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Abstract
Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease with pe-
riods of flares and remission. Designing personalized treatment strategies for AD is 
challenging, given the apparent unpredictability and large variation in AD symptoms 
and treatment responses within and across individuals. Better prediction of AD se-
verity over time for individual patients could help to select optimum timing and type 
of treatment for improving disease control.
Objective: We aimed to develop a proof of principle mechanistic machine learning 
model that predicts the patient-specific evolution of AD severity scores on a daily 
basis.
Methods: We designed a probabilistic predictive model and trained it using Bayesian 
inference with the longitudinal data from two published clinical studies. The data 
consisted of daily recordings of AD severity scores and treatments used by 59 and 
334 AD children over 6 months and 16 weeks, respectively. Validation of the predic-
tive model was conducted in a forward-chaining setting.
Results: Our model was able to predict future severity scores at the individual level 
and improved chance-level forecast by 60%. Heterogeneous patterns in severity tra-
jectories were captured with patient-specific parameters such as the short-term per-
sistence of AD severity and responsiveness to topical steroids, calcineurin inhibitors 
and step-up treatment.
Conclusions: Our proof of principle model successfully predicted the daily evolution 
of AD severity scores at an individual level and could inform the design of person-
alized treatment strategies that can be tested in future studies. Our model-based 
approach can be applied to other diseases with apparent unpredictability and large 
variation in symptoms and treatment responses such as asthma.
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1  | INTRODUC TION

Atopic dermatitis (synonymous with atopic eczema or just eczema;1 
AD) is the most common inflammatory skin disease, and is charac-
terized by inflamed, dry and itchy skin2 leading to substantial quality 
of life impairment and significant socio-economic impact.3 AD typi-
cally has a fluctuating course characterized by inflammatory disease 
flares followed by periods of remission. Treatment with topical cor-
ticosteroids or calcineurin inhibitors during disease flares is aimed 
at controlling symptoms and skin signs, and emollients are typically 
used to counteract the dry skin associated with AD.

However, successful control of AD symptoms has been challeng-
ing as responses to AD treatments vary considerably between pa-
tients. Personalized treatment strategies may be more beneficial to 
individual patients rather than a “one-size-fits-all” approach to ther-
apy.4,5 A first step towards developing personalized treatment strat-
egies is to better predict the consequences of possible treatments at 
an individual level, rather than at population level, to deal with the 
variability across patients.

Prediction of the consequences of treatments at an individual 
level is challenging also because of dynamic and sudden fluctua-
tions of AD symptoms. It can be difficult to identify reliable treat-
ment responses, especially if a single end-point is considered, since 
the responses to a treatment can vary each time even for the same 
patient. Analysing the dynamic responses to the repeated applica-
tion of treatment can help identify consistent treatment effects for 
each patient6 and ultimately predict whether the chosen treatment 
is effective and whether the disease is adequately controlled at an 
individual level.

Machine learning has been successfully applied for prediction 
tasks. However, typical machine learning models such as artificial 
neural networks are often black-boxes, lacking interpretability or 
relying on post hoc explanations that are not guaranteed to match 
the algorithm's true decision process.7,8 “Black-box models” may fail 
to be accepted by the medical community and AD patients. Existing 

regulations such as the European Union general data protection reg-
ulation also highlight the “pressing importance of human interpret-
ability in algorithm design.”9

Here, we aimed to develop a biologically interpretable mech-
anistic machine learning model that can predict daily evolution of 
AD severity scores at an individual level. We applied a model-based 
machine learning approach,10 which allowed us to develop Bayesian 
machine learning models that can be tailored to the particular con-
text of a given study and the available dataset, and include bio-
logically interpretable mechanistic knowledge. Bayesian machine 
learning approach has already been applied to a birth cohort data on 
allergic sensitization to uncover latent atopy classes11 or to estimate 
asthma misclassification and risk factors in yearly questionnaire 
data.12 However, it has not been applied to predict daily changes in 
disease outcome or in the field of AD.

We hypothesized that it is possible to decipher the apparent un-
predictable dynamics of AD severity scores from each patient's data. 
We previously published a mechanistic model of AD pathogenesis 
which provided a coherent mechanistic explanation of the dynamic 
onset, progression and prevention of AD, as a result of interac-
tions between skin barrier, immune responses and environmental 
stressors.13,14 Our aim was therefore to adapt the structure of the 
published mechanistic model to real patient data (Figure S1), and to 
develop a mechanistic Bayesian model tailored to each individual 
that can predict the next day's AD severity score given their score 
and treatments used on that day.

2  | METHODS

2.1 | General approach

Using the longitudinal data from two published clinical studies15,16 
(example raw data shown in Figure S1), we developed and validated 
a mechanistic Bayesian model that can predict the next day's AD 

F I G U R E  1   Mechanistic Bayesian model of atopic dermatitis (AD) severity dynamics. A: A schematic diagram of the probabilistic model. 
The arrows depict the relationships between state variables included in the model. B: A schematic diagram of the published mechanistic 
model of AD pathogenesis13 from which the structure of the proposed model was adopted. Flare triggers (P) and AD flares (R) are latent 
variables, and AD severity score (S) and treatment applied (T) are the measured variables. The variable, T, corresponds to the daily binary 
stepping-up variables in the Flares dataset, and to the combination of the binary variables for the use of stepping-up, topical corticosteroids 
and calcineurin inhibitors in the SWET dataset.
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severity score for each patient. Our mechanistic Bayesian model ex-
plicitly described within-patients uncertainties in disease outcomes 
using probability distributions, and between-patient heterogeneity 
in severity trajectory and treatment responses by patient-depend-
ent parameters.

To develop the model, we firstly defined the underlying pro-
cesses that could generate the data as a probabilistic graphical model 
(Figure 1A), which adopted the structure of a previously published 
mechanistic model of AD pathogenesis13,14 (Figure 1B). The model 
was tailored to the context of the clinical studies in which the data 
were collected. We then trained the model (fitted to the data) using 
Bayesian inference, that is updating the probability distributions of 
the unknown (latent) variables and model parameters through Bayes’ 
theorem, and validated the model by assessing its predictive perfor-
mance in a forward-chaining setting, where the model was trained 
with the first week's data and tested on the second week's data, 
then re-trained on the first two weeks’ data and tested on the third 
week's data, and so on (Figure S2). The first dataset was used for 
model development and internal validation, and the second dataset 
to test whether a similar predictive performance could be achieved 
with a different cohort of patients.

2.2 | Data

We chose two datasets that included daily recording of symp-
toms and treatments over a moderately long period (details in 
Supplementary A).

The first dataset, which we refer to as “Flares dataset”, is a part 
of the data collected in an observational study that aimed to iden-
tify the triggers of AD flares for 59 children.15 The Flares dataset in-
cluded daily categorical “bother” scores over 6 to 9 months, totalling 
6536 patient-day observations, graded from 0 (“no bother at all”) to 
10 (“the most bother you can imagine”) as a response to the ques-
tion “how much bother did your eczema cause today?”. 38.8% of the 
bother score was missing in Flares dataset (Figure S3). The Flares 
dataset also included daily binary “stepping-up” variables, that is the 
answers to the question “have you had to step-up your treatment 
today because your eczema was worse?”. What constituted “step-
ping-up” treatment was defined for each child at the study outset.

The second dataset, which we refer to as “SWET dataset”, is 
a part of the data collected in a randomized controlled trial that 
evaluated the effects of use of ion-exchange water softeners for 
AD control (the softened water eczema trial or SWET) for 334 chil-
dren.16 The SWET dataset included the individual child's daily cat-
egorical bother score over 16 weeks with only 1.9% of the bother 
score missing (Figure S4) for a total of 35 854 patient-day obser-
vations. The SWET dataset additionally contained information on 
potential risk factors or confounders, such as the presence of filag-
grin mutations, white skin type, age (in years), gender and whether 
the patient slept away from home. It also included details of the 
treatment used, such as the type of treatment modalities used each 
day (topical corticosteroids, calcineurin inhibitors and stepping-up 

treatment), the estimated average dose used for each type of top-
ical corticosteroids (mild, moderate, potent or very potent) and 
calcineurin inhibitors (mild or moderate) over the study period, to-
gether with the patient's confidence in the estimated average dose 
(“not at all sure”, “not sure”, “sure”, or “very sure”). We used all the 
available information in SWET dataset and evaluated the contri-
bution of each factor on daily evolution of the bother score at an 
individual level.

2.3 | Mechanistic Bayesian models

We developed a mechanistic Bayesian model that predicts the AD 
severity score (Sk (t+1) for the k-th patient at day t+1, given two 
observables, the previous day's score (Sk (t) and the treatment ap-
plied (Tk (t) ) (Figure 1A).

Our model assumed that AD severity (Sk (t+1)) is determined 
by the temporal accumulation of inflammation caused by AD flares 
(Rk (t)), which result from the activation of innate immune receptors 
by flares triggers (P(k)), and is modified by the treatment applied (Tk (t))  
(Figure 1B). Flare triggers (P(k)) and the resulting flares (Rk (t)) were 
modelled as latent variables. They depend on the complex interac-
tions between the skin barrier, immune responses and environmen-
tal stressors. P(k) for the k-th patient was assumed to be constant for 
the duration of the data collection.

We first modelled the severity score measurement process by as-

suming that a continuous latent severity score, S
⋀

k (t)∈
�

0, 10
�

, is rounded 
to the nearest integer to derive the discrete severity score reported by 

patients, Sk (t)=�����
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The distribution of S
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k (t+1) follows a Gaussian autoregressive process 

perturbed by exponentially distributed AD flares, Rk (t) ∼Exp
(
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)

, 

which reflects the assumption that flares occur more frequently in the 
presence of the flare triggers.

The autoregression is characterized by the patient-dependent 
autocorrelation or persistence of the severity score (w(k)
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), patient-de-

pendent responsiveness to treatment (w(k)
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), and population-level in-
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and dispersion parameters (�wS
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We also developed an extended version of the mechanistic 
Bayesian model for SWET dataset (details in Supplementary B). The 
extended model allowed us to analyse the effects of potential risk 
factors (the presence of filaggrin mutations, age and sleeping away 
from home) on the severity score, with their respective weighting 
parameters, w(k)

���
,w

(k)

���
 and w(k)

����
. We also investigated heteroge-

neity of treatment responsiveness by replacing the term w(k)

T
Tk (t) 

with w(k)

��
SUk (t) + w

(k)

��
CSk (t) + w

(k)

��
CIk (t) , where SUk (t) , CSk (t) and 

CIk (t) are binary variables that indicate whether the k-th patient 
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stepped-up, applied topical corticosteroids and calcineurin inhibi-
tors, respectively, with their respective weights, w(k)

��
, w(k)

��
 and w(k)

��
. 

The weights, w(k)

��
 and w(k)

��
, include dose-independent effects (intrin-

sic responsiveness to the treatment b(k)
��

 and b(k)
��

) and dose-depen-
dent effects that are functions of the quantity and the potency of 
the treatment (Figure S5).

Our model did not require imputation of missing values for 
Sk (t), since the absence of measurements is naturally accepted 
by the measurement process of Sk (t) separately modelled from 
the dynamics of S

⋀

k (t). Imputation of missing values for other co-
variates is described in Supplementary C. We conducted prior 
predictive checks to define weakly informative priors (details in 
Supplementary D).

2.4 | Model fitting

Model training was performed using the Hamiltonian Monte Carlo al-
gorithm in the probabilistic programming language Stan.17 The poste-
rior distribution was sampled by 6 Markov chains for 3000 iterations 
(including 50% burn-in). Convergence of the chains was monitored by 
inspecting the trace plots, checking the Gelman-Rubin convergence 
diagnostic R

⋀

18 and computing effective sample sizes. More details of 
the inference method are provided in Supplementary E.

2.5 | Model validation

The predictive performance of the model was assessed in a for-
ward-chaining setting. Model calibration (whether forecast prob-
abilities are accurate) was assessed by an ordinal quadratic scoring 
rule (ranked probability score, RPS) and local logarithmic scoring 
rule (log predictive density, lpd). These metrics were plotted against 
training day (training data size) to produce learning curves. Details 
on performance metrics used are described in Supplementary F.

We compared our model to four reference models: a uniform 
forecast, Sk (t+1) ∼ U (0, 10) , where each outcome is assigned with 
the same probability, a historical forecast where the probability of 
each outcome is equal to their relative occurrence in the past, a 
Gaussian random walk, Sk (t+1) ∼ N

(

Sk (t) , �
2
)

, where the next 
score is assumed to be around the previous score, and a mixed effect 
autoregressive model (our model without flares triggers), 

S
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�

w
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T
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3  | RESULTS

3.1 | Model fitting

The model was trained on each of the two datasets, and the con-
vergence was checked. Population-level parameters (parameters 
shared across patients) were estimated with a good precision and 

their 95% credible interval (in which the parameter lies with 95% 
probability) were narrow compared to their prior, did not include 0 
and were similar for the two datasets, suggesting support for the 
model structure (Table S1). Three main model parameters that de-
scribe patient-dependent dynamics of the severity score are the au-
tocorrelation parameter w(k)

S
 for the short-term persistence of the AD 

severity score, the parameter w(k)

T
 for the responsiveness to treat-

ment and P(k) for the amount of flares triggers, of the k-th patient. 
w

(k)

S
→1 or w(k)

S
→0 means that the predicted severity is close to or 

does not depend on the previous day's severity, respectively. w(k)

T
< 0 

or w(k)

T
> 0 implies that the patient is responsive to treatments or 

the treatment has an adverse effect on the patient, respectively. A 
larger P(k) suggests more severe and frequent flares. These estimates 
greatly varied from one patient to another, confirming their patient 
dependence (Figures S6 and S7).

Posterior predictive checks demonstrated that the developed 
model captured diverse patterns of the dynamic trajectories of the 
severity score, despite the presence of missing values (representa-
tive patients’ score dynamics in Figure 2). Typical trajectories ob-
served included fluctuations of the severity score with a return to a 
healthier state (Figure 2A,C) or without (Figure 2B,D).

3.2 | Model validation

We then validated the model to assess its generalizability beyond 
the training data. The learning curves demonstrated an improve-
ment in both RPS and lpd, as more data become available (Figure 3), 
confirming that the model learned the dynamic patterns of the 
severity scores from the data. Similar or better performance was 
achieved with the SWET dataset, compared to the Flares dataset, 
confirming the predictive ability of the model on multiple cohorts. 
Our model outperformed or performed as well as the four refer-
ence models in terms of RPS and lpd for both datasets. Our model 
demonstrated approximately 60% of improvement in RPS than the 
chance-level (uniform) forecast for both Flares and SWET datasets 
(Figure 3). For example, we achieved a lpd of log(0.25) with SWET 
dataset, meaning that the model assigns a 25% probability to the 
true outcome on average, compared to 9% for a chance-level fore-
cast. Calibration curves (Figure S8) suggested that the predicted 
probabilities were reasonably calibrated up to 30%-40% in Flares 
dataset and up to 50%-60% in SWET dataset.

Similar results were obtained for a model we developed using 
the daily scratch score recorded in the observational study for Flares 
dataset (Figure S9). The scratch score was not recorded in SWET.

3.3 | Effects of treatment modalities and risk 
factors on the predicted severity scores

The extended model with additional covariates was also success-
fully fit to SWET dataset (Tables S1 and S2). The posterior predictive 
checks confirmed that the model could capture diverse patterns of 
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the severity score trajectories, such as large and rapid fluctuations 
(Figure 4A), large but slow fluctuations (Figure 4B), and controlled 
AD (Figure 4C). The model could not predict previously unseen pat-
terns, such as transitions of the score from 1 to 10 in a day (Figure 4D 
at around 70 days), as the model learned the dynamic patterns from 
past data.

Analysis of the model parameters suggested that older age, ab-
sence of filaggrin gene mutations and sleeping at home were asso-
ciated with greater improvement (decrease) in severity scores at the 
95% credible level (Figure 5A), as the 95% credible interval of the 
relevant parameters did not contain 0 and by wAge < 0 (older age de-
creases the severity score), wFLG>0 (the presence of filaggrin muta-
tions increases the severity score) and wHome<0 (sleeping at home 
decreases the severity score). The estimated effects may appear 
small in absolute terms, compared to the range of the bother score 
(0-10), but their effects on the severity score may become practically 
significant as they accumulate over time. White skin type and sex 
were not found to be associated with changes in the severity score 
at the 95% credible level (Figure 5A; 95% credible interval of wSex and 
wWhite in both sides of 0, suggesting that their effects on the severity 
score could be both negative and positive).

Further analysis of the parameters, w(k)

��
, b(k)

��
 and b(k)

��
, which de-

scribe the dose-independent effects of the treatment on the se-
verity score, demonstrated that none of the treatments appear to 
have a significant effect at the population level (grey shaded areas 
in Figure 5B spans from negative to positive values). However, the 
treatments could have a significant effect at a patient-level. For 
example, the parameter estimates for one of the patients (orange 

shaded areas in Figure 5B) suggest that the use of corticosteroids 
has a significant and consistent effect on the severity score for this 
patient at the 95% credible level. That is, the posterior probability for 
b
(k)

��
 (the dose-independent responsiveness to corticosteroids) being 

negative (ie the use of corticosteroids reduces the severity score) 
is greater than 95%. Interestingly, this 95% criterion for the consis-
tent treatment effect was not met for calcineurin inhibitors (b(k)

��
) and 

step-up (w(k)

��
) for the same patient. Following this criterion, we con-

firmed significant effect of corticosteroids in 90 individuals (out of 
295 who used corticosteroids) and of step-up in 25 individuals (out 
of 284 who used step-up). However, we did not find evidence of an 
intrinsic responsiveness in any of the 92 patients who used calci-
neurin inhibitors, although 6 of them show a significant dose-depen-
dent responsiveness.

4  | DISCUSSION

4.1 | Main findings

This study demonstrated a proof-of-concept that predicting the 
evolution of eczema severity is possible. We developed a novel 
mechanistic Bayesian machine learning model that can predict pa-
tient-specific daily evolution of the AD bother score. The model is 
biologically interpretable and describes the mechanistic assumption 
that the AD severity is a result of temporal accumulation of flares 
(Figure 1). The model learned rich, heterogeneous and dynamic pat-
terns in the daily evolution of AD severity scores that may otherwise 

F I G U R E  2   Fitting of the mechanistic Bayesian model. Posterior predictive distribution of atopic dermatitis (AD) severity score for four 
representative patients from Flares dataset. (A, C) Bother score returns to a healthier state. (B, D) Bother score does not improve. The plots 
show the time evolution of the posterior predictive probability mass function as a heatmap. Darker colour represents outcomes with higher 
probabilities. Black and grey lines show the observed scores and the posterior mean estimate for the missing scores, respectively.
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appear random and noisy (Figures 2 and 4). Our method extracted 
information on whether the chosen treatment is effective (respon-
siveness to treatment), and whether the AD score is persistent and 
susceptible to flares, at an individual level (Figure 5, Figures S6 and 
S7). The use of longitudinal data enabled us to look for consistent 
treatment responses within each patient, rather than a population 
average response evaluated at a single time-point. We estimated 
population-level risk factors associated with slower improvement 
of the severity score, such as the presence of a filaggrin mutation 
and younger age (Figure 5A). The model was validated using the data 
from two published clinical studies to confirm its generalizability and 
the possibility to learn and predict the short-term dynamics of AD 
severity scores from each patient's data (Figure 3).

4.2 | Strengths of our approach

Our Bayesian approach could be useful to make predictions for 
new patients, outside of the two cohorts we considered. For in-
stance, we could use the population posterior distributions of the 

patient-dependent parameters obtained in this study as priors for 
new patients. The priors will then be updated as more data be-
come available, in order to make personalized and more accurate 
predictions.

In addition, our model-based Bayesian approach is appropriate 
to develop models for clinical use, especially when the data are not 
as controlled as in a clinical trial. Our model explicitly describes un-
certainties in disease outcomes (the severity scores) using probabil-
ity distributions rather than point estimates, as well as uncertainties 
in the measurements. This enabled us to deal with the missing data 
(about 40% of scores were missing in the Flares dataset) naturally 
by simply assuming that the measurement process of the observed 
score was absent when the score is missing, while still being able to 
infer the dynamics of the latent severity score from the available 
data. This method is particularly appropriate for incomplete and 
partially missing data, for example when patients miss clinical visits.

The model-based approach allows us to design models by tak-
ing prior clinical and mechanistic knowledge into account, and by 
tailoring them to available data and study context. For example, our 
model was extended by incorporating the additional information (on 

F I G U R E  3   Comparison of predictive performance between the mechanistic Bayesian model (Our Model) and four reference (Uniform, 
Historical, Random Walk and Autoregression) models. The performance is evaluated for one-day-ahead predictions and plotted as a function 
of the training week. Confidence bounds correspond to ± SE. A-B: Evolution of the ranked probability score (RPS, lower the better) for the 
Flares dataset (A) and the SWET dataset (B). C-D: Evolution of the log predictive probability (lpd, higher the better) for the Flares dataset (C) 
and the SWET dataset (D).
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F I G U R E  4   Fitting of the extended model. Posterior predictive distribution of atopic dermatitis (AD) severity score for four representative 
patients from SWET dataset: (A) large and rapid fluctuations, (B) large but slow fluctuations, (C) controlled AD and (D) controlled but with 
transitions of the score from 1 to 10 in a day (at around 70 days). The plots show the time evolution of the posterior predictive probability 
mass function as a heatmap. Darker colour represents outcomes with higher probabilities. Black and grey lines show the observed scores 
and the posterior mean estimate for the missing scores, respectively.

F I G U R E  5   Estimated effects of potential risk factors and responsiveness to treatments on the severity score. A: Population-level 
estimates of the parameters (w(k)

���
, w

(k)

���
, w

(k)

����
, w(k)

𝑆𝑒𝑥
, w

(k)

𝑊 ℎ𝑖𝑡𝑒
) for potential risk factors (age, presence of filaggrin mutation, sleeping at home, 

sex and white skin). The values represent the contribution of the relevant factor to the severity score. Negative and positive values represent 
a decrease and an increase in severity score (improvement and worsening), respectively, while null values suggest an absence of an effect. 
Black circles and the line segments represent the mean posterior and the 95% credible interval, respectively. B: Estimated distribution of the 
parameters for dose-independent responsiveness to different treatment modalities (b(k)

��
, b(k)

��
,w

(k)

��
 for corticosteroid, calcineurin inhibitors 

and step-up) at a population level (grey) and for a specific patient (orange).
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potential risk factors and the treatment doses) available in SWET 
dataset but not in Flares dataset. Similarly, our model could be ex-
panded to include additional predictors such as environmental trig-
gers (eg air pollution, weather), host factors (eg compliance to daily 
bathing, allergies) or biological markers.

These features entail that the developed model cannot be made 
readily available as a “plug-in” formula, as it is described by a set of 
context-dependent equations on probability distributions and pa-
tient-specific parameters that need to be updated to provide per-
sonalized predictions.

4.3 | Limitations of the study and future directions

The datasets we used in this study contained daily measurement 
of the bother score, a subjective global measure of distress caused 
by AD that has previously been used as a reference for developing 
asthma severity instruments19 and validating AD symptom measures 
such as POEM.20 While using objective and quantitative measure-
ments would be preferable, this study can serve as a proof-of-con-
cept that predicting the evolution of eczema severity is possible. 
When collecting daily measurements of objective severity scores 
becomes less challenging, similar models could be developed to pre-
dict scores such as EASI,21 (o)SCORAD22 or their self-assessed ver-
sions. It will allow us to evaluate the dynamics of scores that capture 
different aspects of AD symptoms and to compare the predictive 
performance for different scores. It is also possible to investigate 
longer time horizon with weekly (instead of daily) measurements. 
Appropriate evaluation of the effects of data frequency on score dy-
namics prediction will help designing more effective and informative 
clinical trials towards personalized medicine.

The predictive capabilities of the model could be potentially im-
proved by incorporating more data, or by using better-quality data, 
that is with fewer missing values or more precise information about 
treatments. For example, our model assumes that the same quan-
tity of treatment was applied every day, when treatment was used. 
This assumption might not always hold in reality and could result in 
a difficulty with estimating the dose-dependent responsiveness to 
treatments (Table S2). The daily record of the quantity of treatment 
applied could resolve this issue and lead to a better estimate of treat-
ment responsiveness.

The model proposed in this paper adopted a structure that was 
tailored to the available datasets. The model structure was much 
simpler than that of the previously published mechanistic model of 
AD pathogenesis.13,14 If the longitudinal measurement for interac-
tions between environmental stressors, the skin barrier and immune 
responses becomes feasible in future, such data can be incorporated 
to develop a more detailed mechanistic machine learning model that 
provides deeper biological interpretation.

The model-based machine learning approach demonstrated here 
is applicable to help quantify patient responses to treatment, and 
may be suitable as a computational method for therapeutic strat-
ification by identifying treatment responses for each individual.23 

The prediction of daily evolution of severity scores could be further 
used to suggest optimal treatment strategies for individual patients, 
using reinforcement learning for example, in addition to conven-
tional computational methods using optimal control theory and bi-
furcation analysis .24 Our method could be tested further as part of 
an intervention using a personalized approach in a future pragmatic 
randomized controlled trial and compared with conventional stan-
dard approaches.
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