition and fragile 
health infrastructure. However, as health systems and econo-
mies of high-income countries strained, the reported burden of  
COVID-19 cases and associated deaths in Africa remained low 
with the exception of South Africa and Northern Africa2. The 
question is whether this is the result of lower risk due to demo-
graphic structure (young age3, either cross-reacting immunity  
(e.g. pre-existing SARS-CoV-2 cross-reactive T cells4) or damp-
ened immunological over-reaction5, a low reproduction number 
from rapidly imposed interventions (such as school closures 
and lockdowns6), environmental conditions (e.g. temperature 
and humidity7), or under-reporting. The reason this remains a 
conundrum is, at least in part, a paucity of good quality data to 
reveal the probable extent of SARSCoV-2 spread in African  
populations.

Following the first confirmed coronavirus disease 2019  
(COVID-19) case in Kenya on 13th March 2020, the Ken-
yan Government moved rapidly, closing international borders, 
schools, restaurants, bars and nightclubs, banning meetings and 
social gathering, and imposing a dusk to dawn curfew and move-
ment restrictions in the two major city counties, Nairobi and  
Mombasa8. The major concerns from unmitigated spread 
were a limited surge capacity of the Kenyan health system9 
and groups of the Kenyan population identified as potentially 
highly vulnerable to infection, due to socio-economic factors 
such as crowded households or lack of access to handwashing,  
and/or severe disease, due to epidemiological factors such as 
higher rates of obesity and hypertension10. Throughout the months 
of April, May and into June 2020 few people in Kenya were 
reported SARS-CoV-2 test positive by polymerase chain reaction  
(PCR), or severely diseased or dying with COVID-19 as the 
established cause11. There followed a relaxation of some meas-
ures in June and July including controlled opening of res-
taurants and places of worship and the removal of travel 
restrictions into and out of Mombasa and Nairobi counties.  
As of 30th September 2020, there were 45,795 laboratory-con-
firmed positive swab tests out of over 340,000 tests (about 
13.5%), and 749 deaths with a positive test result in Kenya11. 
This should be compared with the 200–250,000 cases and 
30–40,000 deaths attributable to SARS-CoV-2 for similar 
sized countries in Europe (France, Italy, UK) by the end of  
September12.

The reason for this apparently low level of COVID-19 dis-
ease in Kenya is unknown; one possible explanation is that  
SARS-CoV-2 had not widely spread among the Kenyan pop-
ulation by the end of September. However, two pieces of 
information suggest that SARS-CoV-2 had al-ready spread  
extensively by the end of September. First, a regionally-stratified  
seroprevalence study of 3098 Kenyan blood donors sampled 

between May and June reported a national estimate of 4.3% 
(adjusted to reflect the population distribution by age, sex 
and region)13. Sero-prevalence was higher in Nairobi (7.6%) 
and Mombasa (8.3%). These levels of seropositivity are com-
parable to those reported in May in the United Kingdom  
(UK)14, April/May in Spain15, and March/April in some United 
States (US) cities16, where high numbers of PCR-positive cases,  
hospitalizations and deaths have also been reported, in contrast 
to Kenya. Second, we noticed that test-positive PCR cases, and 
daily reported test-positive deaths, were declining in first Mom-
basa (from early July 2020) and then Nairobi (from early August 
2020); respectively Kenya’s second and first largest cities. In 
Europe, declining case and mortality rates have been closely 
associated with non-pharmaceutical interventions (NPIs)17.  
However, in Kenya this went counter to evidence of increased 
mixing, and hence reproduction potential, arising from Google 
Mobility data for these cities which showed a steady rever-
sion in mobility towards pre-COVID-19 intervention levels 
since early April (Fig. S1). These observations, in turn, lead 
to the conclusion that either a smaller than expected propor-
tion of infected individuals have had severe disease, and/or, that  
there has been under-reporting of severe disease.

To investigate these findings, we developed a simple SEIR  
(susceptible-exposed-infectious-recovered) compartmental mech-
anistic and data-driven transmission model for Kenya, which 
integrates three sources of longitudinal data: national time series 
polymerase chain reaction (PCR) tests, the Kenyan serological  
survey and Google mobility behavioural data. The overall  
modelling approach is similar to Flaxman et al.17; that is we 
use time-to-event lag distributions, and the daily incidence 
time series, and, both models generate the daily incidence 
time series using a simple deterministic transmission model 
with the key unknowns being initial numbers of infected indi-
viduals and R(t). Where we differ in approach from Flaxman  
et al.17 is that, instead of using reported test-positive deaths as 
the most reliable data for inferring underlying transmission 
patterns, we use a combination of PCR test-positive and sero-
logical data. The PCR test-positive data informs the model 
on the epidemic trajectory but does not account for likely  
under-detection of cases. This under-detection of cases is inferred 
from the proportion exposed to SARS-CoV-2 evidenced by 
the seroprevalence estimates, hence scaling the incidence esti-
mation. Finally, the mobility data, as a proxy for the contact 
rate, determines the contribution of the intervention (which 
acts to alter contact patterns) relative to other factors that alter  
incidence and the effective reproduction number, the most 
important of which is the susceptible proportion of the popula-
tion. Our aim is to derive a coherent picture of the SARS-COV-2  
epidemiology in Kenya in the first wave and reveal the his-
toric and future patterns of spread across the country and by 
county. Reported deaths are not used as primary data for infer-
ence, but rather the trend in changing rates of reported deaths  
is used as a validation data set for model predictive accuracy 
(see supporting information for description of model validation). 
Reported deaths may be subject to substantial under-reporting,  
and we assume that the bias in under-reporting is consistent  
over time.
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Results
Underlying transmission rates in Mombasa and Nairobi 
during the first wave
As at 30th September, a substantial proportion of PCR positive 
tests have been samples from the capital Nairobi (25,182 positive  
tests), while Kenya’s second largest city, Mombasa, has reported 
the next highest number of PCR positive tests (2,056). We 
infer that the underlying rate of new infections peaked on 
May 18th 2020 (CI May 16th - May 21st) in Mombasa and  
July 9th 2020 (CI July 7th - July 10th) in Nairobi, and sub-
sequently declined from peak transmission (Figure 1 H, G). 
The model suggests that the PCR test and serology data can be 
explained by the initial presence of <200 infected individuals in  
both Mombasa and Nairobi on 21st February, three weeks 
before the first reported case in Kenya. Thereafter, growth of 
transmission was rapid in both counties. In early March, the 
reproductive ratio was estimated to be 1.94 (CI 1.89-1.98) and  
2.00 (CI 1.97-2.02) in Mombasa and Nairobi, respectively, 
with associated doubling-time of 4.84 and 4.59 days, respec-
tively. After March, the transmission curves flattened sub-
stantially. This change is consistent with the introduction of  
containment measures by the Kenyan government, and evi-
dence of substantial reduction in mobility (see Google Mobility  
data Fig. S1). From late April, through May and June, and 
into July the evidence suggests movement restrictions became 
steadily less effective. The waning effectiveness of movement  
restrictions results in an inferred increase in R(t) across Kenyan 
counties and an increased rate of epidemic growth (Figure 2).  
The increasing R(t) estimates are broadly in line with pre-
dicted trends from Google mobility data (supporting informa-
tion), although it should be noted that the R(t) estimates exhibit 
secondary fluctuations around the increasing mobility trend  
(Figure 2). In Nairobi and Mombasa we predict that reduc-
tion in susceptibility of the population (Figure 1C,D) caused 
the effective reproductive ratio (R

eff
; the mean number of sec-

ondary cases accounting for reduced susceptibility) to drop 
significantly below the basic R value from June onwards  
(Figure 2). However, other counties, where the epidemic did 
not establish itself as early as Mombasa and Nairobi, and 
where a substantial majority of the population are likely to still 
be susceptible, now have R(t) estimates which we estimate 
rebounded to the original levels estimated as occurring before  
Kenyan public health measures (Figure 2).

By accounting for the delay of an average of 19 days between 
infection and death (supporting information for details on infec-
tion to death distribution) we find the transmission curve, 
estimated from PCR tests and serology, generates a good  
prediction of the observed trend in daily deaths in Nairobi and 
Mombasa (Figure 1 E, F). We did not use mortality data in trans-
mission model inference, therefore the good fit to the observed 
trend in deaths with a PCR-confirmed test result represents  
an out-of-sample validation of the modelling18. Note, it is the  
distribution of deaths over time, rather than the absolute num-
bers, that we consider to be a good fit. In accord with observa-
tions, we estimate a peak of positive PCR test samples occurred 
at the end of July or early August in Nairobi and earlier,  
mid-June, in Mombasa. The lag between transmission peak  

and positive swab testing peak being explained by both 
the delay between infection and becoming detectable by 
PCR, and the period after an infected individual has ceased 
being actively infectious but remains detectable by PCR19  

(Figure 1 G,H and A,B). As of the end of September 2020 we 
estimate that about 35.4% (CI 29.0%-40.4%) of the Nairobi pop-
ulation, and 30.3% (CI 23.6-36.7%) of the Mombasa population 
were serologically positive with SARS-CoV-2, (Figure 1 C,D). 
This estimated level of seropositivity is substantially higher than 
has been estimated in some countries that have been hit hard by 
the pandemic14–16. However, they are in broad agreement with  
a study in Niger state, Nigeria, from June 202020, as well as 
seropositivity rates reported from the hard-hit city of Manaus, 
Brazil, in May 202021. Note that these estimates of seroposi-
tivity at the end of September assume both that waning serop-
ositivity would not have had a significant effect on serological 
observations by late September, and furthermore that waning 
immunity leading to re-infection remained insignificant by late  
September.

SARS-CoV-2 attack rates in the first wave in Kenyan 
counties and the estimated crude infection-to-fatality 
ratio
Accounting for the sensitivity of the serological assay, and 
the delay between infection and seroconversion, we estimate 
that the actual exposure of the population to SARS-CoV-2 by  
September 30th was 43.3% (CI 35.3%-49.5%) in Nairobi and 
37.6% (CI 29.2%-45.7%) in Mombasa (Figure 1 C,D). Such levels  
of population exposure are predicted to be associated with 
decreased rates of new cases due to reduced numbers of sus-
ceptible individuals in these urban populations, although this is  
also influenced by the estimated reproductive number and 
effective population size at risk of exposure (P

eff
). The effec-

tive population size accounts for the impact of heterogene-
ity in the susceptibility, transmissibility and social interactivity 
in the population (supporting information for more details on  
effective population size in transmission modelling); for Nairobi 
it was inferred as 81.8% of actual population size (CI 66.7%-
93.2%), for Mombasa 71.9% (CI 56.3%-86.5%). The effec-
tive population size estimates rest upon inferred variation in 
risk across the population. There remains a possibility of future 
increase in transmission if population mobility continues to 
rise, if population mixing patterns alter leading to changed risk  
heterogeneity or if immunity is short lived, leading to a rebound 
in reported cases. One or more of these factors could lead 
either to lengthening the tail after the first peak in cases/deaths,  
or even to a secondary increase in cases and/or deaths.

The inferred IFR
crude

 values for both Nairobi (IFR
crude

 = 0.019% 
(CI 0.014%-0.024%) and Mombasa (IFR

crude
 = 0.022% (CI 

0.016%-0.027%)) are substantially lower than the age-adjusted 
IFR expected for Kenya under full ascertainment from the  
age-specific IFR estimated given by Verity et al. (IFR

verity
 = 

0.26%22; and supporting information). This is a crude obser-
vational value for the infection to fatality ratio, since we do  
not currently have an estimate of the reporting bias of deaths 
of individuals infected with SARS-CoV-2. Therefore, our 
estimate of IFR

crude
 potentially reflects lower detection in  
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Figure 1. SARS-CoV-2 PCR positive swab tests, seroprevalence and deaths in Nairobi and Mombasa, Kenya, with model 
forecasting. (A) and (B) Weekly reported positive PCR positive swab tests (green dots) for Nairobi (A) and Mombasa (B), model prediction 
of mean weekly detection during both sampling periods when negative PCR test data was unavailable (blue curve), and available (orange 
curve). (C) and (D) Monthly seropositivity of Kenya National Blood Transfusion Service (KNBTS) blood donors in Nairobi (C) and Mombasa 
(D) (green dots), model predictions for population percentage of seropositivity (green curve), exposure to SARS-CoV-2 (red curve), and 
uninfected (blue curve). (E) and (F) Daily deaths with a positive SARS-CoV-2 test in Nairobi (E) and Mombasa (F) by date of death (black dots), 
and model prediction for daily deaths (black curve). Inset plots in (E) and (F) indicate cumulative reported deaths and model prediction. 
(G) and (H) Model estimates for rate of new infections per day in Nairobi (G) and Mombasa (H). Background shading indicates 95% central 
credible intervals. Dates for all graphs mark the 1st of each month.
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Figure 2. Estimated basic and effective reproductive numbers in Kenya since Feb 21st 2020. The posterior mean reproductive 
number for Nairobi (red curves), Mombasa (green curves), and the inter-quartile range (IQR) over mean reproductive number estimates for 
all other Kenyan counties (blue curve and shading). Shown are both the basic reproductive numbers (expected secondary infections in a 
susceptible population adjusted for mobility changes since the epidemic start; solid curves), and effective reproductive numbers (expected 
secondary infections accounting for depletion of susceptible prevalence in the population; dotted curves). The effective reproductive 
number varied significantly from county to county and is not shown except for Mombasa and Nairobi. Restrictions aimed at reducing 
mobility in risky transmission settings (black dotted lines) are labelled in groups. The chronologically ordered restrictions in each group are: 
1) First PCR-confirmed case in Kenya, suspension of all public gatherings, closure of all schools and universities, and retroactive quarantine 
measures for recent returnees from foreign travel, 2) suspension of all inbound flights for foreign nationals, imposition of a national curfew, 
and regional lockdowns of Kilifi, Kwale, Mombasa and Nairobi counties, and 3) additional no-movement restriction of worst affected areas 
within Mombasa and Nairobi, and, closure of the border with Somalia and Tanzania.

Kenya compared to China, as well as any lower mortality risk  
due to fewer comorbidities.

We extended our model-based inference to each of the 47 coun-
ties in Kenya (see dataset S1 for parameter estimates, peak 
time estimates and IFR

crude
 estimates for each county). We find 

that, in addition to the two main Kenyan city counties, more  
than 25–30% of the population in each of the semi-urban coun-
ties neighbouring Nairobi (Kiambu, Kajiado, and Machakos) 
had been infected. However, the infection rate is predicted to 
be either lower than 25% and/or subject to high uncertainty in 
other counties (with high uncertainty defined as a prediction  
standard error of > 10% of county population size; Figure 3).

Due to the lag between infection and the observability of the 
infected person (whether by swab PCR test, serology test, or 
death), we estimate that both daily PCR positive test detec-
tions and daily observed deaths attributed to COVID-19 across  
the two main cities, and semi-urban counties neighbour-
ing Nairobi had a peak in early August 2020 (Figure 3 B,C). 
Hospitalisation rates are not available for all Kenyan hospi-
tals. However, sentinel clinical surveillance of severe acute 
respiratory infection (SARI), with or without a PCR test for  
SARS-CoV-2, at 14 county hospitals suggests an increasing rate 
of adult admissions in June and July 202023. However, SARI 

admissions were lower in the early phase of the Kenyan epi-
demic than observed counts from the same months in 2018 and 
201923 and the apparent rise in SARI admissions could repre-
sent a reversion towards pre-COVID numbers; this observation 
underlines the difficulties in using hospital data to understand  
the penetration of SARS-CoV-2 in Kenya.

Conclusions and Discussion
Our modelling analysis provides a coherent account of the  
SARS-CoV-2 pandemic in Kenya up to end September 2020. 
Limitations include lacking information on the PCR testing 
denominators for the full time frame, the limited serological  
survey and that we have applied a simple dynamic model. In 
mitigation similar results were obtained when excluding all 
negative tests, and the dynamic model is transparently a fit to 
the data where the availability of the latter is a key strength  
of our study.

Our analysis suggests that 30–50% of the urban popula-
tion were already exposed by the end of September, and that 
the first wave of the Kenya epidemic peaked in the urban and  
semi-urban counties during a period of relatively little restric-
tions or physical distancing. This infers a burden of infection 
in Nairobi and Mombasa similar to extremely hard-hit cit-
ies in South America at the same time, e.g. Manaus21. However, 
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Figure 3. Predicting peak timing of transmission rate by Kenyan county, and forecasting of Kenya-wide PCR positive swab 
tests and reported deaths. (A) Posterior mean estimates for the attack rate (% of population) in each county. Solid shaded counties 
have a posterior standard deviation in their attack rate estimate of less than 10%, candy-stripe shaded counties have greater uncertainty 
associated with their attack rate estimate. (B) Kenya total positive swab tests collected by day of sample (blue dots) with model prediction 
of daily positive swab test trend (red curve). (C) Kenya total reported deaths with a positive swab test (black dots), with model prediction of 
reported death rates (black curve). Inset plot indicates cumulative reported deaths with model prediction of cumulative deaths. Dates on 
(B) and (C) mark 1st of the month.
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in Manaus there was a substantial first epidemic wave through  
April-June 2020, with about 50% of the population infected, 
followed by a long epidemic tail leading to an estimated total 
75% attack rate by the end of 202021. In Kenya, the second 
wave came shortly after the first (October to December 2020), 
which suggests that the causes of the Kenyan second wave  
are complex.

Whilst the full picture of the epidemiology in Kenya will not be 
established until cause-specific mortality data become avail-
able (e.g. from resumption of Demographic Surveillance  
System and verbal autopsy activities), our model, fitted to 
three sources of nationwide longitudinal data, suggests that 
the number of symptomatic COVID-19 cases reported and the 
mortality attributed to the SARS-CoV-2 epidemic are substan-
tially lower in Kenya than in Europe and the USA at a simi-
lar stage of the epidemic. This would remain the case even if  
reported deaths accounted for just 1/10th of the true value. How-
ever, there is insufficient data for speculating on the degree 
of under-reporting and previous estimates of 1 in 4 deaths 
occurring in hospital may not be generalizable to the hospital  
access during the COVID-19 pandemic24.

Late 2020 saw the spread of COVID-19 to more rural areas 
of Kenya, with less infrastructure and access to public health 
facilities and a second wave of SARS-CoV-2. This second wave 
needs to be dissected and understood. Policy makers need to bal-
ance the direct and indirect health and socio-economic conse-
quences of any control measures; a balance that becomes more 
precise as we develop a better understanding of SARS-CoV-2  
dynamics in Kenya.

Methods
Transmission model definition
The dynamics of transmission in each Kenyan county were 
assumed to follow a SEIR transmission model with an effec-
tive population size parameter (P

eff
)25. The SEIR model with 

effective population size is an extension of the homogene-
ous SEIR model26 with the additional flexibility that P

eff 
N out of 

a total population size N in each county is at risk of contracting  
SARS-CoV-2. P

eff
=1 recovers the homogeneous SEIR model, 

whereas, P
eff 

<1, recovers the effect of underlying heterogene-
ity in the transmission potential and risk in the population of 
the county on the aggregate dynamics of epidemic. This aspect 
of heterogeneous models of transmission has been widely  
investigated, for example, in the context of comparing vaccina-
tion coverage thresholds for elimination between uniform and 
targeted vaccination policies27. In the context of the SARS-CoV-2  
pandemic modelling literature, the possible role of population  
heterogeneity in decoupling estimates of R

0 
from predictions 

of the “herd-immunity” threshold and final attack rate has 
again been identified28,29. In this study, rather than make strong  
assumptions about the mechanism of population heterogene-
ity, e.g. differential susceptibility, differential rates of social 
mobility etc., we have taken a phenomenological approach; 
the effect of heterogeneity in the population was encoded in the  
effective population parameter P

eff
, and this parameter was 

inferred jointly with R
0
. Our a priori belief was that the most 

probable value was P
eff

 = 1. We assumed that P
eff

was constant  
over the period of inference.

The model dynamics for each Kenyan county were represented  
as a system of ordinary differential equations,

                              

( ) ( )
( ) ,

( ) ( )
( ) ,

( ) ( ) ( ),

( ) ( ),

( ) ( )
( ) .

t
e f f

t
e f f

t
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R t I t
S t I tC t R
P N

γ

γ σ
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γ

γ

= −

= −

= −

=

=











                              (1)

With initial conditions (time 0 is the calendar date 21st Feb  
2020 and all rates are per day),

            
0 0

0 0

(0) ,

(0) , (0) , (0) 0, (0) 0.

ef fS P N E I

E E I I R C

= − −

= = = =
           (2)

Where the dynamic variables S(t), E(t), I(t), R(t) were the 
numbers of susceptibles-at-risk, exposed (but not yet infec-
tious), infectious, and, recovered individuals in the county. 
The full number of susceptibles in the county at any time was  
(1 − P

eff
)N+S(t). C(t) was the cumulative numbers of infected  

individuals in the county.

The incubation-to-infectious rate was σ = 1/3.1 per day, and 
the recovery rate was γ = 1/2.4 per day, implying a mean gen-
eration time of 5.5 days (see Supporting information for a 
comparison to the generation distribution inferred by Fer-
retti et al.30). The instantaneous reproductive ratio R

t 
= R

0
β

t  

decomposed into a basic reproductive ratio R
0 

and an effective 
contact rate β

t 
, where β

t 
= 1 represents a pre-pandemic baseline  

contact rate in the population.

Transmission model inference
We used a mixed Bayesian and maximum a-posteriori (MAP) 
approach to parameter inference for each of the 47 Kenyan 
counties, based on daily observations of positive and nega-
tive PCR and serology tests in each county. The likelihood of  
individuals being detectable on any given day was based on 
whether they had been infected before that day, and, the number of 
days since their infection. The number of new infections on each 
day n, was denoted ι

n
. For a given set of model parameters ι

n 
was  

generated by solving the ODE system (1), giving,

                                  ( 1) ( ),n C n C nι = + −                                   (3)

for each day n. Given the daily numbers of new infections, the 
number of people in the county on each day n who are detect-
able by PCR testing, denoted (P+)

n
, and serological testing, 

(S+)
n
, were given by convolving the new infection time series 
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with the probability of (respectively) being detectable by a  
PCR or serological test τ days after infection, Q

PCR
(τ) and Q

sero
(τ):

                                 
( ) [ ]( ),

( ) [ ]( ).
PCRn

n sero

P Q n

S Q n

ι

ι

+

+
= ∗

= ∗
                                 (4)

The log-likelihood function for each county has the form,

             

1 1

1

(( ) ,...,( ) ,( ) ,...,( ) , )

( , )|ln (( ) )

( , ).|ln (( ) )

T T OM
T

OMPCR
n

OM

n n
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f ObsP P

S Sf Obs
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θ

θ
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+ +

+ +
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+

∑             (5)

Where, ln f
PCR

((ObsP+)
n
|(P+)

n
, θ

OM
), and, ln f

sero
((ObsS+)

n
|(S+)

n
, 

θ
OM

), were, respectively, the log-probability of observing 
(ObsP+)

n
 PCR test-positives and (ObsS+)

n 
serological test posi-

tives on days n = 1,..., T given the model prediction of numbers 
of PCR and serological detectable people in the population,  
and the observation model parameters θ

OM
. Day n = 1 cor-

responded to the calendar date 21st Feburary 2020, and, day  
n = T = 223 corresponded to 30th September 2020. The obser-
vation model parameters included bias and over-dispersion  
parameters for finding PCR positives in the daily testing group 
compared to an unbiased binomial sample over the popula-
tion; we used a beta-binomial count data model whenever the 
number of negative PCR tests for that day was available in the 
county and a negative binomial count data model whenever it 
was not. We assumed that the serological test-positives were  
from an unbiased sample but included over-dispersion in sam-
pling serological positives by using a beta-binomial count 
data model. Supporting information gives further details on 
the data sources and the log-likelihood calculation includ-
ing a full description of all observation model parameters and 
the functional forms and underlying evidence for Q

PCR
 and Q

sero
.  

The data sources used were: The Kenya Ministry of Health 
National linelist, the Kenya Medical Research Institute Well-
come Trust Research Programme (KEMRI-WTRP) serologi-
cal surveillance programme and Google mobility data31. The 
full Kenyan SARS-CoV-2 line list contains sensitive personal 
information that could potentially allow the identification of  
individual cases. The analysis performed in this study only 
required an aggregated dataset derived from the Kenyan 
linelist. Other data used in this paper was openly available. All  
data is available in the main text or as underlying data32.

We assumed that β
t 
was piece-wise constant on days, and, there-

fore, could be reconstructed from daily effective contact rates  
(β

n
)

n=1,...,T
. For any fixed estimate of the effective contact rate β

t 
, 

we used Hamiltonian Markov-chain Monte Carlo (HMC)33 to 
estimate the posterior distribution for the transmission model 
parameters; that is the initial condition values (E

0
, I

0
) and 

fixed parameters (P
eff

, R
0
) jointly with the observation model  

parameters θ
OM

. Prior distributions for parameters were  
chosen for groups of counties (e.g. largely rural counties had 
different priors to major urban conurbations like Nairobi and 

Mombasa; see supporting information for further details). Start-
ing from an initial estimate that β

t
 followed daily Google mobil-

ity trends31 for the whole period, we sequentially improved 
our β

t
 estimate using the expectation-maximisation (EM)  

algorithm34. The E-step corresponding to posterior distribution 
estimation using HMC, and the M-step corresponding to opti-
mising the daily effective contact rate estimates (β

n
)

n=41,...,T
 using 

the popular stochastic gradient descent algorithm ADAM35. The  
first 40 days of effective contact rate estimates (β

n
)

n=1,...,40 
were 

assumed to be fixed to their Google estimate; this improved 
identifiability jointly with R

0 
and captured the observed sharp 

drop in mobility in response to Kenyan public health meas-
ures following the first identified case on 13th March 2020. 
See supporting information for further details on the use of 
Google mobility data and the EM algorithm method used in  
this study.

After inference of transmission parameters, the model implied a 
prediction of the expected number of daily deaths due to COVID, 
E(X+)

n
, based on an overall population infection-to-fatality  

ratio (IFR), and, the delay distribution between infection and  
death, p

ID
,

                            ( ) [ ]( ).+
IDnX IFR p nι= ∗E                              (6)

In this study, we assume that the IFR is constant for each 
county over the period of inference, which allows us to con-
struct a Bayesian estimator of the crude IFR, IFR

crude
, by fitting 

to the observed daily numbers of test-positive deaths, (ObsX+)
n  

(see supporting information for details and background 
data informing p

ID
). Because the observed test-positive 

deaths were not used in inferring model parameters, we treat 
the log-predictive density of deaths from the model as an  
out-of-sample validation metric for the model. However, we 
emphasise that the out-of-sample comparison is to the trend 
of daily deaths, because this is invariant to the IFR

crude
 esti-

mator, which is itself sensitive to under-reporting of COVID 
deaths.Supporting information gives full details on the  
Bayesian model validation used in this study.

This study was approved by the Kenya Medical Research  
Institute Scientific and Ethics Review Unit (KEMRI-SERU) 
with approval numbers KEMRI/SERU/CGMR-C/203/4085 and  
KEMRI/SERU/CGMR-C/203/3426 for the modelling and  
serosurvey studies respectively.

Data availability
Underlying data
Zenodo: Revealing the extent of the first wave of the COVID-
19 pandemic in Kenya based on serological and PCR-test data.  
https://doi.org/10.5281/zenodo.470524432 This project contains  
the following underlying data:

•    Data S4 (The number of positive, and negative where  
available, PCR-confirmed swab tests for each county by  
date of sample collection (21st Feb to 30th September)).
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•    Data S5. (The number of positive and negative  
sero-logical results for each county by date of sample  
collection (21st Feb to 6th August)). This is from the  
Kenyan Ministry of Health National linelist.

•    Data S6. (The number of deaths with a PCR-confirmed 
swab test for each county by recorded date of death  
(21st Feb to 30th September)).

•    Data S7. (Summary data of Kenyan epidemic, including 
reported total number of test performed in Kenya.

•    supp material.docx (A more detailed description of the 
data)

Software availability
The analysis code was written in Julia language version 1.4.

•    The code base underlying the analysis is accessible at 
the open github repository https://github.com/ojal/Ken-
yaSerology. For the analysis presented here we devel-
oped a module in the Julia programming language 

called KenyaSerology. Tutorial notebooks for running  
KenyaSerology and analysing the underlying data are  
available in the repository.

•    Archived source code at time of publication: https://doi.
org/10.5281/zenodo.470524432

•    License: GNU General Public License v3.0 
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The ideas presented in the paper are plausible, resulting to a model, although a simple SEIR 
model, that is robust and adequately reproduces the observed trajectory of infections.  
 
It was captivating to see the authors express the force of infection in terms of the case data time 
series (which is as a result of "successful" contact between susceptible and infected individuals). 
This is arguably the only way a compartmental model can reliably reproduce the waves of 
infections observed in data. Also the notion of, only a proportion of the population is at risk, is a 
quite realistic. 
 
There are a few typos, as indicated below:

On page 3, column 2, in line 10 write as...declining, first in... 
 

○

On page 3, column 1, in line 20 write as ...SARS-CoV-2. 
 

○

On page 3, column 1, in third paragraph at line 5 write as ...already...○
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