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Abstract

Background

Among people living with HIV (PLHIV), more flexible and sensitive tuberculosis (TB) screen-
ing tools capable of detecting both symptomatic and subclinical active TB are needed to (1)
reduce morbidity and mortality from undiagnosed TB; (2) facilitate scale-up of tuberculosis
preventive therapy (TPT) while reducing inappropriate prescription of TPT to PLHIV with
subclinical active TB; and (3) allow for differentiated HIV-TB care.

Methods and findings

We used Botswana XPRES trial data for adult HIV clinic enrollees collected during 2012 to
2015 to develop a parsimonious multivariable prognostic model for active prevalent TB
using both logistic regression and random forest machine learning approaches. A clinical
score was derived by rescaling final model coefficients. The clinical score was developed
using southern Botswana XPRES data and its accuracy validated internally, using northern
Botswana data, and externally using 3 diverse cohorts of antiretroviral therapy (ART)-naive
and ART-experienced PLHIV enrolled in XPHACTOR, TB Fast Track (TBFT), and Gugu-
lethu studies from South Africa (SA). Predictive accuracy of the clinical score was compared
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with the World Health Organization (WHO) 4-symptom TB screen. Among 5,418 XPRES
enrollees, 2,771 were included in the derivation dataset; 67% were female, median age was
34 years, median CD4 was 240 cells/pL, 189 (7%) had undiagnosed prevalent TB, and char-
acteristics were similar between internal derivation and validation datasets. Among XPHAC-
TOR, TBFT, and Gugulethu cohorts, median CD4 was 400, 73, and 167 cells/uL, and
prevalence of TB was 5%, 10%, and 18%, respectively. Factors predictive of TB in the deri-
vation dataset and selected for the clinical score included male sex (1 point), >1 WHO TB
symptom (7 points), smoking history (1 point), temperature >37.5°C (6 points), body mass
index (BMI) <18.5kg/m? (2 points), and severe anemia (hemoglobin <8g/dL) (3 points). Sen-
sitivity using WHO 4-symptom TB screen was 73%, 80%, 94%, and 94% in XPRES,
XPHACTOR, TBFT, and Gugulethu cohorts, respectively, but increased to 88%, 87%, 97%,
and 97%, when a clinical score of >2 was used. Negative predictive value (NPV) also
increased 1%, 0.3%, 1.6%, and 1.7% in XPRES, XPHACTOR, TBFT, and Gugulethu
cohorts, respectively, when the clinical score of >2 replaced WHO 4-symptom TB screen.
Categorizing risk scores into low (<2), moderate (2 to 10), and high-risk categories (>10)
yielded TB prevalence of 1%, 1%, 2%, and 6% in the lowest risk group and 33%, 22%, 26%,
and 32% in the highest risk group for XPRES, XPHACTOR, TBFT, and Gugulethu cohorts,
respectively. At clinical score >2, the number needed to screen (NNS) ranged from 5.0 in
Gugulethu to 11.0 in XPHACTOR. Limitations include that the risk score has not been vali-
dated in resource-rich settings and needs further evaluation and validation in contemporary
cohorts in Africa and other resource-constrained settings.

Conclusions

The simple and feasible clinical score allowed for prioritization of sensitivity and NPV, which
could facilitate reductions in mortality from undiagnosed TB and safer administration of TPT
during proposed global scale-up efforts. Differentiation of risk by clinical score cutoff allows

flexibility in designing differentiated HIV—TB care to maximize impact of available resources.

Author summary

Why was this study done?

o Tuberculosis (TB) remains the most common cause of death among people living with
HIV (PLHIV) and is often undiagnosed at time of death.

« Rapid scale-up of tuberculosis preventive therapy (TPT) to 13 million PLHIV in low-
and middle-income countries (LMICs) has been proposed for 2021; however, active TB
is commonly asymptomatic and therefore missed by current WHO-recommended 4-
symptom TB screening rules.

o Therefore, more sensitive TB screening tools are needed to better facilitate early TB
diagnosis and safer scale-up of TPT to PLHIV by avoiding TPT prescription to clients
with asymptomatic active TB, who need TB treatment.
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What did the researchers do and find?

o We derived a TB risk score for PLHIV from XPRES trial data and validated the score on
3 external datasets.

« We prioritized high sensitivity and ability to correctly rule out TB (i.e., high negative
predictive value (NPV)) at key time points in care such as HIV clinic enrollment and
before TPT prescription.

« Both logistic regression and random forest machine learning approaches were used to
identify the 6 most important predictors, commonly available in LMIC clinic settings.

« In the external datasets, TB risk score >2 had higher sensitivity (87% to 97%) than
WHO 4-symptom screening rule and increased NPV by 0.3% to 1.7%.

o Three risk groups were identified by the score, with active TB prevalence in external
datasets ranging from 1% to 6% in the lowest to 22% to 32% in the highest risk groups.

What do these findings mean?

« Following further validation, this clinical score could improve early detection of active
TB to reduce morbidity and mortality from undiagnosed TB.

o Use of the clinical score cutoff of >2 during the proposed TPT scale-up for 13 million
PLHIV could potentially avoid many thousands of PLHIV with active TB being inap-
propriately prescribed TPT.

« By differentiating 3 risk groups, the score also allows for the development of differenti-
ated service delivery models suitable for LMIC.

Introduction

Tuberculosis (TB) remains the most common cause of death among people living with HIV
(PLHIV), with 251,000 HIV -associated TB deaths in 2018, over 95% of which occurred in low-
and middle-income countries (LMICs) [1]. Among PLHIV who die from TB, TB often remains
undiagnosed at the time of death [2,3]. The World Health Organization (WHO) recommends a
4-symptom TB screening rule (i.e., for cough, weight loss, night sweats, or fever) to determine
which PLHIV need investigation for active TB and which are eligible for immediate tuberculosis
preventive therapy (TPT) [4]. WHO 4-symptom TB screening rule is recommended for LMIC
regardless of expected prevalence of active TB, setting (e.g., high or low TB incidence settings),
or antiretroviral therapy (ART) status (ART-naive or ART-experienced) [4].

However, screening accuracy of WHO 4-symptom screening rule varies by population, set-
ting, and ART status, raising the question whether a “one-size-fits-all” screening rule is appro-
priate. For example, a recent meta-analysis observed that while sensitivity of WHO
4-symptom TB screening rule is about 89% among ART-naive PLHIV, it is only 51% among
people on ART due to a higher prevalence of subclinical TB (i.e., asymptomatic disease, caused
by viable Mycobacterium tuberculosis, detectable by microbiologic tests or radiography [5])
among stable ART patients [6-8]. At a time when global health donors have committed to
reaching over 13 million PLHIV on ART with TPT by 2021 [9], low sensitivity of WHO
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4-symptom screening rule for active TB among PLHIV on ART warrants consideration of
more sensitive screening approaches [10]. Although new WHO guidelines recommend adding
chest radiography (CXR) to the screening rule for PLHIV on ART to increase sensitivity and
negative predictive value (NPV), CXR is not available in many LMIC clinic settings; this
comes at the expense of specificity, carries significant additional costs and operational chal-
lenges, and might hinder rather than expedite TPT scale-up in some LMIC settings [6,11].
Subclinical TB can also be present among severely immune compromised PLHIV [12] and
among pre-ART patients without advanced disease in high prevalence settings [13], among
whom failing to detect active TB can have serious health consequences for patients and impede
disease control activities [14]. Finally, WHO 4-symptom screening rule does not allow TB risk
differentiation into low-, moderate-, and high-risk groups, which might inform differentiated
models of care.

Therefore, we aimed to develop a predictive clinical score based on variables commonly
available in resource-constrained clinics, to define a range of cutoffs, with associated screening
sensitivity, specificity, NPV, positive predictive value (PPV), percentage screened into diagnos-
tic test algorithms, and number needed to screen (NNS) to detect one person with active TB.

Methods

We used data from the Xpert Package Rollout Evaluation using a stepped wedge design
(XPRES) trial conducted in Botswana to derive the predictive TB clinical score [15,16]. We
split XPRES cohort data geographically into 11 southern and 11 northern clinics to serve as an
internal derivation and validation dataset, respectively. We used 2 different but complemen-
tary modeling approaches to generate a parsimonious TB clinical risk score comprised of vari-
ables easily available in a resource-constrained clinic setting: (1) logistic regression models;
and (2) random forest machine learning models. Random forest machine learning models are
particularly useful for identifying important nonlinear associations between predictors and
outcomes because the modeling approach does not rely on assumptions of average linear or
curvilinear associations [17]. Having derived the clinical score, we then used data from 3 other
settings to externally validate the derived clinical score.

Firstly, we used prospective cohort data for XPHACTOR study enrollees from Gauteng
Province, South Africa (SA) [18]. XPHACTOR trial enrollees differed from XPRES enrollees
in that 89% of enrollees were stable on ART at study enrollment versus 0% at XPRES study
enrollment. Secondly, we used cluster randomized trial (CRT) data from the TB Fast Track
(TBFT) trial from Gauteng, Limpopo, and North West Provinces in SA. TBFT trial enrollees
differed from XPRES enrollees in that all had advanced HIV disease (all had CD4 count <150
cells/uL at study enrollment), but, similar to XPRES, no TBFT trial enrollees had started taking
ART [19]. Thirdly, we used prospective cohort data from the Western Cape, SA (the Gugu-
lethu cohort). Gugulethu cohort enrollees differed from XPRES enrollees in that Gugulethu
has a very high background TB notification rate in the general population (>1,000/100,000
population [20]) compared with XPRES enrollees in Botswana where background TB notifica-
tion rates were <500/100,000 [21], although similar to XPRES all Gugulethu cohort enrollees
had not started ART at the time of study enrollment [22]. We compared screening accuracy of
our derived clinical scores with existing WHO TB symptom screening criteria for active TB
among PLHIV in each of these purposefully diverse populations.

XPRES study design and participants for prediction tool development

XPRES was a stepped wedge CRT with a retrospective baseline component conducted at 22
health facilities, including 5 hospitals and 17 clinics, which were purposively selected to be
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representative of HIV treatment clinics in Botswana [15]. In the prospective, stepped wedge
portion of the trial, all nonincarcerated, consenting, HIV-positive persons not yet on ART,
regardless of TB treatment or symptom status, presenting to the study clinics between August
2012 and end of March 2014, were eligible for enrollment. This analysis was limited to adoles-
cents and adults (aged >12 years old), prospectively enrolled in the XPRES trial without a
known TB diagnosis upon arrival at the study clinics (S1 Fig).

XPRES procedures

Per Botswana national guidelines during the time period of the study, all XPRES study partici-
pants were eligible for ART initiation if they had a CD4 count <350 cells/uL, were diagnosed
as having WHO stage III/IV, or were pregnant or breastfeeding [23]. All study participants
received clinical care and follow-up appointments per Ministry of Health and Wellness guide-
lines, which included WHO TB symptom screening at the first and all subsequent clinic visits
(S1 Table).

Interventions. The prospective XPRES cohort was recruited within 2 phases of the
stepped wedge trial. In the first phase, all prospective XPRES participants received 2 enhanced
care interventions in addition to standard of care (SOC): (1) additional support for intensified
TB case finding; and (2) intensified tracing for patients missing clinic appointments. In the
second phase, the Xpert MTB/RIF assay was initiated in place of sputum smear microscopy for
TB diagnosis. We have previously shown that there was no significant difference in TB case
finding between the first and second prospective phases of XPRES (5% versus 6%), although
the prevalence of microbiologically confirmed TB was higher in the post-Xpert study phase
(51% versus 65%) [16]. Details of the enrollment, intensified TB case finding and retention
interventions, and follow-up procedures are described in a Supporting information appendix
(SI1 Text). XPRES participants were followed for 12 months, or until the end of TB treatment,
whichever was later. The final follow-up visits for XPRES enrollees were in June 2015.

Development and internal validation of the prediction model

A clinically useful prediction model should demonstrate accurate prediction of the outcome in
data other than that in which the model was developed. Therefore, we split the XPRES dataset
in an approximately 1:1 ratio into southern clinics (n = 11) and northern clinics (n = 11) with
southern clinics serving as the derivation dataset and northern clinics as the model validation
dataset. This nonrandom approach to splitting the dataset is preferable to randomly splitting
patients into derivation and validation groups because it reduces the similarity of the 2 sets of
patients and is a stricter test of the derived model [24].

Outcome. The outcome of interest for this analysis was new diagnosis of active TB (clini-
cal or microbiologically confirmed), within 6 months of arrival at the HIV treatment clinic. In
this manuscript, this outcome is referred to as undiagnosed prevalent TB at arrival at the HIV
treatment clinic [18,25,26]. Active TB during this initial 6-month post-clinic enrollment
period is considered prevalent rather than incident TB based on prior clinical cohort data
showing that 87% of active TB cases identified in months 0 to 6 after HIV clinic enrollment
could have been diagnosed at the HIV clinic enrollment visit [26]. In addition, data from Zim-
babwe show that the mean duration of smear positivity prior to TB diagnosis among HIV-pos-
itive adults to be 18 to 33 weeks [25]. Precedent for this approach and definition have been
previously published [18]. We implemented intensive efforts to ascertain true active TB disease
among participants with TB case finding procedures previously published and provided in a
Supporting information appendix (SI Text) [15,16].
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Candidate predictor variables. We selected candidate predictor variables for potential
inclusion in the predictive models based on prior publications and the need for variables to be
reproducible, objective, and readily available in resource-constrained clinic settings [27]. We
considered variables known to be associated with active TB including age, sex, marital status,
education level, employment status, previous/current work as a miner, smoking history, prior
TB treatment, history of a TB contact in the last 24 months, presence and number of WHO TB
symptoms, body mass index (BMI) (weight/height?), hemoglobin concentration, CD4 count,
temperature at ART initiation in degrees Celsius, and respiratory rate at enrollment visit
[18,28-30].

Logistic regression model approach. Within the derivation dataset, we performed uni-
variable logistic regression analyses assessing the association of each variable with risk of prev-
alent active TB. Continuous variables were assessed for nonlinearity with log odds of TB using
multivariable fractional polynomial (MFP) models, as well as by comparing Akaike informa-
tion criteria (AIC) and Bayesian information criteria (BIC) between models with linear or frac-
tional polynomial terms. Where nonlinearity was observed, the appropriate fractional
polynomial terms were included in the logistic regression. We also examined scatter plots of
untransformed and transformed continuous variables and risk of TB to assess inflection points
that might inform appropriate categorization of continuous variables. Where inflection points
were close to previously published cutoffs for categorizing continuous variables, the previously
published approach was used.

For the multivariable logistic regression analysis, a complete case analysis was chosen
because few data (<10%) were missing. To inform generation of a parsimonious multivariable
model, we used a stepwise backward elimination approach, starting with all candidate variables
and excluding variables sequentially if p > 0.01 using both automatic and manual approaches.
Prior regression derived scores used p-value cutoffs of >0.05 [18,31,32]; however, there is no
accepted standard p-value cutoff for backward or forward stepwise variable elimination
approaches [27]. Because we aimed to generate a parsimonious model, to increase feasibility of
the practical clinical score in LMIC clinic settings, we used a >0.01 cutoff in line with recom-
mendations from Royston and colleagues [27,33]. We also explored if findings changed using
a forward stepwise addition approach. Where 2 or more predictors were highly correlated,
only 1 was selected, to simplify the prognostic model. Plausible interactions between covariates
(e.g., between sex and BMI [34]) were assessed using the likelihood ratio test.

Random forest model approach. We first built a random forest model with all 15 possible
candidate variables that were included in the backward stepwise elimination approach. We fit
the model using the randomForest R package with 1,000 trees. We used the bestmtry function
to identify the optimum number of variables to be randomly included in each of the 1,000
trees (R version 3.6.1, R Core Team, 2017, R Foundation for Statistical Computing, Vienna,
Austria) [35]. We used this model to order the 15 variables according to importance in predict-
ing TB as measured by the mean decrease in Gini value for each variable [36]. The Gini value
is a measure of decision tree node purity [37]. To develop a single decision tree, the best split
at each node is assessed by evaluating which cutoff gives the most homogenous classifications
(i.e., lowest Gini impurity according to published formulas [37]). The mean decrease in impu-
rity is the average of a variable’s total decrease in node impurity, weighted by the proportion of
samples reaching that node in each individual tree in the random forest. Therefore, high mean
decrease in Gini value indicates higher variable importance (i.e., the variable was on average
important in splitting nodes into groups that had TB versus did not have TB).

We compared results with the logistic regression to assess if potentially important discrimi-
natory variables had been eliminated in the backward stepwise regression. To assess any poten-
tially important loss of discrimination through eliminating variables to create a parsimonious
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model, and to assess potential differences in discriminatory capacity between model
approaches, we compared area under the receiver operating characteristic (AUROC) curve
values between modeling approaches (logistic regression versus random forest) and between
variable selection approaches (models with all 15 variables selected versus parsimonious mod-
els). Information from the backward stepwise regression and random forest modeling was
used to generate the final parsimonious model.

Internal validation of parsimonious model. In both the derivation and validation data-
sets, we assessed multivariable logistic regression model calibration graphically in a calibration
plot [24] and statistically using the Hosmer-Lemeshow test. We also assessed discrimination
using the AUROC values. AUROC values of 0.7 to 0.79, 0.8 to 0.89, and >0.9 are, respectively,
considered acceptable, excellent, and outstanding discrimination [38].

Clinical score generation. The final multivariable model was used to generate a practical
clinical score. For these models, continuous variables were categorized in a clinically meaning-
ful manner based on their functional form and information from the published literature. Per
published precedent, each beta coefficient from this logistic regression model was then
rescaled to generate a clinical score by dividing each coefficient by the smallest positive model
coefficient and rounding to the nearest integer [18,39]. The total number of points was
summed for each participant to calculate their total clinical score. In a sensitivity analysis, we
generated fully standardized coefficients using the listcoef command in STATA (Stata, 2009,
Stata Statistical Software, Release 16, College Station, Texas, United States). We rescaled the
standardized coefficients and assessed whether risk score discrimination varied between the
scores derived from original beta coefficients versus fully standardized coefficients in XPRES,
XPHACTOR, TBFT, and Gugulethu cohorts [40].

External validation of risk scores

To externally validate the clinical risk score, we used data collected independently from the
XPHACTOR cohort [18], TBFT trial [19], and Gugulethu cohort [22]. Characteristics of these
studies as relate to setting, clinic types, eligibility criteria, dates of enrollment, ART eligibility
criteria, TB symptoms screening, TB case finding approaches, and definition of active preva-
lent TB for this analysis are described in a Supporting information appendix (S2 Table).

For both the XPRES cohort (combined derivation and validation datasets) and the 3 valida-
tion datasets, we explored how sensitivity, specificity, PPV, NPV, percentage screened into
diagnostic test algorithms, and AUROC curve values varied with increasing clinical score in
terms of predicting active prevalent TB and compared this screening accuracy and discrimina-
tion performance with the current WHO TB symptom screening rule. Three risk groups were
created to visualize increasing active prevalent TB risk with increasing clinical score and the
percentage of ART enrollees falling into each risk group. The NNS to detect 1 TB case was
compared between WHO TB symptom screening rules and a range of clinical score cutoffs.

All logistic regression and clinical score validation analyses were conducted using STATA
16 (Stata, 2009, Stata Statistical Software, Release 16). All random forest plot analyses and anal-
yses to assess the mean decrease in Gini value associated with candidate predictor variables
were done with R version 3.6.1. (R Core Team, 2017, R Foundation for Statistical Computing).
Evaluating accuracy of different approaches to screening for undiagnosed active TB among
PLHIV and evaluating prevalence and predictors of TB were part of the approved protocol (S1
Protocol). Augmenting the logistic regression approach with use of a machine learning
approach and risk score generation were not prespecified but were used to build confidence in
the analytic approach and translate the prespecified analysis into a screening tool potentially
useful for clinicians. The study is reported in concordance with the Transparent Reporting of a
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multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) guidance for
multivariable prediction models (S1 Checklist).

Ethical review

Ethical approval for each of the source studies was obtained from the relevant ethics commit-
tees in the country of data collection and from the trial sponsors. All participants provided
informed written consent, or where the enrollee could not read or write, witnessed verbal
informed consent. Ethical approvals for XPRES were obtained from the US Centers for Disease
Control and Prevention (CDC) Institutional Review Board (IRB), the Health Research and
Development Division of the Health Research and Development Committee (HRDC) in
Botswana, and the University of Pennsylvania IRB No.4. XPHACTOR was approved by the
ethics committees at the University of the Witwatersrand, University of Cape Town, and the
London School of Hygiene & Tropical Medicine. TBFT was approved by the research ethics
committees of the University of the Witwatersrand and the London School of Hygiene &
Tropical Medicine and the South African Medicines Control Council. The Gugulethu prospec-
tive cohort study was approved by the research ethics committees of the University of Cape
Town and the London School of Hygiene & Tropical Medicine.

Results

From the XPRES cohort, 5,418 eligible adult (>12 years old) study enrollees with complete
data for candidate predictors were included in the analysis (Fig 1). Overall, 318 (6%) of
5,418 enrollees had undiagnosed prevalent active TB at HIV clinic registration and study
enrollment. From this XPRES cohort, the internal derivation (N = 2,771) and validation
(N =2,647) datasets were created (Table 1). Key characteristics including median age (34
years), percentage female (67% to 68%), median CD4 (240 to 249 cells/uL), and prevalence
of active TB at enrollment (5% to 7%) were similar between XPRES derivation and valida-
tion datasets (Table 1).

Variable importance in logistic regression and random forest models

Table 2 summarizes the results of univariable and multivariable logistic regression model
development. Although age (linear continuous variable), education level achieved, prior/
current work as a miner, previous TB treatment, and respiratory rate (transformed variable)
were associated with prevalent TB in univariable analysis, these variables were eliminated in
the stepwise backward elimination approach due to p-values in multivariable analysis
>0.01. The full 15-variable multivariable logistic regression model is in a Supporting infor-
mation appendix (S3 Table). Both backward stepwise elimination and forward stepwise
addition approaches yielded the same results in terms of final variables selected, adjusted
odds ratios, and p-values.

Rankings of variable importance as measured by size of beta coefficient in the logistic
regression model (S4 Table) and by mean decrease in Gini value in the random forest model
(S2 Fig) were similar with respect to presence or absence of WHO TB symptoms, temperature,
and BMI, with these variables among the most important predictors. Notably, the transformed
term of BMI, which was eliminated in the backwards stepwise logistic regression at p = 0.408,
was considered the second most important variable according to the mean decrease in Gini
value approach (52.766) and third most important in terms of size of the logistic regression
beta coefficient (1.617). Given the importance of BMI in the variable ranking approach, impor-
tance in the published literature, and availability in resource-constrained clinics, BMI was
retained in final multivariable model (Table 2). The final multivariable model included sex,

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003739  September 7, 2021 8/28


https://doi.org/10.1371/journal.pmed.1003739

PLOS MEDICINE Risk score for predicting HIV-associated tuberculosis

XPRES (Botswana) XPHACTOR (SA: Gauteng)
0.081 ARTRADE BVEIIG 3,275 PLHIV both ART-naive and
attendees enrolled in intervention Excluded: ART-ciaatiaroad
phases of XPRES 22 children <12 years old P Excluded:
« 152 PLHIV already on TB [———* Ochildren<12yearsold
Eligible: treatment Eligible: ¢ OPLHIV already on TB treatment
5,867 not already on TB treatment 3,275 not already on TB treatment

Excluded: Excluded:

* 38 with missing CD4 at * 3 with missing CD4 at enrollment
enrollment * 4 with missing BMI at enrollment

* 9 with missing weight at * 1,461 with missing hemoglobin
enrollment « Temperature not available

* 21 with missing height at B o

Included in analysis: el Included in analysis:
5,418 R - . 1,807
: * 370 with missing hemoglobin

¢ 11 with missing temperature

Not diagnosed Diagnosed Not diagnosed Diagnosed
with TB: 5,100 with TB: 318 with TB: 1724 with TB: 83
(94.1%) (5.9%) (95.4%) (4.6%)
Microbiologically e Microbiologically ini :
confirmed TB: 160 ST confirmed TB: 62 e
TB Fast Track (SA: Gauteng, Limpopo, North West) Gugulethu Cohort (SA: Cape Town)
- s 602 eligible PLHIV attending the
1,507 ART-na|vg PLHIV enrolled in HIV clinic were enrolled in
the intervention arm of TBFT Excluded: intensive TB screening Exclude‘d:
* Ochildren <12 years old e O children <12 years old
l—‘ * O0PLHIV already on TB treatment
— * OPLHIV already on TB Eligible:
Eligible: treatment 602 not already on TB treatment
1,507 not already on TB treatment
Excluded:
Excluded: * 60 could not produce sputum
* 1 with missing CD4 at enroliment + 19 had no Xpert results
* O with missing weight at * 2 with missing CD4 at enrollment
) gr:A:ci)tler:i:tsing height at * 0 with missing weight at
- - lisient Included in analysis: enroliment
Inclidedinanalysis: e o8 488 included in the analysis * O with missing height at
793 included in the analysis * 1 with missing hemoglobin : enrollment
* 281 with missing temperature « 33 with missing hemoglobin
¢ 431 with missing TB culture data + Temperature data not available
: = Not diagnosed Diagnosed
Not diagnosed Diagnosed with TB: 398 with TB: 90
with TB: 716 with TB: 77 (81.6%) (18.4%)
(90.3%) (9.7%)
Microbiologically _ 1 Microbiologically " y
confirmed TB: 77 ALl o0 confirmed TB: 90 Clinicalile 1

Fig 1. Study profiles for the derivation and validation datasets. ART, antiretroviral therapy; PLHIV, people living with HIV; SA, South Africa; TB,
tuberculosis; TBFT, TB Fast Track.

https://doi.org/10.1371/journal.pmed.1003739.9001

smoking history, presence/absence of >1 WHO TB symptom, BMI (as a transformed term per
the MFP analysis), temperature (modeled as 2 transformed terms per the MFP analysis), and
hemoglobin concentration (continuous, linear term) (Table 2). There was no substantial corre-
lation between measured temperature in its transformed or linear form and reported fever
(Pearson correlation coefficient (r) = 0.1316) or between measured temperature and >1
reported WHO TB symptom (r = 0.0846).
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*

Table 1. Comparison of derivation and validation datasets (internal and external).

Derivation dataset (Botswana Validation dataset (Botswana External validation dataset (SA, External validation dataset External validation dataset
southern clinics: N = 2,771) northern clinics: N = 2,647) XPHACTOR: N = 1,807) (TBFT, SA: N = 793) (Gugulethu cohort, CT, SA:
N =488)
Demographics n | (Median or %) n | (Median or %) n | (Median or %) n | (Median or %) n | (Median or %)
Age (years) n, median (IQR) 2,771 | 34.3 (28.8 to 41.3) 2,647 | 33.5(28.3 t0 40.8) 1,807 | 40.0 (34.0 to 47.0) 793 | 38.0 (32.0 to 45.0) 488 | 33.6 (27.9 t0 40.7)
Female, n, % 1,862 | 67% 1,790 | 68% 1,290 | 71% 424 | 53% 310 | 64%
If female, pregnant, n, % 499 | 27% 568 | 32% 0| 0% 0| 0% 0| 0%
Marital status, n, | Married/ 306 | 11% 242 | 9%
% civil union
Single 2,353 | 85% 2,322 | 88%
Widowed 112 | 4% 83 | 3%
/divorced
Smoking history (ever), n, % 466 | 17% 575 | 22% 388 | 21% 180 | 23% 185 | 38%
Employed, 1, % 1,467 | 53% 1,023 | 39%
Education, n, % None 154 | 6% 235 | 9%
Primary 637 | 23% 614 | 23%
Secondary 1,689 | 61% 1,597 | 60%
Higher 291 | 11% 201 | 8%
Ever a miner, 124 | 4% 143 | 5%
n, %
HIV/TB history
Taking ART at study 0| 0% 0| 0% 1,612 | 89% 0| 0% 0| 0%
enrollment
Previous TB treatment, 7, % 232 | 8% 169 | 6% 130 | 27%
TB contact in last 24 months, 266 | 10% 230 | 9%
n, %
‘WHO TB symptoms, #, %
Cough 533 | 19% 466 | 18% 364 | 20% 424 | 53% 243 | 50%
Weight 533 | 19% 577 | 22% 243 | 13% 621 | 78% 331 | 68%
loss
Fever 262 | 9% 223 | 8% 105 | 6% 269 | 34% 139 | 28%
Night 257 | 9% 243 | 9% 135 | 7% 297 | 37% 199 | 41%
sweats
Number of WHO 0 1,979 | 71% 1,837 | 69% 1,299 | 72% 133 | 17% 67 | 14%
TB symptoms, 1, %
1 349 | 13% 397 | 15% 384 | 21% 173 | 22% 127 | 26%
2 200 | 7% 203 | 8% 136 | 8% 191 | 24% 135 | 28%
3 136 | 5% 134 | 5% 41 | 2% 145 | 18% 121 | 25%
4 107 | 4% 76 | 3% 17 | 1% 151 | 19% 38 | 8%
Duration of WHO | n, median 792 | 60 (30 to 120) 810 | 60 (21 to 150)
symptoms | (IQR)
Clinical characteristics
CD4* T-cell count | 1, median 2,771 | 240 (131 to 314) 2,647 | 249 (151 to 321) 1,807 | 400 (246 to 600) 793 | 73 (34 10 109) 488 | 167 (95 to 231)
(cells/uL) | (IQR)
Weight (kg)** n, median 2,771 | 59 (52 to 69) 2,647 | 60 (53 to 69) 793 | 57 (50 to 66) 488 | 64 (56 to 73)
(IQR)
BMI (kg/m?) 1, median 2,771 | 21.8 (19.2 to 25.4) 2,647 | 21.5 (18.9 to 24.7) 1,807 | 25.0 (21.4t0 29.3) 793 | 20.9 (18.6 to 24.5) 488 | 23.5 (209 t0 27.1)
(IQR)
Hemoglobin n, median 2,771 | 11.9 (10.5 to 13.3) 2,647 | 12.0 (10.7 to 13.4) 1,807 | 13.1 (11.8 to 14.3) 793 | 11.1 (9.6 to 12.8) 488 | 12.0 (10.6 to 13.4)
g/dL (IQR)
Temperature n, median 2,771 | 36.2 (35.8 to 36.7) 2,647 | 36.1 (35.7 to 36.5) 793 | 36.3 (36.0 to 36.6)
() (IQR)
Respiratory rate | n, median 2,771 | 20 (18 to 21) 2,647 | 18 (17 to 20)
(breaths/min) | (IQR)
New TB diagnosis
Cumulative prevalent active 189 | 6.8% 129 | 4.9% 83 | 4.6% 77 | 9.7% 90 | 18.4%
TB, n, %
Cumulative incidence 96 | 3.5% 64 | 2.4% 62 | 3.4% 77 | 9.7% 90 | 18.4%
microbiologically confirmed TB, n, %
Time to diagnosis of | 1, median 189 | 16 (7 to 35) 129 | 19 (4 to 48)
prevalent TB (days) | (IQR)

* Where variable is blank, the data were not collected or not provided from the source study for this analysis.
** BMI was used as the covariate for nutritional status rather than weight (weight was not considered as an independent predictor).
BMI, body mass index; CT, Cape Town; IQR, interquartile range; SA, South Africa; TB, tuberculosis; TBFT, TB Fast Track; WHO, World Health Organization.

https://doi.org/10.1371/journal.pmed.1003739.t001
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Table 2. Univariable and multivariable logistic regression analysis in the derivation dataset (N = 2,771).

Not diagnosed with TB Diagnosed with TB Unadjusted Final adjusted regression
(N=2,582) within 6 months | op | 950, C1 p-value | AOR |95% CI p-value
(N=189)
Demographics n | Median(IQR)/% n | Median(IQR)/%
Age, years (for every 10-year increase) 34 (29 to 41) 38 (32 to 44) 1.24 | (1.15to 1.33) | <0.001
Sex Female 1,768 | 95% 94 | 5% 1.00 | -- -- 1.00 | -- --
Male 814 90% 95 | 10% 2.20 | (1.63t02.95) | <0.001 1.91 | (1.27 t0 2.88) | 0.002
Marital status Married/civil union | 288 | 94% 18 | 6% 1.00 | -- --
Single 2,190 | 93% 163 | 7% 1.19 | (0.71t0 2) 0.508
Widowed/divorced | 104 | 93% 8| 7% 1.23 | (0.44 to 3.41) | 0.690
Smoking history (ever smoked) No 2,165 | 93% 154 | 7% 1.00 | -- -- 1.00 | -- --
Yes—ever smoked | 417 89% 50 | 11% 1.82 | (1.56 to 2.12) | <0.001 1.44 | (1.12to 1.85) | 0.004
Employed Employed 1,370 | 93% 97 | 7% 1.00 | -- --
Unemployed 1,212 | 93% 92 | 7% 1.07 | (0.71to 1.62) | 0.742
Education None 137 | 89% 17 | 11% 1.00 | -- --
Primary 588 | 92% 49 | 8% 0.67 | (0.38t0 1.18) | 0.166
Secondary 1,576 | 93% 113 | 7% 0.58 | (0.35t0 0.95) | 0.030
Higher 281 | 97% 10 | 3% 0.29 | (0.14 t0 0.58) | <0.001
Ever a miner No 2,478 | 94% 169 | 6% 1.00 | -- -
Yes 104 84% 20 | 16% 2.82 | (2.04t03.9) <0.001
HIV/TB history
Previous TB treatment No 2,381 | 94% 158 | 6% 1.00 | -- --
Yes 201 | 87% 31 | 13% 2.32 | (143 t03.78) | 0.001
Any TB contact in last 24 months | No 2,339 | 93% 180 | 7% 1.00 | -- --
Yes 243 91% 24 | 9% 1.33 | (0.83t02.14) | 0.233
Number of WHO symptoms 0 1,936 | 98% 43 | 2% 1.00 | -- --
>=1 646 82% 146 | 18% 10.18 | (6.79 to 15.26) | <0.001 6.91 | (4.55t0 10.49) | <0.001
Clinical characteristics
CD4 (per 10-cell increase) 2,582 | 247 (139 to 316) | 189 | 151 (57 to 255) 0.96 | (0.94100.97) | <0.001
Weight (per 1-kg increase)® 2,582 | 59.4 (52.3t0 69.2) | 189 | 53.7 (47.0 t0 62.0) | 0.97 | (0.95 t0 0.99) | 0.001
BMI (per 1-unit increase)” 2,582 | 21.9 (19.4 t0 25.5) | 189 | 19.4 (17.2 t0 22.3) | 0.90 | (0.83 t0 0.97) | 0.004 0.98 | (0.93 to 1.05) | 0.612
Hemoglobin (per 1g/dL increase) 2,582 | 12.0 (10.6 to 13.3) | 189 | 10.6 (9.2 to 12.3) 0.76 | (0.69 to 0.83) | <0.001 | 0.78 | (0.7 to 0.86) <0.001
Temperature at enrollment (per 1°C increase)” 2,582 | 36.2 (35.8 t0 36.6) | 189 | 36.4 (36.0to 37.1) | 2.13 | (1.57t0 2.88) | <0.001 | 1.46 | (1.18to 1.81) | <0.001
| RR (breaths/min)® \ 2,582 | 20 (18 to 20) 189 | 20 (18 to 22) 1.03 | (1.01 to 1.05) | 0.010

* Due to correlation between weight and BMI (r = 0.8837), weight was not included in the stepwise backward regression, because BMI is a better measure of nutritional
status than weight alone.

® Due to nonlinearity in the association between BMI and log odds TB, BMI was modeled as a transformed term from the MFP analysis (transformed BMI = XA—.5
—.666749355, where X = BMI/10). Output shown is for the single linear term to facilitate interpretation of average BMI effect (i.e., higher BMI associated with lower TB
risk). In the backward stepwise regression, the p-value associated with BMI term was 0.4077 at point of elimination. Given the importance of BMI as a predictor in the
random forest model (second most important predictor), ease of availability of this variable in almost all resource-limited clinics, and importance of BMI in published
literature, BMI was retained in the final adjusted model.

¢ Due to nonlinearity in the association between temperature and log odds TB, temperature was modeled as 2 transformed terms (term 1 = temperature -36.12674419;
term 2 = temperat"2—1305.141645). Output shown is for the single linear term to facilitate interpretation of average temperature effect (i.e., higher temperature
associated with higher TB risk). In the backward stepwise regression, the p-value associated with each transformed term was 0.005 and 0.004, respectively.

4 Due to nonlinearity in the association between RR and log odds TB, RR was modeled as a transformed term from the MFP analysis (transformed term = XA—1
—5.170636738, where X = RR/100). Output shown is for the single linear term to facilitate interpretation of average RR effect (i.e., higher RR associated with higher TB
risk). In the backward stepwise regression, the p-value associated with the transformed term was 0.0251 at the point of elimination from the model.

AOR, adjusted odds ratio; BMI, body mass index; CI, confidence interval; IQR, interquartile range; MFP, multivariable fractional polynomial; OR, odds ratio; RR,
respiratory rate; TB, tuberculosis; WHO, World Health Organization.

https://doi.org/10.1371/journal.pmed.1003739.t002
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AUROC curve for multivariable predictive TB model in southern clinics (Derivation dataset; N=2,771)

Internal validation of final multivariable regression model

For the derivation dataset, the Hosmer-Lemeshow statistic for the TB prediction model

(p = 0.135) (S5 Table), and the calibration curve (Fig 2), indicated good model fit. Although
the Hosmer-Lemeshow statistic for the internal validation dataset (p = 0.0001) indicated lack
of fit with overestimation of prevalent TB, with 169 cases of prevalent TB predicted versus 129
observed, (1) the Hosmer-Lemeshow test is sensitive to sample size, and our sample size is
large; and (2) the calibration curve (Fig 2) indicated adequate prediction performance for the
10 risk groups. In addition, the AUROC curve values for the derivation (0.839; 95% CI, 0.811
to 0.868) and validation datasets (0.799; 95% CI, 0.757 to 0.841) indicated excellent and bor-
derline excellent discrimination, respectively (Fig 2).

Comparison of regression and random forest discrimination

Comparison of discriminatory performance between 15-covariate and 6-covariate parsimoni-
ous models (53 Fig) indicated very little loss of discrimination by eliminating 9 of the covari-
ates from the predictive model, building confidence in the final multivariate model. Similarly,
although the random forest approach had far superior discrimination on the derivation dataset

AUROC curve for multivariable predictive TB model in northern clinics (Validation dataset; N=2,647)
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Fig 2. Logistic regression model AUROC curves and calibration curves for the internal derivation and validation datasets, respectively. AUROC, area under the
receiver operating characteristic; TB, tuberculosis.
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versus the logistic regression approach, both modeling approaches had similar discrimination
in the internal validation dataset (S3 Fig).

Transformation from regression model to clinical score

We used WHO-recommended cutoffs for severe anemia in adults (<8.0 g/dL) [41] and for
being underweight (BMI<18.5 kg/m®) to categorize hemoglobin and BMI variables, respec-
tively. Temperature was classified as <37.5°C versus >37.5°C based on the observed distribu-
tion of TB prevalence risk as measured temperature increased and a common definition of a
low-grade fever or higher (>37.5°C) (54 Fig) [42]. The multivariable model with categoriza-
tion of these continuous variables in the derivation dataset is presented in Table 3.

The final model, categorized in this way, retained excellent discrimination in the deriva-
tion dataset (AUROC 0.823; 95% CI, 0.793 to 0.853) and acceptable discrimination in the
validation dataset (AUROC 0.771; 95% CI, 0.727 to 0.815), and the Hosmer-Lemeshow sta-
tistic p-values were 0.1940 in the derivation and 0.0002 in the validation datasets indicating
similar goodness of fit as was observed prior to variable categorization. The clinical scores
that could be used in clinic settings to identify those at risk of prevalent active TB are illus-
trated in Fig 3.

External validation of risk scores

The clinical score for each predictor was generated and applied to each external dataset, where
the possible range for the total score was 0 to 20 (S6 Table). Performance of the clinical score
at different cutoffs, in terms of sensitivity, specificity, NPV, PPV, and the percentage of clinic
enrollees that would be offered a TB test is provided in a Supporting information appendix (S5
Fig). Across the 4 datasets, a clinical score of >7 would give similar sensitivity and specificity
to WHO 4-symptom TB screening rule. Moving the clinical score to >2 would give superior
sensitivity versus WHO 4-symptom TB screening rule, but with some loss of specificity. For
example, sensitivity in detecting prevalent active TB using WHO 4-symptom TB screening
rule was 73%, 80%, 94%, and 94% in XPRES, XPHACTOR, TBFT, and Gugulethu cohorts,
respectively, but this increased to 88%, 87%, 97%, and 97%, when a clinical score of >2 was
used. However, specificity would decline from 73%, 70%, 18%, and 16% if WHO 4-symptom
TB-screen was used to 55%, 58%, 13%, and 12% if the clinical score of >2 was used. Similarly,

Table 3. Multivariable model and clinical score in the derivation dataset (N = 2,771).

Predictor
WHO TB symptoms

Sex

Smoker

Hemoglobin

Temperature

BMI

No symptoms
>1 symptom
Female

Male

Never

Ever smoked
>8 g/dL

<8 g/dL
<37.5

>37.5

>18.5

<18.5

AOR 95% CI p-value B coefficient Score
1.00 | -- -
7.00 | (4.66 to 10.52) <0.001 1.95 7
1.00 | -- --
1.35 | (0.88 to 2.08) 0.173 0.30 1
1.00 | -- --
1.32 | (1.03to 1.7) 0.030 0.28 1
1.00 | -- --
2.50 | (1.28 to 4.85) 0.007 0.91 3
1.00 | -- -
5.53 | (3.5t08.72) <0.001 1.71 6
1.00 | -- -
1.70 | (1.12 to 2.59) 0.013 0.53 2

AOR, adjusted odds ratio; BMI, body mass index; CI, confidence interval; TB, tuberculosis; WHO, World Health Organization.

https://doi.org/10.1371/journal.pmed.1003739.t003
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Risk Factor Category Associated Assigned score
points
Female 0
Sex
Male 1
.
No. of WHO TB Zero 0
symptoms
(cough, fever, weight loss,
night sweats) 21 7 +
Never 0
Smoker
Ever smoked 1
L o
<37.5 0
Temperature (°C)
>37.5 6
L o
>18.5 0
BMI (kg/m?)
<18.5 2
L o
Hemoglobin Level 28.0 0
(g/dL) <8.0 3
Total
F: ¥ '
<2 = low risk 2-10 = moderate risk >10 = high risk

Fig 3. Clinical score for predicting TB among PLHIV. BMI, body mass index; PLHIV, people living with HIV; TB, tuberculosis; WHO, World Health

Organization.

https://doi.org/10.1371/journal.pmed.1003739.9003

the percentage of patients screened into a TB diagnostic test algorithm (referred to as “screen
in” in S5 Fig) per WHO 4-symptom TB screening rule would be 30%, 32%, 83%, and 86% in
the XPRES, XPHACTOR, TBFT, and Gugulethu cohorts, respectively, but this increases to
45%, 42%, 87%, and 88% if a clinical score of >2 is used.

Notably, when the XPHACTOR dataset was restricted to clients on ART for >3 months,
the clinical score retained good sensitivity and moderate specificity (S6 Fig). For example, at
clinical score >2, sensitivity was 80% and specificity 60% versus WHO 4-symptom screening
criteria that provided 69% sensitivity and 72% specificity.

The NPV of WHO 4-symptom TB screen was 97.7% and 98.6%, 96.2%, and 92.5% in the
XPRES, XPHACTOR, TBFT, and Gugulethu cohorts, increasing to 98.7%, 98.9%, 97.8%, and
94.2% when the clinical score at cutoff >2 was used, reflecting a 1%, 0.3%, 1.6%, and 1.7%
increase in NPV.
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When restricting the XPRES and TBFT cohorts to those who died within 6 months of clinic
enrollment, the clinical score at a cutoff of >2 had superior sensitivity to WHO 4-symptom
TB screen in predicting TB in the XPRES cohort (94% versus 79%) and similar sensitivity in
the TBFT cohort (100% versus 100%) (S7 Fig). However, specificity of the clinical score at >2
was inferior to that of WHO 4-symptom TB screen in both XPRES (16% versus 31%) and
TBFT (3% versus 8%) cohorts.

Overall, the clinical score had superior discrimination in the XPRES and XPHACTOR
datasets than in the TBFT and Gugulethu cohorts (S8 Fig). The XPRES and XPHACTOR
cohorts were more similar with respect to median baseline CD4 count (245/pL in XPRES and
400/pL in XPHACTOR) compared with TBFT and Gugulethu cohorts (73/uL in TBFT and
167/uL in Gugulethu cohorts) (Table 1). Similarly, XPRES and XPHACTOR cohorts were
more similar with respect to baseline prevalence of active prevalent TB (6% in XPRES and 5%
in XPHACTOR) compared with TBFT and Gugulethu cohorts (10% in TBFT and 18% in
Gugulethu cohort).

In 4 sensitivity analyses, we compared discrimination of our final risk score, derived from
the multivariable model beta coefficients described in Table 3 versus (1) risk scores derived
from fully standardized beta coefficients; (2) risk scores excluding BMI (the variable identified
as important by random forest model variable ranking); (3) risk scores excluding hemoglobin
(the only variable requiring a blood test); and (4) risk scores excluding sex and smoking (vari-
ables assigned only 1 point in the risk score). In all sensitivity analyses, our final risk score had
modest but consistently superior discrimination across XPRES, XPHACTOR, TBFT, and
Gugulethu cohorts (S7 Table).

Risk scores were grouped into low (<2), moderate (2 to 10), and high-risk categories (>10)
(Fig 4). Prevalence of active TB among enrollees in low-, moderate-, and high risk groups was
1%, 3%, and 33% among XPRES enrollees, 1%, 11%, and 22% among XPHACTOR enrollees,
2%, 8%, and 26% for TBFT enrollees, and 6%, 19%, and 32% for Gugulethu cohorts, respec-
tively, indicating a differentiation of prevalent TB risk by the respective clinical scores.

NNS to diagnose one TB case

In the cohorts with the highest prevalence of active TB (TBFT and Gugulethu), a clinical score
with cutoff of >2 would give a marginally higher NNS to diagnose one TB case compared with
the 4-symptom WHO screen (Fig 5); the NNS increased from 8.6 to 9.3 in TBFT and from 4.7
to 5.0 in Gugulethu cohorts. In contrast, in cohorts with lower prevalence of active prevalent
TB (XPPRES and XPHACTOR), the NNS increased to a larger extent (from 5.0 to 9.3 in
XPRES and from 6.9 to 11.0 in XPHACTOR). The NNS in the highest risk group with clinical
score >10 (i.e., equivalent to >11 in Fig 5) was uniformly low being 3.0, 4.5, 3.9, and 3.1 in
XPRES, XPHACTOR, TBFT, and Gugulethu cohorts, respectively. If the NNS threshold was
set at about 5.0, this would correspond to clinical scores of about >9 to 10 in XPRES, XPHAC-
TOR, and TBFT cohorts, but >2 in the Gugulethu cohort.

Discussion

To our knowledge, this study provides new information by deriving and externally validating
an initial clinical score for active TB among both ART-naive and ART-experienced adult
PLHIV that includes but does not rely solely on WHO TB symptom screening and allows flexi-
bility in choosing the desired sensitivity, specificity, NPV, PPV, and NNS across a range of cut-
offs, depending on the setting, use case scenario, and population served. In addition, following
further validation and evaluation steps, the screening tool could potentially be used to reduce
the likelihood of missing subclinical TB, which accounted for 6% to 27% of all TB cases across
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studies; this could potentially help reduce morbidity and mortality due to late or missed TB
diagnosis and reduce TPT prescription to PLHIV needing a full TB treatment course. Simi-
larly, following further validation efforts, the screening tool’s differentiation of 3 risk groups
could be used to inform differentiated care in LMIC clinic settings, which could potentially
improve efficiency and impact morbidity and mortality. Finally, the different modeling
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approaches provide unique insight into covariate predictor importance and practical ways
machine learning can be helpful in predicting TB.

While 5 previous studies have generated clinical scores for TB among PLHIV, 3 were
designed as a second step after screening positive using WHO 4-symptom TB screening rule
[18,32,43], and 2 generated a relatively complex score (13 signs and symptoms), were focused
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on ART-naive patients only in Bissau, and lack external validation [44,45]. One recent TB clin-
ical score was derived from a cohort of HIV-positive and HIV-negative patients in SA who
had symptoms of active TB; however, this score would not be able to detect asymptomatic
active TB among PLHIV [46]. Our tool was deliberately designed to use widely available vari-
ables in LMIC settings and was externally validated using 3 different cohorts. The only blood
test needed for our score is hemoglobin concentration. Point-of-care (POC) hemoglobin mea-
surement devices are widely available, durable, easy to use, have good accuracy [47,48], are
useful for non-HIV-related care, and are inexpensive [49]. Noninvasive transcutaneous spec-
trophotometry solutions for hemoglobin measurement are also available but require further
evaluation of accuracy, feasibility, and acceptability [50-52]. In addition, the importance of
severe anemia as a predictor of active TB [53], as well as the biological mechanism (i.e., hepci-
din-driven iron sequestration in the reticuloendothelial system), has been well described
[54,55]. Other studies have examined the screening accuracy of C-reactive protein (CRP) com-
pared with WHO 4-symptom TB screen with results differing between studies, settings, and
population groups [56-58]. A recent meta-analysis comparing CRP to WHO 4-symptom
screen showed comparable sensitivity and higher or similar specificity [59]. The key barrier to
use of CRP is that access to POC CRP blood tests is currently very limited [57]. As access to
CRP tests expand, future evaluations including CRP in similar risk scores is needed [60].

Measured temperature at >37.5°C, an additional variable routinely available in LMIC clinic
settings, was also independently predictive of TB, indicating the importance of objective mea-
sures of fever in addition to patient history [61]. The lack of correlation between reported fever
and measured temperature might be due to lack of subjective experience of fever, especially if
the fever is chronic or low grade, incomplete understanding of the symptom screening ques-
tion by the client living with HIV, or patient preference not to acknowledge subjective feelings
of fever [44,45].

While the use of electronic medical records (EMRs) are expanding in resource-constrained
settings, POC EMR systems that can run regression models retaining continuous rather than
categorized variables [62] are not widely accessible in LMIC settings due to logistical and
resource constraints of equipment procurements and maintenance, limited and inconsistent
access to electricity, and computer literacy capacity [63,64]. Our score that could be used in
both paper-based approaches and simple EMR solutions is therefore appropriate for the setting
it is designed for [18,39].

A potential advantage of our clinical score over WHO 4-symptom screening tool is that the
score could be used by program managers to choose the desired cutoff with associated sensitiv-
ity, specificity, NPV, PPV, and NNS. For example, among people starting or restarting ART,
among whom mortality risk from undiagnosed disseminated TB remains relatively high, a
more sensitive screening tool could help reduce morbidity and mortality [2,65]. Notably, in
the XPRES cohort, sensitivity of detecting TB at the initial HIV clinic visit among those who
died within 6 months of clinic enrollment increased from 79% with WHO 4-symptom rule to
94% with our clinical score at cutoff >2, suggesting the potential for improved early case find-
ing with possible morbidity and mortality reductions [14,16]. However, further evaluation and
validation of the screening tool is needed.

In addition, with support from global health donors, many countries are embarking on
ambitious TPT scale-up for PLHIV, with the majority of targeted TPT recipients being long-
term stable ART patients [9]. Following the 2018 United Nations high-level meeting on TB,
the US President’s Emergency Plan for AIDS Relief (PEPFAR) committed to reaching >13
million PLHIV with TPT by 2021 [9]. Although increases in NPV by using a clinical score cut-
off of >2 instead of WHO 4-symptom TB screen are modest, ranging from 0.3% to 1.7%, use
of the clinical score cutoff of >2 during the proposed TPT scale-up for PLHIV could
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potentially avoid 19,500 to 97,500 PLHIV with active TB (assuming 5% TB prevalence) or
39,000 to 195,000 PLHIV (assuming 10% TB prevalence) being inappropriately prescribed
TPT. Missed active TB increases morbidity and mortality risk for the patient, but also increases
risk of isoniazid-resistant TB [9], which is associated with worse treatment outcomes and may
be transmitted to others [10,66]. Our simple screening rule approach to increasing sensitivity
and NPV would be much less expensive and logistically challenging than the current WHO
recommendation to consider adding CXR, which is not widely available at LMIC clinic set-
tings, to WHO symptom screen [11,67]. In addition, the NPV increase associated with adding
CXR to WHO screening rule of 0.9% (at 5.0% TB prevalence) is similar to the NPV increase
gained by our much simpler and less costly clinical score at cutoff >2 (0.3% to 1.7% at TB
prevalence of 4.6% to 18.4%) [6].

Another potential advantage of the clinical score is that the cutoff can be tailored to the use
case scenario [68]. As described above, for clients at ART enrollment, reenrollment, or being
assessed for TPT eligibility, ruling out active TB is a high priority, and, therefore, high sensitiv-
ity and NPV are desired and a cutoff of >2 could be chosen. However, for stable patients on
long-term ART who have completed a course of TPT, a screening rule cutoff with higher speci-
ficity and therefore higher PPV (e.g., cutoff >10) could be chosen to lower the NNS and
improve efficiency and cost-effectiveness [18,69,70].

The clinical score could also facilitate differentiated TB care based on TB risk [71]. Firstly,
the clinical score is relatively simple and could be used by community healthcare workers in
the community [71], with community-based care models for HIV and TB increasingly impor-
tant to decongest health facilities during the Coronavirus Disease 2019 (COVID-19) pandemic
[72]. Secondly, the score could facilitate identifying which new or long-term ART patients
should be prioritized for dedicated adherence and retention resources to ensure completion of
the TB diagnostic and treatment cascade, with loss to follow-up from HIV-TB care a common
problem in LMIC [16,73,74]. Similarly, prioritization of limited on-site GeneXpert diagnostics
can be informed by the clinical score to increase cost-effectiveness of POC Xpert use [75].
Finally, diagnostic and therapeutic algorithms could be stratfied by risk groups, with more
aggressive TB case finding and treatment approaches appropriate for highest risk groups (e.g.,
sputum culture, urinary diagnostics, abdominal sonography, or empiric TB treatment) [19].
For example, for patients who are severely ill, and where TB diagnostics are not available or
have long turnaround times, a high clinical score of >10, which has a PPV of 22% to 33%,
could guide rapid initiation of empiric TB treatment [76].

The dual modeling approach of logistic regression and use of random forest machine learn-
ing helps to build confidence in the final practical clinical score for use in LMIC clinic settings.
The random forest approach, similar to other machine learning approaches, is better able to
capture nonlinear relationships between predictors and outcomes compared with well-estab-
lished generalized linear regression models [17], because random forest models are not depen-
dent on making assumptions of average linear or curvilinear associations between covariates
and outcomes. Among machine learning models, random forest models are particularly strong
at predicting categorical outcomes like our TB outcome [77]. For example, despite using the
fractional polynomial transformed BMI variable in the logistic regression backward stepwise
elimination approach, it was eliminated from the parsimonious model at p > 0.01. In contrast,
the importance of BMI in discriminating prevalent active TB using the mean decrease in Gini
value analysis indicated the importance of BMI in its ability to accurately split groups of
patients into those who have or do not have prevalent active TB across the 1,000 decision trees
examined in our random forest model. The high ranking of BMI according to mean decrease
in Gini value indicates the significant decrease in average, weighted decision tree node purity
that occurred when BMI was removed from the possible list of predictor variables [77].
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Our analysis also indicates a potential weakness of machine learning approaches. Although
the random forest model is superior to single decision trees in reducing the likelihood of over-
fitting to the training data [77], we observed extremely high discrimination of the random for-
est model on the training data and a significant drop in discrimination on the validation data.
This highlights the importance of a stringent validation approach [17]. Notably, the most
widely available training resources and publications use a random 75%:25% split to create
training and validation datasets for random forest models [36], but we purposefully split the
dataset into northern and southern clinics in Botswana with a 50%:50% split, which is in line
with more stringent validation approaches that help better assess generalizability of predictive
models [17,24]. The tendency of the machine learning approach used in this study to overfit to
the training data is therefore a limitation of the study. However, this joint approach of using
multiple modeling approaches represents a useful contribution to the TB screening literature
in line with emerging expert guidance [78,79].

Components of this study that build confidence in the results include the use of data from
high-quality prospective cohorts, meaning there was minimal missing covariate data and strong
ascertainment of the primary outcome of interest (prevalent active TB) through strengthened ICF
in XPRES throughout follow-up and baseline collection of sputum samples for TB diagnosis in all
3 validation cohorts. The study observed high screening accuracy in the 3 external validation
cohorts, XPHACTOR, TBFT, and Gugulethu cohorts, representing 3 geographically separate
cohorts, with very different cohort characteristics, in very different settings. Limitations include
that the risk score has been validated in adult cohorts of PLHIV in sub-Saharan Africa (SSA) and
may not be generalizable to pediatric cohorts or cohorts in resource-rich settings like the US and
Europe. In addition, our goal was to validate the simple clinical risk score in external validationd
datasets, rather than the statistical models; therefore, only the clinical risk scores should be con-
sidered externally validated in this analysis. In addition, further evaluation and validation of this
approach is needed in SSA, especially in East and West African cohorts. Since only 1 cohort
(XPHACTOR) included patients currently on ART, further evaluation in cohorts of long-term
ART enrollees would be helpful. Another limitation is that the approaches to TB case finding
were different across the 4 cohorts and that for the XPRES and XPHACTOR cohorts a clinical
definition of TB was included in the TB outcome definition, whereas for TBFT and Gugulethu
cohorts, results of enrollment sputum collection for TB culture and Xpert were used to define the
TB outcome. However, model results did not change substantially when we restricted the TB out-
come in XPRES and XPHACTOR datasets to microbiologically confirmed TB [18]. In addition,
our score does not replace WHO 4-symptom screening rule for active TB, but rather supplements
WHO screening rule with additional data variables to help detect asymptomatic (subclinical) TB,
allow for flexibility in choosing cutoffs, and allow differentiated care. Additional evaluation is
needed to further determine feasibility and added benefit of collecting the additional variables.

Another limitation is that in XPRES, sputum samples for microbiological diagnosis were
only obtained from symptomatic XPRES enrollees at enrollment and during follow-up.
Although the intensive TB symptom and ICF cascades during repeat visits during 6 months of
follow-up in XPRES make it less likely that active TB disease was missed over the course of 6
months of follow-up [26], persistently, subclinical TB disease would have been missed. In addi-
tion, in the XPHACTOR dataset, 45% of study participants were excluded from the validation
dataset due to missing hemoglobin, and in the TBFT dataset, 29% were excluded because they
could not produce sputum for culture at trial enrollment. Comparisons of available patient
characteristics between persons excluded versus included in the validation datasets did not
indicate notable differences, but additional validation exercises in contemporary cohorts with
complete covariates are warranted to further build confidence in the risk score.
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In conclusion, following further validation and evaluation steps, this new, simple TB
screening clinical score for PLHIV, which is appropriate for both ART-naive and ART-experi-
enced PLHIV in SSA, and which incorporates but does not solely rely on WHO 4-symptom
screening rule, is a potential timely addition to practical TB screening approaches in LMIC.
The clinical score improves on WHO 4-symptom screening rule’s capacity to detect subclinical
TB, carrying potential associated morbidity, mortality, and TB transmission reduction benefits
[5]. The clinical score provides improved sensitivity and NPV over WHO 4-symptom TB
screen, which is needed ahead of intensive global TPT scale-up efforts. Finally, the range of
clinical scores allows clinicians and program managers to differentiate patient care and choose
cutoffs based on the use case scenario and availability of resources to improve precision and
quality of patient-centered care.
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