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Abstract
As malaria incidence decreases and more countries 
move towards elimination, maps of malaria risk in low- 
prevalence areas are increasingly needed. For low- burden 
areas, disaggregation regression models have been devel-
oped to estimate risk at high spatial resolution from rou-
tine surveillance reports aggregated by administrative unit 
polygons. However, in areas with both routine surveil-
lance data and prevalence surveys, models that make use 
of the spatial information from prevalence point- surveys 
might make more accurate predictions. Using case stud-
ies in Indonesia, Senegal and Madagascar, we compare 
the out- of- sample mean absolute error for two methods 
for incorporating point- level, spatial information into 
disaggregation regression models. The first simply fits a 
binomial- likelihood, logit- link, Gaussian random field to 
prevalence point- surveys to create a new covariate. The 
second is a multi- likelihood model that is fitted jointly 
to prevalence point- surveys and polygon incidence data. 
We find that in most cases there is no difference in mean 
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1 |  INTRODUCTION

Global malaria incidence has decreased dramatically over the last 20 years (Battle et al., 2019; Bhatt 
et  al., 2015; Weiss et  al., 2019). This decrease has been accompanied by a strategic shift aiming 
for elimination in low- incidence countries (Newby et al., 2016; World Health Organization, 2016). 
Accurate, high- resolution maps of malaria risk are vital in countries in the elimination and pre- 
elimination phases as they highlight the areas with ongoing Plasmodium transmission most in need 
of interventions (Cohen et al., 2017; Sturrock et al., 2016). Two important data sources for malaria 
mapping are cluster- level surveys of prevalence (Bhatt et al., 2015; Bhatt et al., 2017; Gething et al., 
2011; Gething et al., 2012) and routine surveillance data, typically aggregated by administrative unit 
polygons (Cibulskis et al., 2011; Ohrt et al., 2015; Sturrock et al., 2016). These data sources have 
different strengths and different spatial coverage. In low- burden areas, very large sample sizes are 
needed before a prevalence survey is informative because so few individuals have detectable parasi-
taemia that most sample points will have no cases. Routine surveillance data can be more sensitive 
than prevalence point- surveys in low- transmission areas because the entire public health system is 
being used to passively monitor disease occurrence continually over a period of time (Cibulskis et al., 
2011). The availability and quality of routine surveillance data of malaria case counts can be poor, but 
is improving (Cibulskis et al., 2011; Ohrt et al., 2015). Therefore, when the study area contains both 
low-  and medium/high- burden areas, or when prevalence surveys and routine surveillance provide 
complementary spatial coverage, models that use both of these data sources have the potential to im-
prove estimates of malaria prevalence and incidence.

Disaggregation regression methods have been proposed as a way to model malaria burden 
using polygon- level, routine surveillance records of incidence (Arambepola et  al., 2020; Johnson 
et al., 2019; Li et al., 2012; Sturrock et al., 2014; Taylor et al., 2018; Wilson & Wakefield, 2020). 
Disaggregation regression requires an aggregation step in which the high- resolution estimates of dis-
ease incidence are summed to match the level of the administrative unit at which the incidence data 
are observed. An important consideration is whether the aggregation step occurs in link function 
space or in the response space. In the case of the identity link function, the two cases are the same 
(Moraga et al., 2017; Roksvåg et al., 2019; Wilson & Wakefield, 2020). However, when using a non- 
linear link function, the two cases imply very different models. In the case of the Normal– Poisson 
pairing with a log- link function, performing the aggregation step in the link space before transfor-
mation back to the response space produces a ‘geometric sum’ operation. This formulation has been 
used for computational convenience a number of times in the literature (Liu et al., 2011; Wang et al., 

absolute error between models. In only one case, did the 
new models perform the best. More generally, our results 
demonstrate that combining these types of data has the po-
tential to reduce absolute error in estimates of malaria in-
cidence but that simpler baseline models should always be 
fitted as a benchmark.
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2018) but lacks the natural epidemiological interpretation provided by arithmetic summation in the 
response space.

There are two broad ways that spatial information from prevalence surveys could be included 
in a dissaggregation regression model of incidence. First, the information from prevalence surveys 
could be summarised using a separate model and then included as a covariate in the disaggregation 
model. If the model used to summarise the prevalence surveys was explicitly spatial, this approach 
would make the spatial information in the prevalence data available to the disaggregation model, 
thereby enhancing the ability to spatially disaggregate polygon- level cases within administrative 
units. However, this approach does not use any additional statistical power from the prevalence data 
in order to more accurately learn relationships between malaria risk and the environment. When the 
study area contains medium- burden areas, this is a missed opportunity. When the spatial coverage 
of data is different but the whole study area is low burden, this method may be appropriate. This 
broad approach of summarising the information in a different data set using a separate model has 
previously been used in a number of contexts, including information on animal hosts (Shearer et al., 
2016) or summarising temperature suitability for malaria parasites (Weiss et  al., 2014b), which 
were subsequently used as inputs for modelling malaria prevalence (Bhatt et al., 2015; Weiss et al., 
2019).

Fully combining observations of incidence and prevalence in a joint model, with multiple 
likelihoods, addresses the limitations of a simple model using a prevalence map as a covariate. 
Advantageously, as the additional malariometric data are being used as response data, they provide 
more statistical power with which to learn relationships between malaria risk and the environment. 
Such a model can also learn the relationship between different types of malaria response metrics at the 
same time as making spatial estimates, thereby producing statistically and epidemiologically consis-
tent outputs for both incidence and prevalence. While a joint model provides the opportunity to learn 
the relationship between prevalence and incidence, this is technically challenging as these two data 
types measure disease intensity on different scales. Point- surveys are a measurement of prevalence in 
the range [0, 1] that quantify parasite rate at a specific point in time. In contrast, routine surveillance 
measures incidence in the range [0, ∞] over a longer period of time (e.g. a year) during which individ-
uals can have multiple malaria infections. The case of using areal and point data together with differ-
ent likelihoods and different link functions has been examined previously (Wang et al., 2018) but has 
required that the aggregation step be performed in the link function space. Disaggregation regression 
models in which the aggregation step is performed in the natural response space have been examined 
(Taylor et al., 2018; Wilson & Wakefield, 2020), but without combining point data with areal data or 
using dual likelihoods for multi- metric data.

Here we compare two methods for using spatial information from prevalence surveys to inform a 
disaggregation model fitted to polygon incidence data of Plasmodium falciparum malaria. The first, 
simpler, model summarises the spatial information in the prevalence point- surveys by fitting a spatial 
Gaussian process model to the surveys. Predictions from this model are then used as a covariate in the 
disaggregation model. Second, we formulate a joint model that combines polygon incidence data and 
prevalence point- surveys using separate likelihoods for both data types. This model therefore has the 
potential to learn from the prevalence data in two ways. First, it has the potential to learn more accu-
rate relationships between malaria incidence and the environment from any prevalence data that is in 
medium transmission areas. Second, it can learn from the spatial information in the prevalence data 
as well. We relate the differing malariometric measures by using a previously estimated relationship 
within the model (Cameron et al., 2015), which is then adjusted as part of the model fitting process. 
Unlike previous studies, this model combines areal and point level data, with different likelihoods, 
without performing the aggregation step in the link function space. We then compare results from the 
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two models with those made using a polygon- only, disaggregation model similar to previous models 
(Sturrock et  al., 2014; Wilson & Wakefield, 2020). All models are fitted to data from Indonesia, 
Senegal and Madagascar to provide a set of case studies from disparate geographic settings and with 
differing levels of malaria endemicity.

2 |  MATERIALS AND METHODS

2.1 | Malaria data

We used two data sources that quantify malaria burden: prevalence point- surveys and polygon in-
cidence data. Prevalence point- surveys consist of geolocated survey clusters wherein all sampled 
individuals are tested for malaria and the positive cases as well as the total number of people tested 
is recorded. Polygon incidence data are aggregated to administrative units (e.g. districts or provinces) 
summarising data reported from hospitals and health facilities. Unlike the point data, polygon- level 
reports only include numbers of cases and not the numbers of individuals in each administrative unit. 
As such, to determine an incidence rate we rely on gridded population surfaces, summarised to ad-
ministrative unit boundaries, to provide the denominator. The prevalence point- survey data were ex-
tracted from the Malaria Atlas Project database (Bhatt et al., 2015; Guerra et al., 2007; Pfeffer et al., 
2018). This data includes DHS and MIS data as well as prevalence surveys collated from the litera-
ture. As the prevalence point- surveys cover different age ranges they were standardised to the 2-  to 
10- year range using a previously published model (Smith et al., 2007). This standardisation generally 
makes small adjustments to the prevalence values. Carrying the uncertainty from this model through 
to the final model was deemed out of scope for this work. As described, the age standardisation 
model gives the surveys with zero positive cases a small positive prevalence. The polygon incidence 
data were collated from various government reports and adjusted for incompleteness using methods 
defined by Cibulskis and colleagues (Cibulskis et al., 2011). Full details of all the preprocessing per-
formed on this data is given in the supplementary materials of Weiss et al. (2019). These adjustments 
account for underreporting of clinical cases due to lack of treatment seeking, missing case reports 
(from a health facility that reported for 11 months in a year for example) and cases that sought medi-
cal attention outside the public health systems (Battle et al., 2016). Where species- specific reports 
were given, these were used, and in reports that did not distinguish between species of Plasmodium 
the national estimate of the ratio between P. falciparum and Plasmodium vivax cases was used to 
estimate numbers of P. falciparum cases specifically. These adjustments were uniform across each 
country. The polygon incidence data can be seen in Panel A of Figures 1– 3.

We selected Indonesia, Senegal and Madagascar as case examples as they all have abundant sub-
national surveillance data and country- wide surveys from approximately the same periods. To mi-
nimise temporal effects, we selected 1 year of polygon incidence data and the surrounding 5 years 
of prevalence point- survey data for each country. Within this 5- year period, we considered malaria 
unchanging and did not model time explicitly. For Indonesia, we selected polygon incidence data 
from 2012 that covers 379 administrative units, and prevalence data from 2010 to 2014 that consists 
of 1233 survey clusters (i.e. unique locations), representing 230,747 individuals. For Senegal, we 
selected 2015 for polygon incidence data (41 administrative units) and 2013– 2017 for prevalence 
data (804 clusters, 17,037 individuals). Six hundred and ninety- eight of these surveys were from 
the Senegal continuous DHS survey with 201, 114, 161 and 222 surveys in the years 2008– 2011. 
Finally, for Madagascar, we selected 2013 for polygon incidence (110 administrative units) and 
2011– 2015 for prevalence data (1049 clusters, 36,411 individuals). Of these, 898 surveys were 
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from the Malaria Indicator Surveys in 2011 (266 locations), 2013 (274 locations) and 2016 (358 
locations). In DHS surveys, but not MIS surveys, urban areas are typically oversampled. However, 
this oversampling should be accounted for by the inclusion of an accessibility to cities covariate as 
described below.

2.2 | Population data

Raster surfaces of population for the years 2005, 2010 and 2015 were created using a hybrid mosaic of 
data from the Gridded Population of the World v4 (NASA, 2018) and WorldPop (Tatem, 2017), with 
the latter taking priority for those pixels where both sources had population data. For each year, the 

F I G U R E  1  Reported incidence data and modelled incidence maps for Senegal. The national boundary of 
Senegal is shown in grey and missing data is left white. The adjusted input aggregated data is plotted in Panel (a), 
while Panel (b) maps the predictions of the prevalence Gaussian Process model for spatially cross- validated out- of- 
sample polygons and Panel (c) maps the predicted incidence from the joint model [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  2  Reported incidence data and modelled incidence maps for Madagascar. The adjusted input 
aggregated data is plotted in Panel (a), while Panel (b) maps the predictions of the prevalence Gaussian Process model 
for spatially cross- validated out- of- sample polygons and Panel (c) maps the predicted incidence from the joint model 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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interpolated population surfaces were adjusted to match national population estimates from the UN. 
Finally, the population surfaces were masked by environmental suitability so that only populations at 
risk were included (Weiss et al., 2019).

2.3 | Covariate data

We considered a suite of environmental and anthropological covariates, at a resolution of approxi-
mately 5 × 5 kilometres at the equator that included land surface temperature annual mean and 
standard deviation, enhanced vegetation index (EVI), P. falciparum temperature suitability index 
(Weiss et al., 2014b), elevation (NASA LP DAAC, 2013), tassel cap brightness, tassel cap wetness, 
accessibility to cities (Weiss et al., 2018), night lights (Elvidge et al., 2017) and proportion of urban 
land cover (Esch et al., 2018). The land surface temperature, EVI and tasselled cap indices were 
derived from satellite imagery and gap- filled to remove missing data caused by factors like cloud- 
cover (Weiss et al., 2014a) and rescaled to a spatial resolution of approximately 5 × 5 km (Weiss 

F I G U R E  3  Reported incidence data and modelled incidence maps for Indonesia. The national boundary of 
Indonesia is shown in grey and missing data are left white. The adjusted input aggregated data is plotted in Panel (a), 
while Panel (b) maps the predictions of the prevalence Gaussian Process model for spatially cross- validated out- of- 
sample polygons and Panel (c) maps the predicted incidence from the joint model [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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et al., 2015) that defined the output of the final prevalence and incidence maps. Some covariates 
were log- transformed to remove skewness or removed due to multicollinearity with other predictor 
variables using the threshold of 0.8. The covariates were standardised to have a mean of zero and 
a standard deviation of one.

2.4 | Baseline disaggregation model

Values at the aggregated, polygon (or areal) level are given the subscript A while pixel or point level vari-
ables are indexed with P. The polygon incidence case count data, CountA is given a Poisson likelihood

where IncA is the estimated polygon incidence rate and popA is the population at risk within that admin 
unit polygon (as opposed to the true health- centre catchment area).

The incidence rate is linked to latent pixel- level incidence (IncP), prevalence (PrevP) and predictor 
variables by the following system of equations.

Here, P ∈ A denotes that the summation is over the pixels in polygon A. Incidence is related to prevalence 
by

Here PrevInc is a function from a previously fitted model (Cameron et al., 2015)

The linear predictor of the model, ηP, is related to the latent prevalence scale by a typical logit link function

The baseline model is described in terms of prevalence as well as incidence, despite including no prev-
alence data, so that any differences in predictive ability compared to the full joint model are not simply 
due to the changed link function. Furthermore, the form of this set of link functions means we calculated 
predictions of prevalence and incidence simultaneously whether both data types or just one were used 
which can be useful in applied settings.

The linear predictor is composed of an intercept, �0, covariates, XP, and a vector of regression coef-
ficients β. We also include a spatial, Gaussian random field, uP(ρ, σu) and a polygon- level iid random 
effect, vAp

(�v).

The Gaussian spatial effect uP(ρ, σu) has a Matérn covariance function and two hyper parameters: ρ, the 
nominal range on the longitude– latitude scale (beyond which correlation is < 0.1) and σu, the marginal 

CountA ∼ Poisson(IncA popA)

IncA =

∑

P∈A IncP popP
∑

P∈A popP

.

IncP = PrevInc(PrevP).

PrevInc: f
(

PrevP

)

= 2.6 ⋅ PrevP − 3.6 ⋅ (PrevP)2
+ 1.6 ⋅ (PrevP)3.

PrevP = logit−1(�P).

�P = �0 + �XP + uP(�, �u) + vAp
(�v).
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standard deviation. The iid random effect, vAp
∼ Normal(� = 0, � = �v), was grouped by polygon, with 

all pixels within polygon A being grouped together (all subsequent normal distributions are also param-
eterised in terms of the standard deviation). Internally, this effect is parameterised as the log of the pre-
cision, �v = log(�v) = log(

1

�2
v

) to improve numeric stability. This random effect modelled both missing 
covariates and extra- Poisson sampling error.

Finally, we complete the model by setting priors on the parameters �0, β, ρ, σu and σv. The intercept 
was given a wide prior, �0 ∼ Normal( − 2, 4), with a mean relating to a prevalence of 0.12 as we know 
a priori that these countries have low or medium levels of malaria transmission. We set independent, 
regularising priors on the regression coefficients � i ∼ Normal(0, 0.04). Given the standardised covari-
ates, an intercept of −3 and a regression coefficient from the 95% interquartile range of this distribu-
tion, each covariate would be able to predict prevalence between 0.004 and 0.27. This prior encodes 
our belief that the full range of malaria transmission cannot be explained by a single covariate and our 
desire to regularise the model. This regularisation is particularly important given the small number of 
administrative units in Senegal (n = 46) and Madagascar (n = 110).

We assigned ρ and σu a joint penalised complexity prior (Fuglstad et  al., 2019) such that 
P(ρ < ζ) = 0.00001 and P(σu > ξ) = 0.00001. We used different ζ and ξ values for each country: 
Indonesia ζ = 3, ξ = 1, Senegal ζ = 1, ξ = 0.5 and Madagascar ζ = 1, ξ = 1. This gives a 95% prior 
credible interval for σu of (0.0020, 0.18) and for ρ of (2.2, 7.9) in Madagascar. We believe that a large 
proportion of the variance of malaria prevalence and incidence cannot be explained by a linear combi-
nation of the selected covariates at the scale of individual countries (Bhatt et al., 2017), so we set this 
prior such that the random field could explain most of the range of the data. As Senegal has a lower 
range of incidences in the data we set ξ to a smaller value for this country. Plots of this prior are shown 
in Figures S4 and S5.

We assigned σv a penalised complexity prior (Simpson et al., 2017) such that P(σv > 0.05) =   
0.0000001. This gives a 95% prior credible interval of (7.8 × 10−5, 1.1 × 10−2). This was based on 
a comparison of the variance of Poisson random variables, with rates given by the number of cases 
observed, and a separately derived upper and lower bound for the case counts using the approach de-
fined by Cibulskis and colleagues (Cibulskis et al., 2011). We found that an iid effect with a standard 
deviation of 0.05 was able to account for the discrepancy between the assumed Poisson error and the 
separately derived measurement error.

The models were implemented and fitted in R (R Core Team, 2018) using Template Model Builder 
(Kristensen et al., 2016) which allows a Laplace approximation of the posterior to be calculated. We 
note that R- INLA (Lindgren & Rue, 2015) can be used to fit disaggregation models but only when a 
linear link function is being used (Wilson & Wakefield, 2020). The hyperparameters are fitted using 
empirical Bayes whereby the hyperparameters are learned from the data but are treated as point esti-
mates rather than using the full posterior of the hyperparameters. We further note that MCMC, even 
using efficient samplers, is prohibitively slow for these sorts of models (Nandi et al., 2020).

2.5 | Prevalence Gaussian process covariate model

The prevalence Gaussian process model (henceforth the prevalence GP model) is the same as the 
baseline disaggregation model except that it has one extra covariate. This covariate is created by fit-
ting a Gaussian random field to the prevalence survey data. For each country, we fitted a model with 
a binomial likelihood

zP ∼ Binomial(PrevP, nP).
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Here PrevP is the estimated prevalence and nP is the observed survey sample size. The model only de-
pended on a Gaussian random field having no covariates

We used the same hyperpriors for ρ and σu as above. These models were fitted using R- INLA (Lindgren 
& Rue, 2015). To be in the correct scale for the dissagregation model, the inverse logit of the predicted 
Gaussian field (i.e. the linear predictor of the model) was used as the additional covariate.

2.6 | Full joint model

The final model is a joint- likelihood model with separate likelihoods for prevalence point- surveys and 
polygon incidence data. The polygon data are assigned a Poisson likelihood as before. Additionally, 
the point- survey data, with positive cases zb, are given a binomial likelihood

where PrevP is the estimated prevalence and nP is the observed survey sample size. As this model has both 
the prevalence and incidence data, we add a parameter α that modifies the relationship between the two

The only further change to the baseline model are in the linear predictor. For incidence data, the linear 
predictor remains unchanged. The linear predictor for the prevalence data is

As well as the global intercept, �0, this model has a prevalence survey specific intercept �Prev. The iid 
random effect, vAp

∼ Norm(0, �v), was again grouped by polygon, with all pixels and point- surveys 
within polygon A being in the same group as polygon A. The second iid random effect, wP∼Nor-
mal(0, σw), was applied to each point- survey. To improve numeric stability, this effect is also parameter-
ised internally as the log of the precision, �w = log(�w) = log(

1

�2
w

). This effect modelled extra- binomial 
sampling noise. As such, this random effect is not included in the predicted uncertainty in the incidence 
or prevalence layers.

We assigned σw a penalised complexity prior such that P(σw > ϕ) = 0.0000001. This was chosen 
by finding the maximum difference in prevalence between point- surveys (with a sample size greater 
than 500 individuals) within the same raster pixel. The differences between points within the same 
pixel can only be accounted for by the binomial error and this iid effect. Given that the error on a 
prevalence estimate with sample size greater than 500 is quite small, the iid effect needs to be able to 
explain this difference. In Senegal and Madagascar, this value was relatively small so we set ϕ = 0.05. 
In Indonesia, however, there was a high density of prevalence surveys and heterogeneity in estimated 
prevalence within single pixels. Therefore we set ϕ = 0.3.

The PrevInc relationship was fitted to the best available data (matched prevalence and incidence 
studies both at point level) and this data set. Therefore, we have some a priori confidence in it and 
from a regularisation standpoint would not wish it to be easily overridden by the data used in these 
models which are mismatched in spatial scale. Therefore, our prior belief is that  exp (α) is close to 

PrevP = logit−1(�GP + uP(�, �u)).

zP ∼ Binomial(PrevP, nP)

IncP = exp(�)PrevInc(PrevP).

�P = �0 + �Prev + �XP + uP(�, �u) + vAp
(�v) + wP(�w).
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one (i.e. the relationship remains unchanged) and therefore that α is close to zero. We set our prior as 
α  ∼  Normal(0, 0.001).

2.7 | Experiments

To compare the three models, we used two cross- validation schemes. In the first (random), the 
incidence data were split into 10 cross- validation folds while all the prevalence data was used in 
each case (Figure S1). In the second validation scheme, the incidence data was split into spatial 
cross- validation folds, using k means clustering on polygon centroids, while again all prevalence 
points were used in all folds (Figure S2). The number of folds was seven for Indonesia, five for 
Senegal and three for Madagascar. The number of folds was chosen based on the geographical 
sizes of the countries. This scheme tests specifically whether the joint model can improve pre-
dictions by increasing geographic data coverage. In each case, we tested whether the differences 
between the new models and the baseline model was greater than expected by chance using a 
paired Wilcox test.

We considered the ability of the model to predict polygon incidence to be our main objective and 
our performance metric for this was mean absolute error (MAE). As the models were fitted on data 
on different scales, we found that observations and predictions were sometimes correlated but shifted 
from the one- one line (i.e. were biased) and therefore correlation metrics were misleading. We also 
calculated mean errors to assess the bias of the models. To assess how well the models were calibrated 
we considered coverage of the 80% predictive credible intervals on the hold- out data.

2.8 | Sensitivity analysis

We ran sensitivity analyses for particular aspects of the model and prior specification. We lim-
ited our sensitivity analysis to Madagascar and ran random cross- validation on the full joint model 
with a number of alterations. We tested a weaker prior on α, using α  ∼  Normal(0,  1) instead of 
α ∼ Normal(0, 0.001). We also examined the sensitivity of the model to the coefficient values used 
in the PrevInc function. We reran the cross- validation using five draws from a normal distribution, 
centred on the original parameter values, and with a standard deviation of 0.1. Finally, we reran the 
cross- validation using weaker priors on the random effects but keeping the relative strengths of the iid 
and spatial random effects the same. We used P(σu > 1) = 0.01 and P(σv > 0.05) = 0.001.

3 |  RESULTS

Under the random cross- validation scheme, there was no significant differences in model performance 
between models (Table 1). This lack of strong differences is highlighted by there being no clear differ-
ences in scatter plots of observed and predicted data across the three methods (Figure S3). Under the 
spatial cross- validation scheme, the prevalence GP model performed significantly better than baseline 
in Madagascar and was not significantly different from baseline in Indonesia or Senegal (Table 1, 
Figure 4). The joint model performed significantly worse than baseline in Indonesia and in Senegal 
but was the best performing model in Madagascar. Furthermore, notable differences can be seen in 
the scatter plots of observed and predicted values (Figure 4). In Indonesia, it can be seen that the joint 
model is more strongly biased at low incidence values with many data points being overpredicted. 
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However, the joint model clearly performs better in Madagascar with the polygon- only model unable 
to predict high incidence observations accurately. Maps of out- of- sample predictions, under spatial 
cross- validation, can be seen in Figures 1– 3. In the Indonesian plots, one clear difference is that the 
joint model overpredicts on the island of Java.

All models seem to be fairly well calibrated (Table 2). The proportion of out- of- sample incidence dat-
apoints being within their 80% credible intervals ranged between 0.51 and 0.88. However, in most cases, 
coverage was between 0.7 and 0.8 implying that the models were a little overconfident in their predic-
tions. There was no clear difference in calibration between the different models. The bias in the models 
was generally fairly small (less than 15) with most models having a tendency to underpredict. While the 
differences in bias were not large, the joint model had the lowest bias in four out six cases (Tables S4– S5). 
Plots of model error against observed API, under spatial cross are shown in Figures S35– 37.

We can further investigate why the models performed as they did by examining the parameters 
estimated in the models fitted to all data (Tables S1– S3). We can see that for all covariate regres-
sion parameters in Madagascar and Senegal (Tables S1– S2) the standard deviation of the posterior is 
smaller in the joint model than in the prevalence GP model. For Indonesia, the standard deviation of 
the posteriors is smaller in the prevalence GP model 6 our of 8 times. Similarly, the standard deviation 
of the posteriors of the hyperparameters of the random field is smaller for the joint model in Senegal 
and Madagascar but larger for Indonesia. Given that these models are using the additional prevalence 
data as response data, this is to be expected. While noting that the coverage is similarly acceptable in 
all models (Table 2), this implies that more is being learned by the joint model and that these models 
might be useful for analyses that are more focused on estimating specific parameters.

We can also compare the regression parameter for the prevalence GP covariate in the three coun-
tries noting that in Indonesia the prevalence GP model performed worse than baseline under random 
cross- validation and had equal performance to baseline under spatial cross- validation. We see that the 
regression parameter for this covariate was small in Indonesia (mean = 0.06, sd = 0.12) but relatively 
large and positive in both Senegal (mean = 0.30, sd = 0.17) and Madagascar (mean = 0.36, sd = 0.07).

In Madagascar, the joint model performed the best in the spatial cross- validation scheme. Comparing 
the estimated parameters of the joint model between Madagascar and the other two countries therefore 
is useful. The prevalence intercept, �p, is large in the Senegal fit (mean = 1.36, sd = 0.13) but small 
in Indonesia (mean = 0.03, sd = 0.20) and Madagascar (mean = 0.07, sd = 0.10). This implies there 
is a strong discrepancy (given the prevalence to incidence model) between the prevalence and inci-
dence data in Senegal. Furthermore, the standard deviation of the prevalence point iid effect, wb(σw), 
is much larger in Indonesia (mean ωw = −2.6, sd ωw = 0.09 which corresponds to a mean of σw of 
13.46) than in Senegal (mean ωw = −1.03, sd ωw = 0.13 which corresponds to a mean of σw of 2.80) 

T A B L E  1  Summary of out- of- sample accuracy for all cross- validation experiments

Cross- validation Country Baseline Prev GP Joint

Random Indonesia 13.95 14.09 13.79

Senegal 12.41 12.37 13.07

Madagascar 39.06 35.82 39.01

Spatial Indonesia 14.77 14.77 16.46*

Senegal 13.09 12.21 15.15*

Madagascar 67.73 50.38† 44.05†

Mean absolute error of predicted incidence rate against out- of- sample observed data for three countries. Results that are significantly 
better or worse than the baseline (at the 95% significance level) are indicated with a dagger or asterisk respectively.
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F I G U R E  4  Observed- predicted plots of modelled annual malaria incidence (cases per 1000) by country from 
the spatial cross- validation experiments for Indonesia (Panel a), Senegal (Panel b) and Madagascar (Panel c). Results 
from the baseline disaggregation model are shown in red, the prevalence GP model is shown in green while the joint 
model is shown in blue. The one- one line is shown with a black line and a simple linear regression through the points 
is shown by a coloured line [Colour figure can be viewed at wileyonlinelibrary.com]
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or Madagascar (mean ωw = −0.77, sd ωw = 0.11 which corresponds to a mean of σw of 2.16). This 
implies there is a lot of noise in the prevalence data in Indonesia.

We set a strong prior on α being close to one, encoding our belief that the incidence– prevalence 
relationship should be close to the previously fitted model. The estimated value for α in all three coun-
tries is very close to one (Tables S1– S3). While this might be driven by the prior, this indicates that 
there is no strong evidence from the data that this relationship should be scaled differently by country. 
The MAE for Madagascar does not change when run with a much weaker prior on this parameter. 
However, the MAE for Madagascar varies quite a lot when adding random noise to the parameter 
values (MAE increases by between 0 and 5.7). Changing the priors on the iid effect and the marginal 
standard deviation of the Gaussian random field did not alter predictive performance.

4 |  DISCUSSION

We have compared the predictive performance (MAE) of three models: a baseline polygon- only 
model; a disaggregation model with spatial information from prevalence surveys included as an ad-
ditional covariate from a separate GP model; and a model that jointly learns from polygon inci-
dence data and prevalence point- surveys. The prevalence GP model never performed worse than 
baseline and performed better than baseline in one case. The joint model performed best in one case 
but also performed worse than baseline in two cases. Therefore, fitting a spatial Gaussian process to 
prevalence points and including these predictions seems to be a more reliable way of using spatial 
information from prevalence points while the full joint model seems to have potential for being the 
best- performing model in a given situation. The significant differences between models all occurred 
under spatial cross- validation. This implies that the models are not using the additional data to learn 
more accurate relationships between the environment and malaria incidence. Instead, it suggests that 
the models are using the spatial information in the data to improve predictions.

A full joint model using both prevalence surveys and incidence data gains additional statistical 
power compared to the baseline or prevalence GP models. When the prevalence survey random effect 
(wP(σw)) becomes very flexible (when σw goes to infinity), this joint model collapses and becomes the 
baseline model. Therefore, it is worth considering why the performance of this model was sometimes 
less good than the baseline model that did not benefit from the additional statistical power. The two 
comparisons in which the joint model did worse than baseline were the cross- validation scheme for 
Senegal and Indonesia. In Figure S36, we can see that in Indonesia, the joint model overpredicts a 
number of very low- incidence areas, and by looking at Figure 3, we can see that the island of Java is 
overpredicted. In Figure S37, we can see that a number of low- incidence and medium- incidence areas 
in Senegal are overpredicted and Figure S39 shows maps of the polygon level errors. We can see that 

T A B L E  2  Summary of coverage of 80% credible intervals

Cross- validation Country Baseline Prev GP Joint

Random Indonesia 0.73 0.72 0.72

Senegal 0.76 0.78 0.80

Madagascar 0.78 0.79 0.78

Spatial Indonesia 0.71 0.72 0.51

Senegal 0.78 0.88 0.71

Madagascar 0.67 0.70 0.72

The proportion of held out data points that fall within their 80% credible intervals. Cases where this is below 0.7 are highlighted in bold.
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the baseline model clearly underpredicts many areas while the joint model overpredicts some areas in 
the centre of the country and in the south- east.

In Indonesia, it seems that the prevalence– incidence relationship is the main factor driving the poor 
predictions. The relationship increases too quickly at very low incidence values due to the limited 
flexibility in the model structure and the lack of low incidence points used in model fitting (Cameron 
et al., 2015). In Figure S38, we show a zoomed in plot of Java with both the incidence data and the 
prevalence data having been converted to incidence space using the relationship from (Cameron et al., 
2015). The prevalence data are sensibly distributed across the island and mostly from a systematic 
survey. However, the prevalence surveys give a considerably higher incidence than the incidence data. 
Fitting joint models to just Java, with a more flexible relationship between prevalence and incidence 
will be considered for future work but is beyond the scope of this paper.

In contrast, in Senegal, there is no clear driver of the poor performance. There is very little in-
cidence data in Senegal and it is probably the least reliable data of the three countries. Figure S39 
demonstrates the strong bias in the baseline model compared to the less biased, but higher variance 
predictions of the joint model. Furthermore, we can see in Figure 1 that the baseline better captures the 
expected increase in incidence in the south east of the country driven by the transition from desert to 
savannah. Overall, while the MAE is lower for the baseline model, we think that a subjective argument 
could be made that the joint model is in fact better as it is less biased and captures expected large scale 
trends. These predictions would possibly be more useful for risk stratification for example.

In our sensitivity analysis, we found that changing the coefficients in the relationship considerably 
reduced predictive ability (though weakening the prior on α did not). We might interpret this as suggesting 
that the prior was too strong but that as the data did not contradict the prior relationship, this did not matter. 
Future models could potentially be improved by using a more flexible approach for addressing the short-
comings of the prevalence– incidence relationship (Cameron et al., 2015) being used in this context. This 
could be by estimating the parameters of the polynomial jointly with the rest of the model. Informative 
priors based on the full posterior of the model fitted by Cameron et al. could be used to regularise this 
joint fit both to prevent improbable inferences. In contrast, vague priors would allow too much flexibility 
in this component of the model and the information from the prevalence data might not contribute to 
informing the regression parameters and spatial random field. This is particularly true for model forms 
such as a spline or a Gaussian process on the relationship between prevalence and incidence. For the 
model to handle noisy or biased prevalence point- surveys, the modeller can control the iid random effect 
on the point- surveys, wb and the prevalence intercept �p. Here we have tried to maximise the influence 
of the prevalence data by setting the prior based on the belief that the random effect should only explain 
extra- binomial variation that is impossible to derive from the covariates (e.g. based on the differences in 
prevalence surveys within the same pixel). Weakening this prior will allow the iid effect to explain more of 
the prevalence point- survey variation which both reduces the potential statistical power gained by adding 
the point- surveys but also reduces the effects of biased or noisy estimates.

In this research, we have used only linear covariates but previous work has demonstrated that 
simple linear combinations of environmental covariates cannot fully explain malaria risk (Bhatt et al., 
2017). A number of methods could be used to include non- linear effects of covariates and interactions 
into the model. First, machine learning models could be fitted to the prevalence data and then predic-
tions from these models could be used as covariates in the full model (Bhatt et al., 2017; Lucas et al., 
2020). This approach is feasible but would not allow any information from the polygons to inform 
non- linear relationships. Directly modelling non- linear effects in the full model could be achieved 
by including simple non- linear functions such as splines (Hundessa et al., 2018; Sewe et al., 2017; 
Sissoko et al., 2017), though the increased model complexity would require more data than was used 
in Senegal and Madagascar in this study. Finally, Gaussian process regression, with smoothly varying 
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effects in environmental and geographic space could be used (Law et al., 2018). Unfortunately, each 
of these options is computationally expensive without variational Bayes or other approximations (Law 
et al., 2018; Ton et al., 2018), which can be difficult to derive. Additionally these models require a 
large volume of response data and careful regularisation for good predictive performance.

We used three case studies, limited by the number of countries with good aggregated incidence 
data as well as good prevalence survey data. Two types of study region seemed likely to benefit from 
the methods presented here. First, countries like Madagascar with intermediate transmission intensi-
ties and good surveillance data and good prevalence data. Second, countries that have lots of preva-
lence surveys and are adjacent to countries with good reporting systems (e.g. Papua New Guinea and 
neighbouring Indonesia) might also benefit from models that share information between countries. 
Given the small number of case studies, it is hard to determine in which countries these methods 
are likely to be most effective. However, the benefits here were only seen in spatial cross- validation 
schemes suggesting that the models were only effectively using spatial information.

5 |  CONCLUSION

We have presented two methods for combining spatial information from prevalence surveys with disag-
gregation regression models. We found that while the predicted maps were quite different, the polygon- 
level predictive performance was usually not significantly different. The prevalence GP model never 
performs worse than baseline and performs better than baseline in one case. The full joint model per-
forms worse than baseline in two cases but is the best performing model in one case. As more countries 
produce reliable routine surveillance data, and as more countries reduce their malaria prevalence to the 
point where prevalence surveys are no longer sensitive, disaggregation regression will become more 
commonly used. Methods such as those presented here should be explored further and refined to im-
prove disaggregation regression results where and when the requisite data are available.
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