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Abstract 

 

 

Missing data is a common issue in epidemiological databases. Among the different 

ways of dealing with missing data, multiple imputation has become more available in 

common statistical software packages. However the incompatibility between the 

imputation and substantive model, which can arise when the associations between 

variables in the substantive model are not taken into account in the imputation models 

or when the substantive model is itself nonlinear, can lead to invalid inference. 

Aiming at analysing population-based cancer survival data, we extended the multiple 

imputation substantive model compatible fully conditional specification (SMC-FCS) 

approach, proposed by Bartlett and colleagues in 2015, to accommodate excess hazard 

regression models. The proposed approach was compared with the standard fully 

conditional (FCS) multiple imputation procedure and with the complete-case analysis 

(CCA) using a simulation study. The SMC-FCS approach produced unbiased estimates in 

both scenarios tested, while the FCS produced biased estimates and poor empirical 

coverages probabilities. The SMC-FCS algorithm was then used for handling missing 

data in the evaluation of socioeconomic inequalities in survival from colorectal cancer 



 
 

patients diagnosed in the North Region of Portugal. The analysis using SMC-FCS 

showed a clearer trend in higher excess hazards for patients coming from more 

deprived areas. 

The proposed algorithm was implemented in R software and is presented as 

supplementary material. 
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1. Introduction 

 

 

Missing data is an almost unavoidable issue in observational studies. Due to multiple 

possible reasons, incomplete information on the outcomes or on the covariates is 

likely to occur. Multiple imputation (MI) has in recent years become one of the most 

common methodologies for handling missing data 1,2. Its increasing availability in 

common statistical packages has made the application of MI more attractive to a larger 

spectrum of users3. Unfortunately, this broader application of the methodology has 

not necessarily been followed by a correct application or reporting of the same. 

Rezvan and colleagues systematically reviewed manuscripts published during six years 

in two important medical journals in which multiple imputation was carried out 2. From 

the 103 articles identified, only 37% described the imputation model, only two 

compared the imputed with the observed values and only three performed sensitivity 

analysis.   

Also, the problem of incompatibility between imputation model and the substantive 

(or analysis) model can lead to invalid inference. This problem can occur when the 

substantive model includes nonlinear covariate effects, interactions or when the 

model itself is nonlinear (e.g. hazard models)4. 



 
 

When the outcome of interest is survival time and there is missing information on 

covariates, there is consensus that the outcome should be included in the imputation 

model. However, different ways of including the survival outcome can be found in the 

literature: the censoring indicator () and the survival time (T) 5;  and log(T) 6,7;  ,  

log(T) and T 8. In 2009, White and Royston9 showed that when the substantive model is 

a Cox hazard model, a suitable model for imputing binary or Normal variables is a 

logistic or linear regression on the cumulative baseline hazard (0(t)),the censoring 

indicator and the other covariates.   

In 2015, Bartlett and colleagues developed an algorithm for MI that ensures 

compatibility between the imputation and substantive model, and named it 

Substantive Model Compatible Fully Conditional Specification (SMC-FCS) 4. This 

method has been implemented in STATA and R but only a limited number of 

substantive models are available 10. Later, Keogh and Morris 11 extended this approach 

to hazard models with time-varying effects of covariates. 

In population-based cancer survival analysis, interest typically focuses on estimating 

cancer-specific quantities within the so-called “relative survival setting” 12,13. In the 

relative survival setting, we assume that the overall mortality hazard for a patient i 

may be written as the sum of an expected mortality hazard (as observed in the general 

population) and an excess mortality hazard.  The expected mortality hazard is 



 
 

considered known (as provided by life table) and is considered as an estimate of the 

other-cause mortality. The interest is in estimating the excess mortality hazard (and 

the corresponding net survival) as it is assumed that the excess mortality hazard 

represents the mortality hazard due (directly or indirectly) to the disease under study 

and is now commonly modelled using flexible parametric regression models 14,15. 

Multiple imputation has been used to deal with missing covariate  information on 

excess mortality hazard regression modelling 16–21. In 2015, Falcaro and colleagues 

evaluated the use of MI in the context of net survival problems with missing 

information, more specifically, in the excess hazard modelling using flexible parametric 

proportional hazards models with missing data on categorical covariates (stage of 

disease at diagnosis) 22. The results obtained suggested that a multinomial logistic 

imputation model for stage should be used and that the Nelson-Aalen cumulative 

excess hazard estimate and the event indicator should be included in the imputation 

models, as already suggested by White and Royston in the context of the Cox model. 

The issue of compatibility between the imputation and substantive models when these 

are excess hazard models has however still not been properly addressed. 

The main aim of this work was to extend the SMC-FCS algorithm developed by Bartlett 

and colleagues to accommodate excess hazard models. The performance of the 

extension proposed was compared with the standard fully conditional specification 



 
 

(FCS) approach and with a complete-case analysis (CCA), using a simulation study. The 

three methods were then applied to a survival dataset from a cohort of colorectal 

cancer patients extracted from the North Region of Portugal Cancer Registry 

(RORENO). 

The article is organised as follows. In Section 2, an overview of the methods used in 

this study is given and the proposed extension of the SMC-FCS algorithm for excess 

hazard models is presented. A simulation study evaluating the performance of the 

SMC-FCS algorithm is presented in Section 3. The motivating dataset is introduced and 

then analysed in Section 4 with the aim of evaluating socioeconomic inequalities in 

survival from cancer when adjusting for extent of disease at diagnosis. The article 

concludes with a discussion in Section 5. 

 

 

2. Methods 

This study focus on the occurrence of missing data on covariates in excess hazard 

models. We start by giving an introduction to the concept of net survival and excess 

hazard followed by a brief explanation of the type of excess hazard model considered 

in this study. 

   



 
 

2.1 Net survival 

 

In the analysis of certain diseases survival data, the interest usually lies on analysing 

time since disease diagnosis until death. Since patients can died not only from the 

disease under study but also from other causes, when comparing disease survival 

between different periods of diagnosis, different regions or different socioeconomic 

groups for instance, it is important to have a measure that is independent from 

background mortality. Overall survival is thus not adequate for this type of 

comparison, especially in elderly patients for which other cause mortality is higher. 

Cause-specific survival, where only death caused by the disease in question is 

considered an event and all others are censored, depends on the knowledge of cause 

of death for all patients. In population-based data sets, this information is usually not 

available or is not reliable. Crude mortality quantifies the actual contribution of the 

disease to overall mortality. However, it is not good for comparing different regions 

since it also affected by background mortality 12. 

Net survival is defined as the survival that would be observed in the hypothetical 

situation that the disease of interest is the only cause of death possible. Although this 

survival is not observable in the real world, it is of interest. It is the only measure that 



 
 

allows comparisons between different populations (originated from different regions, 

calendar years or other factors) since it is independent of other causes mortality 12,23. 

Net survival for an individual i is given by the integral of the excess hazard function, i.e. 

the hazard due to the specific disease in study, 

𝑆𝑁𝑖
(𝑡) = 𝑒𝑥𝑝(−∫𝜆𝐸𝑖(𝑢)𝑑𝑢

𝑡

0

) 

The excess hazard function and modelling is described below. 

 

2.2 Excess hazard modelling 

 

 

In population-based cancer survival analysis, since cause of death is usually unknown 

or unreliable, the analysis is performed using relative survival methods. It is considered 

that the observed hazard (O) can be decomposed in two additive parcels, the cancer 

related hazard (excess hazard) (E) and the other causes hazard (P), estimated by the 

general population mortality: Oi (t)= Pi (t)+ Ei(t), for each i individual. The population 

mortality (P) is obtained from life tables, usually made available by the National 

Statistics Offices, stratified by relevant demographic variables (e.g., sex, age, calendar 

year, region of residence). 



 
 

The excess hazard function is modelled as a function of a set of covariates. A flexible 

parametric model for the excess hazard function is considered here: 

𝜆𝐸(𝑡, 𝑿) = 𝜆0(𝑡) ∙ exp(𝑔(𝒕, 𝑿)),     

where 0(t) is the excess hazard baseline. Following the formulation of Charvat and 

colleagues 24, the log of the baseline hazard is  modelled using B-spline regression 

functions. Covariate effects expressed in 𝑔(𝒕, 𝑿) can be parametrised with either linear 

or non-linear functional forms, and time-dependent effects can also be easily added in 

this formulation with an interaction between a B-spline of time and the covariate. 

The model parameters can be estimated by maximising the full likelihood function. 

More details on the estimation procedure can be found in the vignette for the R 

package mexhaz by Charvat and Belot 25.  

Next, we introduce one of the most common approaches to deal with missing data in 

statistical modelling, the multiple imputation algorithm.  

 

2.3 Multiple imputation 

 

 



 
 

Multiple imputation (MI) was first introduced by Rubin in 1978 26. Initially, MI was 

developed in the framework of survey nonresponse but has nowadays been expanded 

to a broader set of different fields, including survival analysis 27. 

In MI, several imputations are generated for each missing value, as opposed to single 

imputation where each missing value is replaced by a single value. This creates several 

completed datasets, as many as the number of imputations performed. Each 

completed dataset is analysed using standard methods for complete data. The results 

from the several analyses are then combined to produce single estimates and 

confidence intervals that incorporate missing-data uncertainty. 

The process can be divided in three main steps: the imputation, the analysis and the 

combination steps. The models related to the first step are commonly designated as 

imputation models and the ones used in the second step, as substantive models 28. 

Briefly, the algorithm proceeds as follows: 

i. Using the imputation model, generate M>1 values for each missing value, 

obtaining M completed datasets; 

ii. Fit the substantive model independently to each one of the M completed 

datasets; 

iii. Combine the results obtained from each analysis performed in the previous 

step using Rubin's rules 29. 



 
 

The MI algorithm typically relies on the assumption that the data are missing at 

random (MAR). This means that the probability of having a missing observation is 

random conditioned on the observed information, i.e. does not depend on unobserved 

data. 

In MI the imputation phase is separated from the analysis phase. The imputation 

models used may thus be incompatible with the substantive model. Incompatibility 

means that there is no joint model for which the respective conditional distributions 

equal the imputation and substantive conditional models 4.    

 

 

2.4 Compatibility between imputation and substantive model 

 

 

To overcome the problem of incompatibility between imputation and substantive 

models in multiple imputation, Bartlett et al. 4 developed an algorithm that ensures 

that each covariate with missing observations is imputed from a model compatible 

with the substantive model. The algorithm is referred as Substantive Model 

Compatible-Fully Conditional Specification (SMC-FCS).  



 
 

The rationale of the method is described briefly. Let Y represent the outcome, X a 

vector of p partially observed covariates and Z a vector of fully observed covariates. 

For each partially observed covariate Xj, X-j represents the vector of covariates 

excluding that covariate (X1, …,Xj-1, Xj+1, …, Xp). Bartlett starts by noting that the 

imputation model for Xj, conditioned on the remaining covariates and the outcome is 

proportional to the product of the substantive model and the imputation model for Xj 

not involving the outcome: 

𝑓(𝑋𝑗|𝑋−𝑗, 𝑍, 𝑌) =
𝑓(𝑌, 𝑋𝑗, 𝑋−𝑗, 𝑍)

𝑓(𝑌, 𝑋−𝑗, 𝑍)
 

∝ 𝑓(𝑌|𝑋, 𝑍) ∙ 𝑓(𝑋𝑗|𝑋−𝑗, 𝑍) 

In the SMC-FCS algorithm, therefore, a model f(Xj|X-j,Z,j) must be specified for each 

j=1,…,p, together with noninformative priors g(j). Given values of the parameters of 

the imputation and substantive model (j and , respectively) the missing values of Xj 

are imputed from a density proportional to: 

𝑓(𝑌|𝑋, 𝑍, 𝜓) ∙ 𝑓(𝑋𝑗|𝑋−𝑗, 𝑍, 𝜙𝑗) 

Since generally this density does not belong to a standard parametric family, drawing 

samples from it is non-trivial 4. Bartlett and colleagues proposed a rejection sampling 

procedure that involves repeatedly drawing values for Xj from a candidate distribution, 



 
 

f(Xj|X-j,Z,j), and U from a uniform distribution on (0,1) until the drawn values satisfy 

the condition: 

𝑈 ≤
𝑓(𝑌|𝑋𝑗

∗, 𝑋−𝑗, 𝑍, 𝜓)

𝑐(𝑌, 𝑋−𝑗, 𝑍, 𝜓)
 

where c(Y, X-j, Z, ) is an upper bound (in Xj) for f(Y|Xj,X-j,Z,) that does not involve Xj. 

 

 

2.5 SMC-FCS in excess hazard models 

 

 

The SMC-FCS algorithm was extended here to accommodate excess hazard models. 

We consider that the substantive model of interest is an excess hazard model with p 

partially observed variables X = (X1, …,Xp) and a fully observed vector of q variables 

Z=(Z1, …, Zq): 

𝜆𝐸(𝑿, 𝒁, 𝑡; 𝜷, 𝜸) = 𝜆0(𝑡; 𝜸) ∙ exp⁡(𝑔(𝑿, 𝒁; 𝜷))    

The algorithm to generate the mth imputed data set is as follows (adapted from 11): 

1) Using the appropriate life table (general population mortality), calculate the 

population hazard (P) and the cumulative population hazard (P) given the 

demographic variables (age, sex, calendar year and region) at the time of death or 



 
 

end of follow-up. Considering that the demographic variables are fully observed, 

this population hazard does not depend on the imputed values so it must be done 

only once. 

2) Fill in all missing values for the incomplete variables with a starting arbitrary value 

(for example, mean or mode of observed values). 

3) Fit the excess hazard model of interest to the current complete dataset to obtain 

estimates of the model parameters (𝛽̂, 𝛾) and of the respective variance-

covariance matrix Σ̂. Draw values 𝛽(𝑚) and 𝛾(𝑚) from a joint normal distribution 

with means 𝛽̂ and 𝛾 and variance-covariance matrices Σ̂. 

4) Calculate the estimate of the baseline excess hazard 𝜆0
(𝑚)

(𝑡) and of the baseline 

cumulative excess hazard Λ0
(𝑚)

(𝑡) using parameter values 𝛾(𝑚). 

5) Fit a regression model (linear, logistic, multinomial, as appropriate) of Xj on X-j and 

Z to the current completed data set - f(Xj|X-j,Z,j). Draw a value * from a joint 

normal distribution with mean and covariance matrix given from the fitted 

imputation model. 

6) For each individual for whom Xj is missing, (i) draw a value of Xj
* from the 

distribution f(Xj|X-j,Z;*) and, (ii) draw a value U from a uniform distribution on 

[0,1]. Depending on the value of the censoring indicator (), accept the value Xj
* if: 



 
 

𝑈 ≤ 𝑒𝑥𝑝[−Λ𝑃(𝑡)] ∙ 𝑒𝑥𝑝 [−Λ0
(𝑚)

(𝑡) ∙ 𝑒𝑔(𝑋𝑗
∗,𝑋−𝑗,𝑍,𝛽)]    for  = 0 

 

𝑈 ≤
[𝜆𝑃(𝑡) + 𝜆0

(𝑚)
(𝑡) ∙ 𝑒𝑔(𝑋𝑗

∗,𝑋−𝑗,𝑍,𝛽)] ∙ 𝑒𝑥𝑝 [−Λ𝑃(𝑡) − Λ0
(𝑚)

(𝑡) ∙ 𝑒𝑔(𝑋𝑗
∗,𝑋−𝑗,𝑍,𝛽)]

𝜆0(𝑡)
Λ0(𝑡)

∙ 𝑒𝑥𝑝 [−Λ𝑃(𝑡) − 1 +
Λ0(𝑡) ∙ 𝜆𝑃(𝑡)

𝜆0(𝑡)
]

 

          for  = 1 

Repeat (i) and (ii) until a value of Xj
* is accepted. A detailed description on the 

derivation of the conditions in which the rejection sampling must be done is presented 

in the Supplementary Material (Section S1). 

 

7) Return to step 3 until one cycle is done for all variables with missing data. 

8) Repeat steps 3-7 a certain number of iterations so that the imputed values of X 

converge to a stationary distribution. The obtained values form the mth imputed 

data set. Repeat the process M times to obtain M imputed datasets. 

This algorithm has been implemented in R30 software and is presented in the 

Supplementary Material. 

 

 

3. Simulation study 

 



 
 

 

A simulation study was first performed to evaluate the performance of the SMC-FCS 

algorithm when the substantive model of interest is an excess hazard model. This 

example was adapted from the one presented by Bartlett and colleagues for the Cox 

model 4. Two covariates were simulated, one binary variable X1~Be(p=0.5) and one 

continuous X2|X1~N(µ=X1, =1). Times to death from cancer TC were simulated from 

the excess hazard model: 𝜆𝐸(𝑡|𝑋) = 0.002exp⁡(𝛽1𝑋1 + 𝛽2𝑋2) considering⁡𝛽1 = 𝛽2 =

1. Times to death from other causes TP were generated from an exponential 

distribution with hazard 0.001 . Censoring times C were also generated from an 

exponential distribution but with hazard 0.002. Finally the observed survival time was 

defined as T=min(TC, TP, C) and the event indicator =1 when T<C, =0 otherwise. Each 

of the 1000 simulated datasets had n=1000 subjects. Data on X2 were made missing 

considering a MCAR mechanism such that the probability of missingness was 0.3. 

Missingness in X1 was imposed considering two different scenarios: A) MCAR with 

probability of missingness 0.3; B)  MAR dependent on outcome such that logit (P(X1 

miss)) = - 0.30 + 0.01T (where T represents survival time). In the last scenario the 

coefficients were chosen so that the proportion of missingness in X1 was also around 

0.3. 



 
 

For each simulated dataset, three approaches for handling missing data were 

compared: i) Complete-case analysis (CCA), where all the cases with at least one 

variable missing were discarded; ii) Multiple imputation using fully conditional 

specification (FCS), including in the imputation models the Nelson-Aalen cumulative 

excess hazard estimates, the event indicator and X1 when imputing X2 or X2 when 

imputing X1: a logistic regression model was used for imputing X1 and a linear 

regression model for X2; iii) Multiple imputation using the substantive model 

compatible- fully conditional specification algorithm (SMC-FCS) as described above. 

Again, a logistic regression model was used for imputing X1 using X2 as predictor and a 

linear regression model for imputing X2 using X1 as predictor. In this algorithm, the 

outcomes are not included directly as covariates in the imputation models. The 

outcomes are included in the substantive model with which the imputed values must 

be compatible. 

The results obtained for the two simulated scenarios are presented in Table 1 and 

Figures 1a) and 1b). As expected, the CCA produced unbiased estimates of the two 

model parameters and empirical coverages close to the nominal level of 95% when the 

missingness mechanism is MCAR but biased estimates when the missingness 

depended on the outcome (Scenario B). The conventional multiple imputation 

approach (FCS) produced biased estimates for both parameters and empirical 



 
 

coverages below 95% for both scenarios. On the contrary, the SMC-FCS algorithm 

produced unbiased estimates in both situations, with lower variability than CCA 

estimates (lower standard deviations) and with empirical coverages within the 

expected values. 

 

 

4. Socioeconomic inequalities in survival from colorectal cancer 

 

 

Colorectal cancer in the North region of Portugal 

The North Region Cancer Registry of Portugal (RORENO) is a population-based cancer 

registry responsible for collecting information on all incidence cancer cases occurring 

in the North region of Portugal (~3.6 million inhabitants). The registry was set up in 

1988 and in 2018 was integrated in the National Cancer Registry (RON).  

A previous study 31 evaluated the existence of socioeconomic inequalities in net 

survival from colorectal cancer patients diagnosed in the period 2000-2002 in the area 

covered by RORENO. In that study, we found inequalities in net survival when using 

general life tables but that disappeared when including relatively small socioeconomic 

differences in background mortality. In the present study, we intended to update that 



 
 

evaluation for a more recent period, using deprivation-specific life tables recently 

built32 and considering extent of disease at diagnosis as a confounder. Extent of 

disease is a classification defined by the European Network of Cancer Registries (ENCR) 

based on the TNM classification 33. The classification is as follows: Tumour localised 

(T1-2N0M0); Tumour with local spread (T3-4N0M0); Tumour with regional spread 

(anyTN+M0); Advanced cancer (anyTanyNM1). Here, the extent was dichotomised as 

advanced cancer versus the other three categories (non-advanced).   

More specifically, all new cancer cases of colorectal cancer (ICD10: C18-C20), 

diagnosed in the period 2010-2012, in patients with age at diagnosis of at least 15 

years-old and below 95, residing in the North region of Portugal, were considered 

eligible for analysis. Only the first tumour occurring during the analysed period was 

considered. Second primary colorectal cancers, either synchronous or metachronous 

were excluded.  

Survival time was considered as time between diagnosis and death from any cause or 

end of follow-up (31st December 2017).  

 

Deprivation indicator 

The Portuguese version of the European Deprivation Index was used as deprivation 

indicator. This index was built using a methodology first proposed by Pornet and 



 
 

colleagues in 201234 and then applied to five European countries: France, England, 

Italy, Spain and Portugal 35. The index is based on census variables available for each 

country that are most associated with variables identified from the European Union 

Statistics on Income and Living Conditions (EU-SILC) survey 36. The index for Portugal 

based on 2001 census includes percentage of: non-owned households, households 

without indoor flushing, residents with low education level (≤6th grade), household 

with 5 rooms or less, unemployed looking for a job, female residents aged 65 years or 

more, households without bath/shower and percentage of residents employed in 

manual occupations 37. A score was obtained for each parish based on the census 

responses of its inhabitants. This score was then categorized in five quintiles from the 

least deprived (q1) to the most deprived (q5) such that each quintile corresponded to 

20% of the Portuguese population. Each patient was assigned with the deprivation 

quintile corresponding to his/her parish of residence at the time of diagnosis. 

 

Data description 

A total of 8108 new cancer cases were considered eligible for analysis. After excluding 

patients with unknown status at the end of follow-up (n=154; 1.9%), a total of 7954 

patients were included in the analysis. Distribution of cases by age group, cancer site, 

deprivation quintile and extent of disease at diagnosis was calculated by sex (Table 2). 



 
 

Male patients represented 58.6% of the cohort. Women presented a higher median 

age compared to men: 71 vs 69 years (p<0.001). The proportion of rectum cancer 

cases was higher in men (p=0.035). No differences were found in the distribution by 

deprivation groups between male and female patients (p=0.208). Also, the distribution 

of extent of disease at diagnosis was similar between both sexes (p=0.206). 

 

Missing data   

A very low proportion of cases had missing information on deprivation quintile (0.5%). 

We thus decided to exclude these cases from further analysis. Extent of disease at 

diagnosis is the main prognostic variable and had a considerable proportion of missing 

data (40.3%). To evaluate which variables were associated with missingness in extent 

of disease, a multivariable logistic regression model was built considering missing 

extent as the outcome. Variables included in the model were sex, age group, tumour 

site (colon vs rectum), EDI deprivation quintile, basis of diagnosis, vital status at the 

end of follow-up and survival time in years. Sex was not associated with extent 

missingness. Older patients and patients without a microscopically verified diagnosis 

had increased odds of having unknown extent. Rectum cancer patients and patients 

living in more deprived areas had lower odds of extent missingness. Survival time and 

vital status were also associated with the chances of having missing extent (Table 3).    



 
 

Age-standardised net survival (ASNS) at 1-year of the patients with known extent 

(84.2%; 95%CI: 83.1-85.2) was higher than ASNS of patients with missing extent 

information (80.7%; 95%CI: 79.4-82.1). On the contrary, ASNS at 5-years was higher in 

patients with unknown extent (67.1%; 95%CI: 65.2-69.1) than with known extent 

(63.9%; 95%CI: 62.3-65.6). 

 

 

Results 

The main aim of the analysis performed was to evaluate the existence of 

socioeconomic inequalities in net survival from colorectal cancer in the cohort of 

patients described above, while considering the following potential confounders: age, 

sex and extent of disease at diagnosis. The proportion of cases with missing extent was 

around 40%.  

First, net survival by SE group was estimated for the full dataset using the non-

parametric Pohar-Perme estimator 23. Differences between net survival curves were 

assessed using the log-rank-type test developed by Grafféo and colleagues 38. 

The unadjusted net survival curves (Figure 2) showed a better net survival for patients 

living in least deprived areas (p=0.010). Five-year net survival was 66.9% for the least 

deprived group and 62.0% for the most deprived one. 



 
 

Second, excess hazard ratios were estimated. Missing data was handled using 

complete-case analysis and multiple imputation using the standard FCS and the 

adapted SMC-FCS approach. Covariates considered in the substantive model were age, 

deprivation index (EDI), sex and extent of disease at diagnosis. All covariates were 

assumed to have no time-dependent effects. The excess hazard baseline was modelled 

using B-splines with one knot at one year of follow-up. 

In this example, only one covariate had missing data (extent). The imputation model in 

the standard FCS approach included as covariates age, sex, EDI, tumour site and basis 

of diagnosis besides the event indicator and the cumulative excess hazard estimated 

by the Nelson-Aalen estimator. In the SMC-FCS approach, the same variables were 

used in the imputation model except the “outcome”, namely the cumulative excess 

hazard baseline and the event indicator. In this approach, the outcomes are indirectly 

accounted for in the rejection sampling algorithm which guarantees compatibility 

between the imputation and substantive models. In both MI approaches, extent of 

disease was imputed using a binomial logistic regression model. Fifty imputations were 

used in each approach. 

The results obtained for the excess hazard ratios (EHR) using the three different 

approaches are presented in Table 4. The estimated EHRs using the complete-case 



 
 

analysis and the FCS approach were similar. Using SMC-FCS, there was attenuation on 

the excess hazard ratio of advanced tumours vs non-advanced. 

Using the SMC-FCS algorithm, there was a more clear trend in the EHRs by deprivation 

quintile showing an increased excess hazard for patients coming from the more 

deprived areas (although not reaching statistical significance). 

 

 

5. Discussion 

 

 

The SMC-FCS approach to MI was first proposed by Bartlett and colleagues to ensure 

compatibility of the imputation models with the substantive model 4. The algorithm 

relies on a rejection sampling scheme. The conditions of acceptance of a proposed 

imputation value depend on the substantive model of interest. These conditions were 

derived in this study for the situation where the substantive model is an excess hazard 

model. This type of model is very common in population-based cancer survival analysis 

while missing data in population-based cancer research are also common. The 

algorithm for binary and continuous covariates was implemented in R and is presented 

on the Appendix. 



 
 

The proposed adaptation of the SMC-FCS algorithm to cope with excess hazard models 

was tested in a simulation study for two different scenarios of missingness. When 

missingness was MCAR, the complete-case analysis produced unbiased estimates as 

expected. In the second scenario, where missingness was dependent on the outcome 

(survival time), the model parameter estimates obtained in the complete-case analysis 

were biased, including the parameter of the variable for which the missingness 

mechanism was MCAR.  The standard FCS multiple imputation approach produced 

biased estimates and poor empirical coverages for both parameters. These results 

were observed in both missingness scenarios analysed. Due to the non-linear nature of 

the substantive model considered (excess hazard model), the FCS approach does not 

guarantee the compatibility between the imputation and substantive models. On the 

contrary, the SMC-FCS approach to MI produced unbiased estimates of both 

parameters in all scenarios. Also, the standard errors of the estimates were lower than 

for the complete-case analysis. These results confirm that also when the substantive 

model is an excess hazard model, the SMC-FCS approach presented lower bias and 

coverage closer to the nominal value of 95% relatively to the other two approaches. 

In the example analysed, missing extent was showed to be associated with vital status 

and survival time. These are the outcomes of interest in survival analysis and excess 

hazard modelling. This shows that using a complete case analysis would result most 



 
 

certainly in biased results. Also, the net survival probability of patients with known 

extent of disease was significantly different from the one of patients with unknown 

extent, therefore not favouring the hypothesis of the extent being missing completely 

at random.  

One of the advantages associated with multiple imputation is the possibility of using 

variables in the imputation model that are not of interest in the substantive model, to 

increase the plausibility of the MAR assumption and the efficiency of the imputation 

process. In the SMC-FCS algorithm, to draw imputations that are compatible with the 

substantive model the variables considered in both imputation and substantive models 

during the imputation process must be the same. It is possible, however, to fit models 

to the imputed datasets in which fewer explanatory variables are used 4. In the 

example analysed, two auxiliary variables were used in the imputation process (basis 

of diagnosis and tumour site) since these have been shown to be related with the 

chance of extent being missing.       

No major differences in the estimated adjusted effects of socioeconomic condition on 

the excess hazard were observed between the CCA and the classical MI approach. 

However, when using SMC-FCS, the trend for higher EHRs in the more deprived areas 

was clearer.  



 
 

In MI the missing values are imputed using imputation models dependent on a set of 

covariates. The efficiency of these imputations depends on the availability of variables 

that are both associated with the probability of missingness and with the missing 

variable. In this study, the number of variables used in the imputation model was low 

and their association with extent of disease was weak, which may have diminished the 

efficiency of the imputations performed. 

We have implemented SMC-FCS for excess hazard models considering binary and 

continuous covariates. Work is in progress to extend the algorithm to categorical 

covariates with more than 2 categories.       

In this study, the proportional hazards assumption was assumed for all variables. We 

acknowledge that the effect of some covariates can typically be time-dependent. A 

first approach for extending the SMC-FCS approach to cope with excess hazard models 

was presented. Further research is needed to include time-dependent effects in excess 

hazard models following the work that Keogh and Morris have done for the Cox 

models 11.   
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Table 1 – Comparison of excess hazard models parameters estimates for different 

approaches of missing data handling. Results from n=1000 simulations. 

  
  CCA  FCS  SMC-FCS 

  
  Mean SD Cov  Mean SD Cov  Mean SD Cov 

Scenario A            

 β1 = 1 1.001 0.143 95.2  0.929 0.124 93.4  1.003 0.126 95.6 
 β2 = 1 1.004 0.069 95.7  0.858 0.053 50.7  1.004 0.057 95.8 

Scenario B            

 β1 = 1 0.855 0.128 89.4  0.895 0.128 89.5  1.008 0.128 95.4 

  
β2 = 1 0.819 0.068 44.7  0.880 0.051 62.5  1.001 0.058 95.5 

Scenario A: X1, X2 MCAR     CCA – Complete-case analysis 

Scenario B: X1 MAR dependent of outcome, X2 MCAR FCS – Fully conditional specification 

 SMC-FCS – Substantive model compatible FCS 

 

 

  



 
 

Table 2 - Sociodemographic and clinical characteristics of the colorectal cancer 

patients (2010-2012).  

Variable 
Male Female Total 

n % n % n % 

Total by sex 4 664 58.6 3 290 41.4 7 954 100.0 

Age group       

 15-44 177 3.8 153 4.7 330 4.1 

 45-54 460 9.9 334 10.2 794 10.0 

 55-64 1 072 23.0 662 20.1 1 734 21.8 

 65-74 1 415 30.3 845 25.7 2 260 28.4 

  75+ 1 540 33.0 1 296 39.4 2 836 35.7 

Tumour site       

 Colon 3 060 65.6 2 234 67.9 5 294 66.6 

 Rectum 1 604 34.4 1 056 32.1 2 660 33.4 

Deprivation (EDI)       

 q1 (least deprived) 444 9.5 337 10.2 781 9.8 

 q2 609 13.1 415 12.6 1 024 12.9 

 q3 1 074 23.0 693 21.1 1 767 22.2 

 q4 1 233 26.4 894 27.2 2 127 26.7 

 q5 (most deprived) 1 280 27.4 939 28.5 2 219 27.9 

  Unknown 24 0.5 12 0.4 36 0.5 

Tumour extent at diagnosis       

 Non-advanced 2 147 46.0 1 454 44.2 3 601 45.3 

 Advanced 636 13.6 502 15.3 1 138 14.3 

  Unknown 1 881 40.3 1 334 40.5 3 215 40.4 

 

 

  



 
 

Table 3 - Sociodemographic characteristics of patients with known extent vs patients 

with unknown extenta. Odds ratio of having missing extent.  

Variable 

Extent of disease at diagnosis 

Known Unknown  Unknown vs known 

n % n %   ORb 95%CI 

Total by extent 4 725 59.7 3 193 40.3    

Sex        

 Male 2 771 58.6 1 869 58.5  1  

  Female 1 954 41.4 1 324 41.5  0.95 0.86 - 1.04 

Age group        

 15-44 224 4.7 103 3.2  1  

 45-54 510 10.8 279 8.7  1.19 0.90 - 1.58 

 55-64 1 085 23.0 645 20.2  1.25 0.97 - 1.62 

 65-74 1 359 28.8 891 27.9  1.37 1.07 - 1.77 

  75+ 1 547 32.7 1275 39.9  1.73 1.35 - 2.23 

Tumour site        

 Colon 2 959 62.6 2312 72.4  1  

  Rectum 1 766 37.4 881 27.6  0.65 0.59 - 0.72 

Deprivation (EDI)        

 q1 (least deprived) 430 9.1 351 11.0  1  

 q2 631 13.4 393 12.3  0.74 0.61 - 0.90 

 q3 1 055 22.3 712 22.3  0.81 0.68 - 0.97 

 q4 1 258 26.6 869 27.2  0.83 0.70 - 0.99 

  q5 (most deprived) 1 351 28.6 868 27.2  0.77 0.65 - 0.92 

Basis of diagnosis        

 Microscopically verified 4 614 97.7 2 904 90.9  1  

  Non-micros. Verified 111 2.3 289 9.1  4.00 3.19 - 5.05 

Vital status at end of follow-up             
 Alive 2 440 51.6 1 674 52.4  1  

  Dead 2 285 48.4 1 519 47.6   0.63 0.53 - 0.75 

Survival time               

  Mean 4.22 - 4.07 -  0.94 0.91 – 0.97 

a) Cases with unknown deprivation EDI (n=36; 0.5%) were not considered in this analysis.  
b) Adjusted ORs (adjusted for sex, age group, tumour site, deprivation, basis of diagnosis, vital status 
and/or survival time)  



 
 

Table 4 - Excess hazard ratios (CCA; FCS MI; SMC-FCS MI) 

Variable 
CCA  FCS MI  SMC-FCS MI 

EHRa) 95%CI  EHRa) 95%CI  EHRa) 95%CI 

EDI         

 q1 1   1   1  

 q2 1.02 0.81 - 1.28  1.01 0.82 - 1.23  1.05 0.82 - 1.34 

 q3 1.04 0.84 - 1.28  1.10 0.91 - 1.33  1.15 0.94 - 1.40 

 q4 1.13 0.93 - 1.38  1.09 0.91 - 1.30  1.14 0.93 - 1.40 

 q5 1.08 0.89 - 1.33  1.16 0.97 - 1.39  1.20 0.99 - 1.46 

Extent         

 Non-advanced 1   1   1  

 Advanced 10.1 9.02 - 11.3  10.0 8.88 - 11.2  8.35 6.81 - 10.2 

a) Adjusted for age, sex and EDI or extent.       

  

  



 
 

Figure 1 - Comparison of excess hazard models parameters estimates for different 

approaches of missing data handling. Results from n=1000 simulations (a – Scenario 

A: MCAR; b – Scenario B: MAR) 

a)  

b) 

  



 
 

 

 

 

Figure 2 – Net survival by EDI category for the full cohort. 

 

 


