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Abstract

Estimation of the effective reproductive number, Rt, is important for detecting changes
in disease transmission over time. During the COVID-19 pandemic, policymakers and
public health officials are using Rt to assess the effectiveness of interventions and to
inform policy. However, estimation of Rt from available data presents several challenges,
with critical implications for the interpretation of the course of the pandemic. The
purpose of this document is to summarize these challenges, illustrate them with
examples from synthetic data, and, where possible, make recommendations. For near
real-time estimation of Rt, we recommend the approach of Cori et al. (2013), which
uses data from before time t and empirical estimates of the distribution of time between
infections. Methods that require data from after time t, such as Wallinga and Teunis
(2004), are conceptually and methodologically less suited for near real-time estimation,
but may be appropriate for retrospective analyses of how individuals infected at
different time points contributed to spread. We advise against using methods derived
from Bettencourt and Ribeiro (2008), as the resulting Rt estimates may be biased if the
underlying structural assumptions are not met. Two key challenges common to all
approaches are accurate specification of the generation interval and reconstruction of
the time series of new infections from observations occurring long after the moment of
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transmission. Naive approaches for dealing with observation delays, such as subtracting
delays sampled from a distribution, can introduce bias. We provide suggestions for how
to mitigate this and other technical challenges and highlight open problems in Rt

estimation.

Author summary

The effective reproductive number, Rt, is a key epidemic parameter used to assess
whether an epidemic is growing, shrinking or holding steady. Rt estimates can be used
as a near real-time indicator of epidemic growth or to assess the effectiveness of
interventions. But due to delays between infection and case observation, estimating Rt

in near real-time, and correctly inferring the timing of changes in Rt is challenging.
Here, we provide an overview of challenges and best practices for accurate, timely Rt

estimation.

Introduction 1

The effective reproductive number, denoted Re or Rt, is the expected number of new 2

infections caused by an infectious individual in a population where some individuals 3

may no longer be susceptible. Estimates of Rt are used to assess how changes in policy, 4

population immunity, and other factors have affected transmission at specific points in 5

time [1–5]. The effective reproductive number can also be used to monitor near 6

real-time changes in transmission [6–10]. For both purposes, estimates need to be 7

accurate and correctly represent uncertainty, and for near real-time monitoring, they 8

also need to be timely. 9

We consider two potential forms of bias in Rt estimates, systematic over- or 10

underestimation and temporal inaccuracy. Misspecification of the generation interval is 11

a large potential source of over- or underestimation, and we find that Rt estimates are 12

most prone to this kind of bias when the true value is substantially greater or less than 13

one. This situation might arise at the beginning of the COVID-19 pandemic (when Rt 14

is relatively high) or after particularly effective interventions (when it might be low). 15

Over or underestimation would have particularly strong practical consequences near the 16

control threshold of Rt = 1, but the biases we observe are smallest in absolute terms in 17

this range. 18

Another challenge is that depending on the methods used, Rt estimates may be 19

leading or lagging indicators of the true value [4, 11], even measuring transmission 20

events that occurred days or weeks ago if the data are not properly adjusted. Temporal 21

inaccuracy in Rt estimation is particularly concerning when trying to infer how changes 22

in behavior have affected transmission [1–5]. Temporal inaccuracy, for instance in the 23

estimation of the date on which Rt falls below one, is a focus of this Perspective. We 24

find that it has several possible causes and can be difficult to avoid. 25

This perspective focuses on the three main empirical methods to estimate Rt [12–15]. 26

As an alternative to the methods reviewed here, it is possible to infer changes in 27

transmission using a dynamical compartment model (e.g. [3, 16–18]). The accuracy and 28

timeliness of Rt estimates obtained in this way should be assessed on a case-by-case 29

basis, given sensitivity to model structure and data availability. 30

We use synthetic data to compare the accuracy of three common empirical methods 31

to estimate Rt, first under ideal conditions, in the absence of parametric uncertainty 32

and with all infections observed at the moment they occur. This idealized analysis is 33

intended to illustrate the inputs needed to estimate Rt accurately, to highlight the 34

intrinsic differences between the methods, and to examine specific causes of bias and 35
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temporal inaccuracy one by one. However, we emphasize that our idealized analyses 36

overestimate the potential accuracy of Rt estimates obtained from real-world data, even 37

if best practice are followed. The results show that the method of Cori et al. [14] is best 38

for near real-time estimation of Rt. For retrospective analysis, the methods of Cori et al. 39

or of Wallinga and Teunis may be appropriate, depending on the aims. 40

Later we add realism and address practical considerations for working with imperfect 41

data. These analyses emphasize potential errors introduced by uncertainty in the 42

intrinsic generation interval and imperfect case observation, and also the need to adjust 43

for delays in case observation, right truncation, and the need to choose an appropriate 44

smoothing window given the sample size. Finally, we emphasize that most off-the-shelf 45

tools leave it up to the user to account for these five sources of uncertainty when 46

calculating confidence intervals. Failure to propagate uncertainty in Rt estimates can 47

lead to over-interpretation of the results and could falsely imply that confidence or 48

credible intervals have crossed the critical threshold. 49

Synthetic data 50

We used synthetic data to compare three common Rt estimation methods. Synthetic 51

data were generated from a deterministic or stochastic SEIR model in which the 52

transmission rate drops and spikes abruptly, representing the adoption and lifting of 53

public health interventions. Results were similar whether data were generated using a 54

deterministic or stochastic model. For simplicity, we show deterministic outputs 55

throughout the document, except in the section on smoothing windows, where 56

stochasticity is a conceptual focus. 57

In our model, all infections are locally transmitted, but all three of the methods we 58

test can incorporate cases arising from importations or zoonotic spillover [12,13,15]. 59

Estimates of Rt are likely to be inaccurate if a large proportion of cases involve 60

transmission outside the population. This situation could arise when transmission is low 61

(e.g., at the beginning or end of an epidemic) or when Rt is defined for a population 62

that is connected to others via migration. 63

A synthetic time series of new infections (observed at the S → E transition) was 64

input into the Rt estimation methods of Wallinga and Teunis, Cori et al., and 65

Bettencourt and Ribeiro [12–14]. Following the published methods, we also tested the 66

Wallinga and Teunis estimator using a synthetic time series of symptom onset events, 67

extracted daily from the E → I transition. In the synthetic data, the generation 68

interval followed a gamma distribution with shape 2 and rate 1
4 , which is the sum of 69

exponentially distributed residence times in compartments E and I, each with mean of 70

4 days [19]. The methods of Cori et al. and of Wallinga and Teunis can accommodate 71

any positive, discrete generation interval distribution [12,14, 20]. We chose a discretized, 72

gamma-distributed generation interval for our simulations, which is similar in shape to 73

the interval of COVID-19 [21,22]. However, the method of Bettencourt and Ribeiro 74

implicitly assumes the generation interval follows an exponential distribution, as in an 75

SIR model with no latent period [13,19], and thus could not match the assumptions of 76

the synthetic data. 77

In the synthetic data, R0 was set to 2.0 initially, then to 0.8 and 1.15, to simulate 78

the adoption and later the partial lifting of public health interventions. To mimic 79

estimation in real-time, we truncated the time series at t = 150, before the end of the 80

epidemic. Estimates from the methods of Wallinga and Teunis and Cori et al. were 81

obtained using the R package EpiEstim [20]. Estimates based on the method of 82

Bettencourt and Ribeiro were obtained by translating code from [6,23] to the Stan 83

language [24]. We initially assumed all infections were observed. Unless otherwise noted, 84

the smoothing window was set to 1 day (effectively, estimates were not smoothed). To 85
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mimic the timescale of observations, we used daily time steps when generating synthetic 86

data and performing analyses. 87

Comparison of common methods 88

The effective reproductive number at time t can be defined in two ways: as the 89

instantaneous reproductive number or as the case reproductive number [14,25]. The 90

instantaneous reproductive number measures transmission at a specific point in time, 91

whereas the case reproductive number measures transmission by a specific cohort of 92

individuals (Fig. 1). (A cohort is a group of individuals with the same date of infection 93

or the same date of symptom onset.) The case reproductive number is useful for 94

retrospective analyses of how individuals infected at different time points contributed to 95

spread. It is a more natural choice for analyses that consider heterogeneity among 96

individuals. For example, the case reproductive number of Wallinga and Teunis can be 97

adapted to incorporate data on observed transmission chains [12,21,26] or to produce 98

age-structured Rt estimates, given an age-structured contact matrix [27]. The 99

instantaneous reproductive number is more appropriate for analyses estimating the 100

reproductive number of the infected population on specific dates, especially when 101

aiming to study how interventions or other extrinsic factors have affected transmission 102

at a given point in time. 103

More formally, the instantaneous reproductive number is defined as the 104

expected number of secondary infections occurring at time t, divided by the number of 105

infected individuals, each scaled by their relative infectiousness at time t (an 106

individual’s relative infectiousness is based on the generation interval, and time since 107

infection) [14, 25]. The instantaneous reproductive number can be calculated exactly for 108

a compartment model (SIR or SEIR) as follows, where β(t) is the time-varying 109

transmission rate, S(t) the fraction of the population that is susceptible, and D the 110

mean duration of infectiousness: 111

Rinst
t = β(t)S(t)D. (1)

The methods of Cori et al. [14, 15] and methods adapted from Bettencourt and 112

Ribeiro [6, 13,23] estimate the instantaneous reproductive number from observations. 113

We tested their accuracy under idealized conditions, assuming perfect knowledge of the 114

generation interval and delay distributions used to generate the synthetic data (Fig. 2 115

and S2 Fig). 116

The method of Cori et al. estimates Rt as 117

Rt =
It∑t

s=1 It−sws

, (2)

where It is the number of infections incident on day t and ws is generation interval, or 118

the probability that s days separate the moment of infection in an index case and a 119

daughter case [14]. Conceptually, this estimator describes the number of new infections 120

incident on day t relative to the number (It−s) and current infectiousness (ws) of 121

individuals who became infected s days in the past, and who many now be shedding 122

virus. 123

The only parametric assumption required by this method is the form of the 124

generation interval. The standard assumption is that ws follows a discretized gamma 125

distribution [14,20], but the estimator accepts any parametric or empirical discrete 126

distribution with support on positive values (the same is true of the Wallinga and 127

Teunis method [12]). Thus, when testing the method on COVID-19-like epidemic 128

processes, we could specify the gamma-distributed generation interval of the synthetic 129

data perfectly. When tested under idealized conditions, we found that the method of 130
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Fig 1. Instantaneous reproductive number as estimated by the method of
Cori et al. versus cohort reproductive number estimated by Wallinga and
Teunis. For each definition of Rt, arrows show the times at which infectors (upwards),
and their infectees (downwards) appear in the data. Curves show the generation
interval distribution (A,B), or serial interval distribution (C). A: The instantaneous
reproductive number quantifies the number of new infections incident at a single point
in time (ti, blue arrow), relative to the number of infections incident in the previous
generation (green arrows), and their current infectiousness (green curve). This figure
illustrates the method of Cori et al. B & C: The case reproductive number of Wallinga
and Teunis is the average number of new infections that an individual who becomes (B)
infected on day ti (green arrow) or (C) symptomatic on day ts (yellow arrow) will
eventually go on to cause (blue downward arrows show timing of daughter cases). The
first definition applies when estimating the case reproductive number using inferred
times of infection, and the second applies when using data on times of symptom onset.

Cori et al. accurately estimated Rt, even tracking abrupt changes (Fig. 2). This is the 131

method we recommend for estimation of the instantaneous reproductive number. 132

Bettencourt and Ribeiro [13] derive an approximate relationship between the Rt and 133

the exponential growth rate of the epidemic, where g is the mean generation time: 134
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It+1 = Ite
Rt−1

g . (3)

Under the assumption that Rt evolves through time as a Gaussian process, equation 135

3 facilitates efficient Bayesian Rt estimation [23]. The key disadvantage of this method 136

is that equation 3 is derived from an SIR model, and therefore implicitly assumes the 137

generation interval follows an exponential distribution [19], whereas empirically, 138

generation intervals can be heavy or light tailed, including for COVID-19 [21,22,28]. 139

Because equation 3 underestimates variability in the gamma-distributed generation 140

interval of our SEIR-type synthetic data, we find that this method produces biased Rt 141

estimates, especially when Rt is substantially higher than one (Fig. 2A). These biases 142

are consistent with established theory, in which the coefficient of variation of the 143

generation interval modulates the relationship between exponential growth rate and the 144

reproductive number of an epidemic [19]. 145

In its current form, we do not recommend using the method of Bettencourt and 146

Ribeiro given that unrealistic structural assumptions lead to bias. However, a 147

generalized version capable of accommodating more realistic generation intervals, which 148

implicitly involves different assumptions about the underlying epidemic process [19,29], 149

could provide several advantages. When implemented as a Gaussian process [23], we 150

found that the Bettencourt and Ribeiro method was computationally efficient. Also, 151

because it penalizes large jumps in Rt across consecutive time steps, it returns smoother 152

estimates than the method of Cori et al., which is advantageous if unmodeled reporting 153

effects, rather than bursts in transmission, are the dominant cause of variability in daily 154

observations. 155

Finally, the case or cohort reproductive number is the expected number of 156

secondary infections that an individual who becomes infected at time t will eventually 157

cause as they progress through their infection [14,19,25] (Fig. 1B,C). The case 158

reproductive number Rcase
t can be calculated exactly at time t within the synthetic data 159

as the convolution of the generation interval distribution w(·) and the instantaneous 160

reproductive number, Rinst
t , described in Equation 1 [19], 161

Rcase
t =

∫ ∞
u=t

Rinst
u w(u− t) du. (4)

The method of Wallinga and Teunis [12] estimates the case reproductive number 162

from observations. The first step is to estimate the likelihood that case j (infected at 163

time tj) infected case i, relative to the likelihood that any other case in the data 164

infected case i: 165

pij =
w(ti − tj)∑
i 6=k w(ti − tk)

. (5)

Then, the individual reproductive number of case j is defined as 166

Rj =
∑
i

pij . (6)

The case reproductive number at time t is defined as the expected value of Rj for all 167

individuals infected at time t. Like the method of Cori et al., the only parametric 168

assumption required by the method of Wallinga and Teunis is the discrete distribution 169

of the generation interval. An assumption common to the three tested methods is that 170

all infections are observed. Below we discuss the consequences of partial observation, 171

including that confidence or credible intervals around Rt estimates do not account for 172

uncertainty from partial observation. 173

Practically speaking, there are several important differences between the case 174

reproductive number (estimated by Wallinga and Teunis) and the instantaneous 175
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Fig 2. Accuracy of Rt estimation methods given ideal, synthetic data. Solid
and dashed black line shows the instantaneous and case reproductive numbers,
respectively, calculated from synthetic data. Colored lines show estimates and
confidence or credible intervals. To mimic an epidemic progressing in real-time, the time
series of infections or symptom onset events up to t = 150 was input into each
estimation method (inset). Terminating the time series while Rt is falling or rising
produces similar results S2 Fig. (A) By assuming a SIR model (rather than SEIR, the
source of the synthetic data), the method of Bettencourt and Ribeiro systematically
underestimates Rt when the true value is substantially higher than one. The method is
also biased as transmission shifts. (B) The Cori method accurately measures the
instantaneous reproductive number. (C) The Wallinga and Teunis method estimates
the cohort reproductive number, which incorporates future changes in transmission.
Thus, the method produces Rt estimates that lead the instantaneous effective
reproductive number and becomes unreliable for real-time estimation at the end of the
observed time series without adjustment for right truncation [4, 30]. In (A,B) the
colored line shows the posterior mean and the shaded region the 95% credible interval.
In (C) the colored line shows the maximum likelihood estimate and the shaded region
the 95% confidence interval.

reproductive number (estimated by Cori et al. or Bettencourt and Ribeiro). First, 176

estimators of the instantaneous reproductive number were partly developed for near 177

real-time estimation and only use data from before time t (Fig. 1A). Under ideal 178

conditions without observation delays and a window size of one day, neither method is 179

affected by the termination of the synthetic time series at t = 150 (Figs. 2 A&B). These 180

methods are similarly robust if the time series ends while Rt is rapidly falling (S2 FigA) 181

or rising (S2 FigB). (Below we discuss more realistic conditions, e.g., in which data at 182

the end of a right-truncated time series are incomplete due to observation delays.) 183

Unlike the instantaneous reproductive number, the case reproductive number is 184

inherently forward-looking (Fig. 1B,C): near the end of a right-truncated time series, it 185

relies on data that have not yet been observed. Extensions of the Wallinga and Teunis 186

method can be used to adjust for these missing data and to obtain accurate Rt 187

estimates to the end of a truncated time series [4, 30]. But as shown in Fig. 2C, without 188

these adjustments the method will always underestimate Rt at the end of the time 189

series, even in the absence of reporting delays. Mathematically, this underestimation 190

occurs because calculating the case reproductive number involves a weighted sum across 191

transmission events observed after time t. Time points not yet observed become missing 192

terms in the weighted sum. Similarly, any infections that occurred before the first 193

observed date are missing terms in the denominator of the Cori et al. estimator, and so 194

the method of Cori et al. often overestimates Rt early in the time series. 195
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Effectively, the case reproductive number is shifted forward in time relative to the 196

instantaneous reproductive number of Cori et al. (S3 Fig). This temporal shift occurs 197

whether or not a smoothing window is used. The case reproductive number produces 198

leading estimates of changes in the instantaneous reproductive number (Fig. 2, S3 Fig) 199

because it uses data from time points after t, whereas the instantaneous reproductive 200

number uses data from time points before t (Fig. 1). Shifting the case reproductive 201

number back in time by the mean generation interval usually provides a good 202

approximation of the instantaneous reproductive number [2], because the case 203

reproductive number is essentially a convolution of the instantaneous reproductive 204

number and the generation interval (Equation 4) [19]. The case reproductive number 205

generally changes more smoothly than the instantaneous reproductive number [25] (Fig. 206

2B,C), but if a smoothing window is used, the estimates become more similar in shape 207

and smoothness. Overall, for real-time analyses aiming to quantify the reproductive 208

number at a particular moment in time or to infer the impact of changes in policy, 209

behavior, or other extrinsic factors on transmission, the instantaneous reproductive 210

number will provide more temporally accurate estimates and is most appropriate. The 211

case reproductive number of Wallinga and Teunis considers the reproductive number of 212

specific individuals, and therefore is more appropriate for analyses aiming to 213

incorporate individual-level covariates such as age [27] or transmission cluster 214

membership [12] when estimating Rt. 215

Summary 216

• The Cori method most accurately estimates the instantaneous reproductive 217

number in real-time. It uses only past data and minimal parametric assumptions. 218

• The method of Wallinga and Teunis estimates a slightly different quantity, the 219

case or cohort reproductive number. The case reproductive number is 220

conceptually less appropriate for real-time estimation but may be useful in 221

retrospective analyses, especially those involving individual-level covariates. 222

• Methods adapted from Bettencourt and Ribeiro [6, 13] can lead to biased Rt 223

estimates if the underlying structural assumptions are not met. 224

Generation interval misspecification 225

When estimating Rt from observed data, misspecification of the generation interval is a 226

large potential source of bias. Regardless of the method used, Rt estimates are not only 227

sensitive to the mean generation time but also to the variance and form of the 228

generation interval distribution [19]. 229

The renewal equation is a cornerstone of demographic theory and forms the 230

mathematical backbone of the Rt estimators described above [19]. Within the renewal 231

equation, the generation interval mechanistically links the reproductive number R to 232

observables such as the epidemic growth rate r or the number of new infections per 233

day [19]. Wallinga and Lipsitch [19] describe how the exponential growth rate of the 234

Bettencourt and Ribeiro estimator (their equation 3.1) and continuous-time equivalents 235

of the Cori et al. and Wallinga and Teunis estimators (their equations 4.1 and 4.2) can 236

be derived from the renewal equation model. 237

Originally developed in the context of population biology, the renewal equation is 238

usually expressed as b(t) =
∫∞
a=0

b(t− a)n(a)da, where b(t) is the number of births at 239

time t and n(a) is fecundity at age a, scaled by the probability of surviving to age a. 240

When used to describe epidemic dynamics, the renewal equation model is expressed in 241
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terms of I(t), the number of infections incident at time t; S(t), the susceptible fraction; 242

and w(·), the generation interval distribution [29,31,32]. Note that R0S(t) = Rt. 243

I(t) = R0S(t)

∫ ∞
0

I(t− s)w(s)ds (7)

The difficulty is that the “intrinsic” generation interval of the renewal equation, 244

which is the interval needed for accurate Rt estimation, is conceptually and 245

quantitatively different from the generation intervals observed in practice [31–33]. In 246

the renewal equation, the generation interval describes the time distribution of all 247

infectious contact events, whether or not the contacted individual is susceptible. (Note 248

that a different factor in the equation, S(t), scales the probability of contacting a 249

susceptible individual and causing a new infection.) The demographic analogy is that 250

w(·) describes changes over time in the fecundity (infectiousness) of an index case, while 251

S(t) determines whether offspring of that index case are viable. In practice, we only 252

observe generation intervals between viable pairs. Thus, unlike the intrinsic generation 253

interval, observed intervals are sensitive to changes in the rate of susceptible depletion 254

and can be biased estimators of the intrinsic interval, and of Rt [31–33]. A related 255

challenge is that interventions such as contact tracing and self-isolation can limit 256

transmission late in the course of infectiousness, shortening observed generation and 257

serial intervals [32,34,35]. Methods for accurate estimation of the generation interval 258

from contact tracing data involve adjusting for right truncation, and accounting for 259

population susceptibility at the times transmission pairs are observed [32,33]. 260

The serial interval, defined as the time between symptom onset in an infector-infectee 261

pair, is more easily observed than the generation interval and often used in its place. 262

Although the serial and generation interval are often conflated, failure to understand 263

the differences between these related quantities can bias Rt estimates [21,32]. The serial 264

interval and the generation interval have the same mean, but usually different 265

variance [36,37], and the serial interval can be negative (e.g., for COVID-19 [38–40]), 266

whereas the generation interval cannot [21,32]. The intrinsic generation interval can be 267

estimated from contact tracing data (i.e., estimates of the serial interval) [32,33]. 268

Fig. 3A illustrates the consequences of misspecifying the mean generation interval in 269

the method of Cori et al. If the mean generation interval is set too high, Rt values will 270

typically be further from 1 than the true value—too high when Rt > 1 and too low 271

when Rt < 1. If the mean is set too low, Rt values will typically be closer to 1 than the 272

true value. These biases are relatively small when Rt is near the critical threshold of 273

one but increase as Rt takes substantially higher or lower values (Fig. 3). Therefore, 274

biases from misspecification of the generation interval may be greatest early in an 275

epidemic, when the sensitivity of high Rt values to bias may be compounded by limited 276

data and highly uncertain generation interval estimates. 277

The consequences of misspecifying the form and variance of the generation interval 278

distribution are illustrated in Fig. 2A and Fig. 3B. As explained above, biases in the 279

Bettencourt and Ribeiro estimator arise entirely from misspecification of the form of the 280

generation interval, even if the mean is correctly specified. Similarly, the accuracy of the 281

Cori et al. and Wallinga and Teunis estimators in Fig. 2 B,C are contingent on perfect 282

specification of the generation interval; in practice, if the mean, variance or form of a 283

pathogen’s true generation interval is uncertain, Rt estimates obtained using these 284

methods can be biased. 285

EpiEstim [20] allows users to account for uncertainty in the mean and standard 286

deviation of the generation interval by resampling over a range of plausible 287

values [14,20]. Similarly, Bayesian methods such as EpiNow2 [41] and the rt.live 288

adaptation [6] of the Bettencourt and Ribeiro method allow users to specify the prior 289

variance of the mean and standard deviation. Uncertainty around an incorrect value can 290
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widen the resulting 95% interval but will not shift the assumed central value toward the 291

truth, and will not correct bias in the central Rt estimates. 292

Joint estimation of both Rt and the serial interval is possible, depending on data 293

quality and magnitude of Rt [12, 42,43], and the EpiEstim [15,20] package provides an 294

off-the-shelf option for joint estimation. However, these off-the-shelf methods should be 295

used with caution, as they estimate the observed serial interval, not the intrinsic 296

generation interval, and do not account for changes over time in behavior or 297

susceptibility. 298

Summary 299

• The intrinsic generation interval is required to correctly define the relationship 300

between Rt and incident infections. 301

• The intrinsic generation interval is rarely observable, and care must be taken to 302

estimate it from proxies such as the serial interval. 303

Fig 3. Biases from misspecification of the generation interval mean (A) or
variance (B). Demonstrated using the method of Cori et al.

Adjusting for delays 304

Estimating Rt requires data on the daily number of new infections (i.e., transmission 305

events). Due to lags in the development of detectable viral loads, symptom onset, 306

seeking care, and reporting, these numbers are not readily available. All observations 307

reflect transmission events from some time in the past. In other words, if d is the delay 308

from infection to observation, then observations at time t inform Rt−d, not Rt (Fig. 4). 309

Obtaining temporally accurate Rt estimates thus requires assumptions about lags from 310

infection to observation. If the distribution of delays can be estimated, then Rt can be 311

estimated in two steps: first by inferring the incidence time series from observations and 312

then by inputting the inferred time series into an Rt estimation method. Alternatively, 313

the unobserved time series could be inferred simultaneously with Rt or treated as a 314

latent state. Such methods are now under development and available in a development 315

version of the R package EpiNow2 [41,44]. 316

Two simple but mathematically incorrect methods for inference of unobserved times 317

of infection have been applied to COVID-19: convolution and temporal shifts. The 318
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time
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onset

outpatient 
testing

hospital 
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admission

death or 
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Observed data reflect past 
transmission events.

Fig 4. Rt is a measure of transmission at time t. Observations after time t must be
adjusted.

errors introduced by these methods may be tolerable if delays to observation are 319

relatively short and not highly variable, and if Rt is not rapidly changing. But when 320

dealing with longer or more variable observation delays, or when aiming to infer the 321

timing of changes in Rt accurately, these methods may not be sufficient. 322

One method infers each individual’s time of infection by subtracting a sample from 323

the delay distribution from each observation time. This is mathematically equivalent to 324

convolving the observation time series with the reversed (backward) delay distribution, 325

but convolution does not accurately infer the underlying time series of infections from 326

observations [45–47]. The forward delay distribution has the effect of spreading out 327

infections incident on a particular day across many days of observation. This blurring 328

into the future is biologically realistic and reflects individual variation in disease 329

progression and care seeking. To recover the original time series of infections from 330

observations requires deblurring. Instead, as illustrated in (S1 Fig), backward 331

convolution unrealistically spreads them out further. An unintended consequence of 332

added blurring from backward convolution is that it can help smooth over weekend 333

effects and other observation noise. But a crucial pitfall is that this blurring also 334

smooths over true variation in Rt: peaks, valleys, and changes in slope of the latent 335

time series of infection events. Convolution and other approaches that blur or 336

oversmooth can therefore prevent or delay detection of changes in Rt and can impede 337

accurate inference of the timing of these changes (Fig. 5C). 338

The second simple-but-incorrect method to adjust for lags is to shift either the raw 339

inputs (the observed time series) or outputs of Rt estimation on the time axis. Rt 340

estimates obtained by applying the methods of Cori et al. or Bettencourt and Ribeiro 341

to unadjusted data will lag the true instantaneous Rt by roughly the mean delay from 342

infection to observation. Because the case reproductive number leads the instantaneous 343

reproductive number by roughly one generation interval, the unadjusted estimates 344

obtained from the Wallinga and Teunis method will lag the true instantaneous 345

reproductive number by roughly the mean delay to observation minus the mean 346

generation interval. Unlike backward convolution, temporal shifting does not further 347

blur the observed time series. Thus, if the mean delay is known accurately, this method 348

is preferable to subtracting samples from the delay distribution (Fig. 5 A,B). However, 349

shifting the input time series does not undo the blurring effect of the original delay, 350

which, like backward convolution can impede accurate inference of changes in Rt. 351

Shifting inputs or Rt estimates by a fixed amount also fails to account for realistic 352

uncertainty in the true mean delay, which will not be known exactly and might change 353

over time. 354

More reliable methods to reconstruct the incidence time series are now under 355
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Fig 5. Pitfalls of simple methods to adjust for delays to observation when
estimating Rt. Infections back calculated from (A) observed cases or (B) observed
deaths either by shifting the observed curve back in time by the mean observation delay
(shift), by subtracting a random sample from the delay distribution from each individual
time of observation (convolve), or by deconvolution (deconvolve), without adjustment
for right truncation. Neither back-calculation strategy accurately recovers peaks or
valleys in the true infection curve. The inferred infection curve is less accurate when the
variance of the delay distribution is greater (B vs. A). (C) Posterior mean and credible
interval of Rt estimates from the Cori et al. method. Inaccuracies in the inferred
incidence curves affect Rt estimates, especially when Rt is changing (here Rt was
estimated using shifted values from A and B). Finally we note that shifting the observed
curves back in time without adjustment for right truncation leads to a gap between the
last date in the inferred time series of infection and the last date in the observed data,
as shown by the dashed lines and horizontal arrows in A-C.
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development. Given a known delay distribution, one potential solution is to infer the 356

unlagged signal using maximum-likelihood deconvolution. This method was applied to 357

AIDS cases, which feature long delays from infection to observation [47], and in the 358

reconstruction of incidence from mortality times series for the 2009 H1N1 pandemic 359

[45]. It is now being applied to COVID-19 [8, 48]. Fig. 5 shows an example of 360

deconvolution applied following the methods in [45]. The method of [47] is implemented 361

in the backprojNP function within the surveillance R package [49,50]. In principle, 362

deconvolution can more accurately estimate the latent time series than temporal 363

shifting or backward convolution, but the method is sensitive to misspecification of the 364

mean, variance or form of the delay distribution, and the stringency of the stopping 365

condition of the deconvolution algorithm. It can also be difficult to quantify uncertainty 366

in the deconvolved time series [41] and to implement deconvolution while adjusting for 367

right truncation. 368

A potential alternative to deconvolution is Rt estimation models that include 369

forward delays to observation in the inference process or that treat the time series of 370

infections as latent states. Such methods are in development within the R package 371

EpiNow2 [41]. An additional advantage of inferring the time series of infections jointly 372

with Rt is seamless integration of various sources of uncertainty, e.g., in Rt and 373

reporting. By comparison, the two-step approach of first transforming the observed 374

time series and then calculating Rt requires users to propagate uncertainty from the 375

back-calculation step into the Rt estimation step. A final advantage of latent state 376

methods is that they could in theory facilitate inference from multiple data streams 377

simultaneously. For example, by assuming that cases, hospitalizations, and deaths all 378

arise from a common infection process, these methods might be able to infer the incident 379

time series of infections more accurately and precisely, potentially while also estimating 380

delays and changes in ascertainment for specific data sources (e.g., outpatient cases). 381

Deconvolution or Rt estimation methods that include a forward observation process 382

are particularly useful when delays to observation are relatively long and variable, and 383

in analyses that require accurate inference of the timing and speed of changes in Rt. If 384

delays to observation are relatively short, or if Rt is not substantially changing, then 385

deconvolution may not be necessary. For example, when working with synthetic case 386

data in which the mean delays to observation are short and known accurately, the 387

underlying infection curve (Fig. 5A) and underlying Rt values (Fig. 5C) can be 388

recovered with reasonable accuracy simply by shifting the observed time series. But 389

longer and more variable delays to observation worsen inference of the underlying 390

incidence curve (Fig. 5B). In turn, this makes it more difficult to infer the speed and 391

timing of abrupt changes in Rt and to relate those changes to policies, behaviors or 392

other extrinsic epidemic drivers at specific points in time. For example, simply shifting 393

a times series of observed deaths by the mean delay does not accurately recover the 394

underlying curves of infections or Rt (Fig. 5B,C). The marginal value of deconvolution 395

or other methods that infer the unobserved time series of infections is greater when 396

delays to observation are longer and more variable, and when Rt is changing. 397

Another advantage of working with observations nearer the time of infection, such as 398

times of symptom onset among newly symptomatic individuals, is that they provide 399

more information about recent transmission events and therefore allow Rt to be 400

estimated in closer to real-time (Fig. 5C) [46]. Of course, this advantage could be offset 401

by sampling biases and reporting delays. Users will need to balance data quality with 402

the length of the observation delay when selecting inputs. 403

Further investigation is needed to determine the best methods for inferring infections 404

from observations if the underlying delay distribution is uncertain. If the delay 405

distribution is severely misspecified, all three approaches (deconvolution, shifting by the 406

mean delay, or convolution) will incorrectly infer the timing of changes in incidence. In 407
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this case, methods such as deconvolution or shifting by the mean delay might more 408

accurately estimate the magnitude of changes in Rt but at the cost of spurious precision 409

in the inferred timing of those changes. Ideally, the delay distribution could be inferred 410

jointly with the underlying times of infection or estimated as the sum of the incubation 411

period distribution and the distribution of delays from symptom onset to observation 412

(e.g. from line-list data). 413

Summary 414

• Estimating the instantaneous reproductive number requires data on the number of 415

new infections (i.e., transmission events) over time. These inputs must be inferred 416

from observations using assumptions about delays between infection and 417

observation. 418

• Inferring the unlagged time series of infections using deconvolution, or within an 419

Rt estimation model that includes forward delays, can improve accuracy. 420

• A less accurate but simpler approach is to shift the observed time series by the 421

mean delay to observation. If the delay to observation is not highly variable, and 422

if the mean delay is known exactly, the error of this approach may be tolerable. A 423

key disadvantage is that shifting by a fixed amount of time does not account for 424

uncertainty or individual variation in delay times. 425

• Sampling from the delay distribution to impute individual times of infection from 426

times of observation accounts for uncertainty but blurs peaks and valleys in the 427

underlying incidence curve, which in turn compromises the ability to rapidly 428

detect changes in Rt. 429

Adjusting for right truncation 430

Near real-time estimation requires not only inferring times of infection from the 431

observed data but also adjusting for missing observations of recent infections. The 432

absence of recent infections is known as “right truncation”. Without adjustment for 433

right truncation, the number of recent infections will appear artificially low because 434

they have not yet been reported [4, 30,51–55]. Thus, adjusting for right truncation is 435

particularly important in analyses with the goal of near real-time Rt estimation. 436

Figure 5 illustrates the consequences of failure to adjust for right truncation when 437

inferring times of infection from observations. Subtracting the mean observation delay 438

m from times of observation (“shift” method in Fig. 5A,B) leaves a gap of m days 439

between the last date in the inferred infection time series and the last date in the 440

observed data. This hampers recent Rt estimation (Fig. 5C). Inferring the underlying 441

times of infection by subtracting samples from the delay distribution (“convolve” 442

method in Fig. 5A,B) dramatically underestimates the number of infections occurring 443

in the last few days of the time series. 444

The simplest approach is to drop estimates on the last few dates, or to flag them as 445

unreliable [8]. But many methods are available to adjust for right truncation, which can 446

improve real-time analysis [41,51–56]. These methods infer based on past reporting 447

delays the total number of infections, observed and not-yet-observed, at the end of the 448

time series. 449

In short, accurate near real-time Rt estimation requires both inferring the infection 450

time series from recent observations and adjusting for right truncation. Errors in either 451

step could amplify errors in the other. Joint inference approaches for near real-time Rt 452

estimation, which simultaneously infer times of infection and adjust for right truncation, 453

are now in development [41]. 454
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Summary 455

• At the end of a truncated time series, some infections will not yet have been 456

observed. Infer the missing data to obtain accurate recent Rt estimates. 457

Accounting for incomplete observation 458

The effect of incomplete case observation on Rt estimation depends on the observation 459

process. If the fraction of infections observed is constant over time, Rt point estimates 460

will remain accurate and unbiased despite incomplete observation [12,14,43,57,58]. 461

Data obtained from carefully designed surveillance programs might meet these criteria. 462

But even in this best-case scenario, because the estimation methods reviewed here 463

assume all infections are observed, confidence or credible intervals obtained using these 464

methods will not include uncertainty from incomplete observation. Without these 465

statistical adjustments, practitioners and policy makers should beware false precision in 466

reported Rt estimates. 467

Sampling biases will also bias Rt estimates [57]. COVID-19 test availability, testing 468

criteria, interest in testing, and even the fraction of deaths reported [59] have all 469

changed over time. If these biases are well understood, it might be possible to adjust for 470

them when estimating Rt. Observed hospitalizations and deaths may be less sensitive to 471

changes in test availability and testing effort, but may be more sensitive to other factors, 472

such as hospital bed availability. Hospitalizations and deaths will also vary in their 473

representativeness of mean transmission rates, depending on which age groups are being 474

infected. No matter what data is used, one potential solution is to flag Rt estimates as 475

potentially biased in the few weeks following known changes in data collection or 476

reporting. At a minimum, practitioners and policy makers should understand how the 477

data underlying Rt estimates were generated and whether they were collected under a 478

standardized testing protocol. 479

Summary 480

• Rt point estimates will remain accurate given imperfect observation of cases if the 481

fraction of cases observed is time-independent and representative of a defined 482

population. But even in this best-case scenario, confidence or credible intervals 483

will not accurately measure uncertainty from imperfect observation. 484

• Changes over time in the type or fraction of infections observed can bias Rt 485

estimates. Structured surveillance with fixed testing protocols can reduce or 486

eliminate this problem. 487

Smoothing windows 488

Because Rt estimators incorrectly assume all infections are observed, day-of-week 489

reporting effects and stochasticity in the number of observations per day can cause 490

spurious variability in Rt estimates, especially if the number of observations per day is 491

low [14]. The Cori method incorporates a sliding window to smooth Rt estimates, but 492

the size of the smoothing window can affect both the temporal and quantitative 493

accuracy of estimates. Larger windows effectively increase sample size by drawing 494

information from multiple time points but blur what may be biologically meaningful 495

changes in Rt. Some smoothing approaches can also cause Rt estimates to lead or lag 496

the true value (Fig. 6). 497

August 27, 2020 15/25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2020. ; https://doi.org/10.1101/2020.06.18.20134858doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20134858
http://creativecommons.org/licenses/by/4.0/


Lags can be particularly severe when using the conventions suggested by Cori et al., 498

in which Rt is reported on the last date in a given window, rather than on the middle 499

date. Although this convention returns Rt estimates to the last date in the time series, 500

which is convenient for real-time estimation, Rt estimates reported at the end of a 501

window are based entirely on data from the past and therefore lag the instantaneous Rt 502

(Fig 6B). Instead, we recommend reporting Rt at the midpoint of the smoothing 503

window (Fig 6A), which produces estimates that are more accurately oriented in time. 504

An apparent disadvantage is that a centered window precludes Rt estimation on the last 505

w/2 time units, where w is the width of the window. However, we argue that temporal 506

accuracy is preferable, and that if daily counts are low, failure to produce estimates on 507

the last few days in the time series realistically acknowledges uncertainty about recent 508

trends. Thus, for SARS-CoV-2 and other pathogens with short timescales of infection, 509

near real-time Rt estimation requires large enough daily counts to permit a small 510

window (e.g., a few days). 511

t

Assign t to middle of smoothing window

t

Assign t to end of smoothing window

A B

Fig 6. Accuracy of Rt estimates given smoothing window width and location of t
within the smoothing window. Estimates were obtained using synthetic data drawn
from the S → E transition of a stochastic SEIR model (inset) as an input to the
method of Cori et al. Colored estimates show the posterior mean and 95% credible
interval. Black line shows the exact instantaneous Rt calculated from synthetic data.

Although the sliding window increases statistical power to infer Rt, it does not by 512

itself accurately calculate confidence intervals. Thus, underfitting and overfitting are 513

possible. The risk of overfitting in the Cori method is determined by the length of the 514

time window that is chosen. In other words, there is a trade-off in window length 515

between picking up noise with very short windows and over-smoothing with very long 516

ones. To avoid this, one can choose the window size based on short-term predictive 517

accuracy, for example using leave-future-out validation to minimize the one-step-ahead 518

log score [60]. Proper scoring rules such as the Ranked Probability Score can be used in 519

the same way, and a time-varying window size can be chosen adaptively [41]. 520
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Summary 521

• If Rt appears to vary abruptly due to underreporting, a wide smoothing window 522

can help resolve Rt. However, wider windows can also lead to lagged or inaccurate 523

Rt estimates. 524

• If a wide smoothing window is needed, consider reporting Rt for t corresponding 525

to the middle of the window. 526

• To avoid overfitting, choose a smoothing window based on short-term predictive 527

accuracy [60] or use an adaptive window [41]. 528

Conclusion 529

We tested the accuracy of several methods for Rt estimation in near real-time and 530

recommend the methods of Cori et al. [14], which are currently implemented in the R 531

package EpiEstim [20]. The Cori et al. method estimates the instantaneous rather than 532

the case reproductive number and is conceptually appropriate for near real-time 533

estimation. The method uses minimal parametric assumptions about the underlying 534

epidemic process and can accurately estimate abrupt changes in the instantaneous 535

reproductive number using ideal, synthetic data. 536

Most epidemiological data are not ideal, and statistical adjustments are needed to 537

obtain accurate and timely Rt estimates. First, to obtain timely and temporally 538

accurate Rt estimates, considerable pre-processing is needed to infer the underlying time 539

series of infections (i.e., transmission events) from delayed observations and to adjust for 540

right truncation. Best practices for this inference are still under investigation, especially 541

if the delay distribution is uncertain. The smoothing window must also be chosen 542

carefully, potentially adaptively, and daily counts must be sufficiently high for changes 543

in Rt to be resolved on short timescales. To avoid biases in Rt estimates, the generation 544

interval distribution must be estimated and specified accurately. Finally, to avoid false 545

precision in Rt, uncertainty arising from delays to observation, from adjustment for 546

right truncation, and from imperfect observation must be propagated. The functions 547

provided in the EpiEstim package quantify uncertainty arising from the Rt estimation 548

model but currently not from uncertainty arising from imperfect observation or delays. 549

Work is ongoing to determine how best to infer infections from observations and to 550

account for all relevant forms of uncertainty when estimating Rt. Some useful 551

extensions of the methods provided in EpiEstim have already been implemented in the 552

R package EpiNow2 [41,44], and further updates to this package are planned as new 553

best practices become established. 554

But even the most powerful inferential methods, extant and proposed, will fail to 555

estimate Rt accurately if changes in sampling are not known and accounted for. If 556

testing shifts from more to less infected subpopulations, or if test availability shifts over 557

time, the resulting changes in case numbers will be ascribed to changes in Rt. Thus, 558

structured surveillance also belongs at the foundation of accurate Rt estimation. This is 559

an urgent problem for near real-time estimation of Rt for COVID-19, as case counts in 560

many regions derive from clinical testing outside any formal surveillance program. 561

Deaths, which are more reliably sampled, are lagged by 2-3 weeks and still subject to 562

biases in underreporting. The establishment of sentinel populations (e.g., outpatient 563

visits with recent symptom onset) for Rt estimation could thus help rapidly identify the 564

effectiveness of different interventions and recent trends in transmission. 565
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Code availability 566

All code for analysis and figure generation is available at 567

https://github.com/cobeylab/Rt estimation. 568

Supporting information 569

S1 Fig. Why is deconvolution needed to recover latent times of infection? 570

(A) Consider 1000 individuals, all infected at time 100. (Vertical line shows the mean). 571

(B) Now consider the times at which these individuals are observed. Logically, 572

tobservation = tinfected + u, where u is a random variable describing the delay between 573

infection and observation. Mathematically, this is a convolution of the infection time 574

and the delay distribution. Because u has non-zero variance, observation times are not 575

only shifted into the future but also are blurred across many dates. This blurring is 576

biologically realistic; due to variability in disease progression and care seeking, 577

individuals with the same date of infection will not necessarily be observed at the same 578

time. (C) Using the observations in B, we aim to recover the latent times of infection 579

shown in A. Doing so would require not only shifting into the past but also removing 580

the variance introduced by the observation process, which can be achieved by 581

deconvolution. Instead, as demonstrated here, a common strategy is to subtract u from 582

the times of observation, effectively repeating the convolution shown in B, but this time 583

moving backward in time rather than forward. This is not the correct inverse operation. 584

It fails to remove variance introduced by the observation process (the forward 585

convolution) and adds new, biologically unrealistic variance, further blurring the 586

inferred times of infection. (D) Shifting the times of observation by the mean delay E[u] 587

is also incorrect, as it does not remove the variance from the forward convolution in B. 588

But if the mean delay time is known exactly, this approach is preferable to C, as it 589

avoids adding even more variance. Ultimately, deconvolution methods would be needed 590

to recover A from the observations in B while properly accounting for uncertainty. 591
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S2 Fig. real-time accuracy when Rt is rising or falling. (A-C) Alternate 592

version of Fig. 2 in which the time series ends on the day Rt first hits its minimum 593

value after falling abruptly (time 67, yellow point), or eight days after the changepoint 594

(time 75). (D-F) The time series ends on the day Rt stops rising (time 97, yellow point), 595

or eight days later (time 105). Estimates of the instantaneous reproductive number 596

(A,B,D,E) remain accurate to the end of the time series, and estimates do not change as 597

new observations become available in the 8 days following the changepoint. As in the 598

main text, estimates of the unadjusted case reproductive number (C,F) depend on data 599

from not-yet-observed time points. These estimates become more accurate as new 600

observations are added to the end of the time series (orange vs. blue). Methods to infer 601

the number of not-yet-observed infections can help make estimates of the case 602

reproductive number more accurate in real-time [4, 30]. All panels show fits to the time 603

series of new infections, and assume all infections are observed instantaneously. Solid 604

black line shows the instantaneous reproductive number, and dashed black line shows 605

the case reproductive number. Colored lines and confidence region show posterior mean 606

and 95% credible interval (A,B,D,E) or maximum likelihood estimate and 95% 607

confidence interval (C,F). 608
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S3 Fig. Smoothed estimates of Cori et al. and Wallinga and Teunis. Both 609

were estimated using a 7-day smoothing window on a synthetic time series of new 610

infections, observed without delay. The estimates of Cori et al. and Wallinga and 611

Teunis are similar in shape when smoothed, but the estimate of Wallinga and Teunis 612

(the case reproductive number) leads that of Cori et al. (the instantaneous reproductive 613

number) by roughly 8 days, or the mean generation interval. Solid colored lines and 614

confidence regions show the posterior mean and 95% credible interval (Cori et al.) or 615

maximum likelihood estimate and 95% confidence interval (Wallinga and Teunis). 616

Dotted and dashed lines show the exact instantaneous reproductive number and case 617

reproductive number, respectively. 618
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