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Profiles of Volatile Biomarkers Detect Tuberculosis from Skin

Rotem Vishinkin, Rami Busool, Elias Mansour, Falk Fish, Ali Esmail, Parveen Kumar,
Alaa Gharaa, John C. Cancilla, Jose S. Torrecilla, Girts Skenders, Marcis Leja,
Keertan Dheda, Sarman Singh, and Hossam Haick*

Tuberculosis (TB) is an infectious disease that threatens >10 million people
annually. Despite advances in TB diagnostics, patients continue to receive an
insufficient diagnosis as TB symptoms are not specific. Many existing
biodiagnostic tests are slow, have low clinical performance, and can be
unsuitable for resource-limited settings. According to the World Health
Organization (WHO), a rapid, sputum-free, and cost-effective triage test for
real-time detection of TB is urgently needed. This article reports on a new
diagnostic pathway enabling a noninvasive, fast, and highly accurate way of
detecting TB. The approach relies on TB-specific volatile organic compounds
(VOCs) that are detected and quantified from the skin headspace. A
specifically designed nanomaterial-based sensors array translates these
findings into a point-of-care diagnosis by discriminating between active
pulmonary TB patients and controls with sensitivity above 90%. This fulfills
the WHO’s triage test requirements and poses the potential to become a TB
triage test.

1. Introduction

Tuberculosis (TB) is a major health problem in the world.[1,2] Ap-
proximately 95% of TB cases occur in developing countries, in-
cluding locations where people live on less than 1 USD per day.
About one-third of the world population has latent TB with a
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lifetime risk of 5 to 10% of developing ac-
tive TB.[3] HIV co-infection, smoking, and
malnutrition greatly increase this risk and
speed up the TB epidemic.[1,2]

TB is particularly difficult to diag-
nose in children and HIV co-infected
populations.[4] Currently, around 3 million
active TB cases are missed by the health sys-
tems worldwide.[5] Despite advances in TB
diagnostics, millions of patients continue to
receive an incomplete or delayed diagnosis,
as the physical signs and symptoms of TB
are nonspecific.[6] Many existing biodiag-
nostic tests are slow, have low sensitivity
and/or specificity, and at times are too
expensive or complex for resource-limited
settings. For example, a sputum smear
(2.6 to 10.5 USD/examination, depending
on the country) is too insensitive, and
mycobacterial culture takes 4–8 weeks and
at least 3 visits by the patient to finalize the

diagnosis and begin treatment.[7] This process is time-
consuming, labor-intensive, requires highly trained technicians,
and the method is based on challenging specimen collection
and processing, both of which can greatly affect the sensitivity.
Despite the high specificity, direct smear microscopy is relatively
insensitive (20–80% sensitivity), since at least 5000 bacilli per

Dr. P. Kumar, Prof. S. Singh
All India Institute of Medical Sciences
New Delhi 110029, India
Dr. J. C. Cancilla
The Scintillon Institute
San Diego, CA 92121, USA
Prof. J. S. Torrecilla
Department of Chemical and Materials Engineering
Complutense University of Madrid
Madrid 28040, Spain
Dr. G. Skenders, Prof. M. Leja
Institute of Clinical and Preventive Medicine
University of Latvia and Riga east University Hospital
Riga LV1079, Latvia
Prof. K. Dheda
Faculty of Infectious and Tropical Diseases
Department of Infection Biology
London School of Hygiene and Tropical Medicine
London WC1E 7HT, UK

Adv. Sci. 2021, 8, 2100235 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2100235 (1 of 13)



www.advancedsciencenews.com www.advancedscience.com

milliliter of sputum are required for a positive result.[8] The
sensitivity is further reduced in patients with extra-pulmonary
TB, HIV-compromised patients, and those with disease due to
nontuberculous mycobacteria.[6,9] The limitations of using mi-
croscopy in low-resource settings include poor-quality reagents,
unmaintained microscopes, and poor level of staff training.
The only technology that can diagnose within 2 h, GeneXpert
MTB/RIF, has a relatively limited sensitivity performance (88%
as an initial test and 67% as an add-on test for TB detection fol-
lowing a negative smear-microscopy result).[10] The equipment
and consumables required are costly, as is the initial capital cost
for the GeneXpert unit and additional costs for the delivery, in-
stallation, and service. The GeneXpert test is focused on sputum
as the sample, and cannot differentiate between live and dead
bacteria.[11] Operating GeneXpert MTB/RIF requires a reliable
energy source, security, and maintenance, and demands annual
recalibration. Disadvantages of other methods include sputum
as the processed sample, a requirement of a highly trained staff,
high biosafety, and maintenance levels for performance, high
cost. Therefore, new, and accurate TB diagnostic methods that
can be produced and distributed at affordable prices for people
living on <1 USD day−1 are critically needed.[12] Early diagnosis
and treatment initiation mitigate morbidity and disease spear-
ing. From an economic point of view, TB caused about 12 billion
USD to vanish from the global economy when considering the
cost of TB patients’ loss of productivity and death cases.[13]

We present an exploration and application of TB-specific
volatile organic compounds (VOCs) that can be detected from air
trapped above the skin (the “skin headspace”). Deviation of these
VOCs from the healthy VOC pattern in terms of their concen-
tration range may indicate either TB infection or TB high infec-
tion risk. For translating these findings into a point-of-care reality,
we present and discuss a new biomedical apparatus containing
a flexible and wearable polymeric pouch for the collection and
storage of skin VOCs and their analysis by nanomaterial-based
sensors array in conjunction with machine learning.[14–16] The
clinical offline study, involving such pouches, in two countries,
shows that this approach provides fast, precise detection and clas-
sification of TB profiles from skin’s headspace. Furthermore, as
an additional step for realization toward a point of care diagno-
sis tool, an exploratory pilot study was conducted by applying a
wearable electronic device directly on the skin of both healthy and
active pulmonary TB patients.

2. Results

2.1. Study Design and Skin Sampling

The study composed of three off-line stages for examining the hy-
pothesis and the science behind it and one demonstration stage
with an online and in-situ wearable device. The offline study took
place through the inclusion of 636 subjects aged 22–60 years
(Figure 1a–c respectively): skin sampling, Gas Chromatography-
Mass Spectrometry (GC-MS) analysis, and nanomaterial-based
sensors analysis in conjugation with machine learning meth-
ods. To create a robust tool for TB detection, samples and anal-
ysis were established in Cape Town in South Africa (N = 320)
and in New Delhi in India (N = 316). The study population
included newly diagnosed and confirmed pulmonary-active TB

cases, healthy volunteers, and confirmed non-TB cases. Demo-
graphic and clinical data of the population is summarized in Ta-
bles S1 and S2 in the Supporting Information. 12 potential con-
founding factors, including HIV status and smoking habits, were
monitored and assessed. Headspace samples from each partici-
pant were collected from the anterior arm area (inner arm) and
chest area using : i) two offline porous polymeric pouches con-
taining poly(2,6-diphenylphenylene oxide) polymer, and ii) two
polydimethylsiloxane (PDMS) sheets,[17] covered by an adhesive
medical tape. As a reference, poly(2,6-diphenylphenylene oxide)
pouches and PDMS sheets, for room sampling, were also in-
cluded in the analysis in order to evaluate the exogenous im-
pact. Comparative analysis has shown that sampling by poly(2,6-
diphenylphenylene oxide)-based sampling at the anterior arm
area, give the best and most stable results, making it the focus
of our presentation in the current article. For more details about
the various skin sampling, please see Section S2 in the Support-
ing Information.

2.2. Gas Chromatography Mass Spectrometry (GC-MS) Analysis

In the second stage (Figure 1b), skin VOCs were qualitatively and
quantitatively analyzed using GC-MS with >80% nonzero values
in all skin samples. Evaluation with GC-MS cannot be used as a
stand-alone Point of Care (PoC) diagnostic tool. However, it pro-
vides preliminary proof for the feasibility of skin VOCs to serve
as TB-associated probe molecules. Furthermore, GC-MS analy-
sis can be used for investigation of the metabolic processes and
their relation to VOCs,[18,19] and work up the nanomaterial-based
sensors and algorithms for better performance.[15,20]

In South Africa, the analysis included: i) 89 confirmed pul-
monary active TB patients; ii) 90 non-TB patients with healthy
controls; and iii) 262 room samples. Four VOCs were found to
be significantly different in comparison to the pulmonary active
TB group: toluene (retention time (R.T.) 8.4 min), acetic acid
(R.T. 3.34 min), 2-ethyl-1-hexanol (R.T. 13.7 min), and tentatively
recognized hexyl butyrate (R.T. 18.8 min). In India, the analysis
included: i) 89 confirmed pulmonary active TB patients; ii) 193
non-TB patients with healthy controls; and iii) 193 room samples.
Three VOCs were found to be significantly different in compari-
son to the pulmonary active TB, among them toluene, which was
also at higher levels among confirmed active TB patients as in
South Africa. Additional statistically significant VOCs included
both tentatively recognized ethyl-cyclopropane (R.T. 2.8 min)
and octanoic acid (R.T. 15.23 min) compounds. Figure 2 and
Table 1 present the information regarding each VOC in different
test groups from both clinical sites. GC-MS analysis of samples
from both sites revealed TB-associated skin VOC profiles that
differed from those of the control profiles and room samples. In
general, during disease formation, cells undergo structural and
metabolic changes that change VOC patterns.[18,19,21] As a result,
some of these VOCs appear in distinctive compositions of the
mixture, depending on whether a cell is healthy or infected.[22–24]

Toluene was found at significantly higher levels among con-
firmed pulmonary active TB patients in both clinical sites, yield-
ing similar ratios to non-TB abundance, whereas the difference
was negligible between the non-TB and room groups. The stud-
ies in each of the two clinical sites were conducted within the
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Figure 1. Study schematics. a) Skin headspace sampling procedure with poly(2,6-diphenylphenylene oxide) polymer. The samples are transferred into
glass tubes for two analyses: b) GC-MS analysis of the collected samples; and c) nanomaterial-based sensors array in conjugation machine learning
analysis of the collected samples. d) A wearable device applied directly on the skin.

Table 1. Summary of VOCs’ properties, including simulated synthetic samples for validation and quantification of each VOC.

South African site Clinical site in India

Acetic acid 2-ethyl-1-hexanol Hexyl butyrate Toluene Ethyl-cyclopropane Octanoic Acid

Formula C2H4O2 C8H18O C10H20O2 C7H8 C5H10 CH3(CH2)6CO2H

CAS no. 64-19-7 104-76-7 2639-63-6 108-88-3 1191-96-4 124-07-2

R.T. [min] 3.34 13.70 18.80 8.40 2.82 14.96

m/z [mass to charge] 43 57 43 91 42 60

Laboratory simulations: Mean ± s.e [ppb]

Confirmed pulmonary active TB patients 936.47 ± 81.02 48.18 ± 4.09 - 332.68 ± 30.49 539.02 ± 62.96 - -

Non-TB patients and healthy controls 722.63 ± 73.55 35.56 ± 3.33 - 220.86 ± 25.60 394.30 ± 29.12 - -

Room samples 432.32 ± 34.39 16.87 ± 1.90 - 245.92 ± 19.19 353.20 ± 30.31 - -

Lowest tested concentration [ppb] 700 6 - 60 - -

p-value for subgroup comparisons
a)

Kruskal-Wallis Test <0.0001b)
<0.0001b)

<0.0001b) 0.0015b) 0.0003
c)

<0.0001c)
<0.0001c)

Confirmed pulmonary active TB patients
vs Non-TB patients and healthy
controls

0.0295 0.0313 0.0078 0.0022 0.0077 0.0093 0.0060 (0.0018)d)

Confirmed pulmonary active TB patients
vs Room

<0.0001 <0.0001 0.0341 0.0048 <0.0001 <0.0001 <0.0001

a)
Post hoc testing with Steel method in comparison to the confirmed pulmonary active TB group as a 𝛼 = 0.05;

b)
𝛼 = 0.00185;

c)
𝛼 = 0.0014;

d)
After elimination of two

extreme points. s.e = standard error.
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Figure 2. GC-MS results. Samples from South Africa included 89 confirmed pulmonary active TB patients; 90 non-TB patients with healthy controls; and
262 room samples.Samples from India included 89 confirmed pulmonary active TB patients; 193 non-TB patients with healthy controls; and 193 room
samples. a) An abundance of toluene, acetic acid, 2-ethyl-1-hexanol, ethyl-cyclopropane, hexyl butyrate, and octanoic acid among confirmed pulmonary
active TB patients, non-TB patients with healthy controls, and room samples, in both clinical sites. For hexyl butyrate, two extreme outlier points were
excluded for the confirmed pulmonary active TB patients. b,c) Representative chromatograms with statistically significant VOCs and isopropyl alcohol
(IPA) as a skin-cleaning component, from South Africa and India, respectively. Inserts include representative chromatograms of relevant VOCs based
on total ion count traces. Error bars represent standard errors. Steel method in comparison to the TB group as a posthoc testing 𝛼 = 0.05 was used.

Adv. Sci. 2021, 8, 2100235 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2100235 (4 of 13)



www.advancedsciencenews.com www.advancedscience.com

same geographical areas, with a homogenous enrollment of the
volunteers. Therefore, changes in toluene levels coming from
confounding factors tend to be implausible. Toluene is an ex-
ogenous VOC associated with industrial pollution, as in the
petrol industry.[25] Therefore, it’s abundance among room sam-
ples is not negligible. The degradation of toluene by M. tuber-
culosis strains is known to occur,[26] as toluene is ubiquitous in
the environment. In the human body, degradation occurs by cy-
tochrome P450 isozymes in liver microsomes,[27,28] and the “nor-
mal” degradation rates depend on geographical differences.[27]

Furthermore, toluene emission from both breath and skin has
already been reported.[29–32] Inhibitory action of toluene on the
secretion of interferon-gamma (IFN-gamma), interleukin-4 (IL-
4), and IL-13 has been investigated in human peripheral blood
mononuclear cells.[33] These factors were associated with inhi-
bition of autophagy during M. tuberculosis infection.[34] There-
fore, increased levels of toluene emission among confirmed ac-
tive TB patients on both clinical sites suggests toluene’s role both
in bacterium metabolism and the immune system during the
infection. In contrast to previously reported studies,[35–41] which
associated emission of toluene with poly(2,6-diphenylphenylene
oxide) (TENAX-TA) degradation and storageour GC-MS analy-
sis of conditioned and unused poly(2,6-diphenylphenylene ox-
ide) pouches after 8 months storage at 4 °C refrigerator did not
contain toluene residues. These findings strengthen toluene’s ac-
countability as a potential molecule as a probe for detecting TB.
Other reported VOCs were present in skin headspace samples in
both clinical sites; however, only a statistically significant differ-
ence between confirmed pulmonary active TB patients and non-
TB subjects was found at a single site. Variations in the study pop-
ulation, e.g., geographical location, cultural habits, genetics, and
pollution levels, as well as food intake, may all be responsible for
these variations. Higher levels of acetic acid among confirmed ac-
tive TB patients may be evidence of the response of the immune
system during infection.[42] The low levels of this VOC in room
samples in comparison to skin samples suggest an endogenous
origin. Acetic acid is reported as toxic to M. tuberculosis due to its
acid pH and strong bactericidal activity.[42] Furthermore, acetic
acid, as a part of some metabolic pathways, is emitted from both
breath[43] and skin[44,45] samples of healthy volunteers. 2-ethyl-1-
hexanol has been reported as a TB-related VOC in the exhaled
breath of patients, indicating its relevance to TB pathogenesis,
strengthening the higher abundances among patients.[46] 2-ethyl-
1-hexanol has also been reported as a VOC associated with can-
cer, being detected in both breath and urine.[47–49] The presence
of 2-ethyl-1-hexanol in room samples is associated with micro-
bial degradation of plasticizers in indoor air.[50] Acetic acid and 2-
ethyl-1-hexanol VOCs were also found among the samples from
India; however, there was no significant difference between con-
firmed pulmonary active TB patients and non-TB subjects. The
abundance of tentatively recognized hexyl butyrate was signifi-
cantly higher at room samples in comparison to the skin samples
and obtained the lowest abundance among the non-TB group.
The correlation to TB disease is unclear. Still, this compound
is related to the lipid metabolism pathway and its derivatives
were found in exhaled breath of healthy subjects.[29] Though it
is also known to have exogenous sources originating naturally
from plants, and serves as a food additive,[51] it can be found in
cleaning and air-care products.[52]

Increased levels of tentatively recognized ethyl-
cyclopropane.[23,53,54] were observed among TB subjects at
India’s clinical site. Cyclopropanated-mycolic acid is a common
membrane lipid found in bacterial species, but only in a limited
number of eukaryotes.[55,56] Though cyclopropanated mycolic
acids are presumed to be important in TB pathogenesis, their
specific role remains to be determined. Furthermore, the host
innate immune activation is through cyclopropane modification
of a glycolipid effector molecule.[57,58] As a hypothesis, the
increased levels of cyclopropane among TB subjects emphasizes
the critical key role of this compound in the infection progress.
Octanoic acid (tentative recognition) was found with the highest
abundance in room samples and with the lowest abundance
among confirmed pulmonary active TB patients at the clinical
site in India. This VOC is included here for the first time as
a potential TB VOC biomarker. Octanoic acid has exogenous
sources originated from industrial products, cleaning and fla-
voring agents, paints, and coatings, which may explain its high
levels in indoor air samples.[59] Lower levels among confirmed
pulmonary active TB patients seem to be correlated to synthesis
and deacylation of Ghrelin hormone, which is important to the
regulation of body’s energy and becomes damaged during TB
disease – Ghrelin levels are higher among patients in comparison
to control subjects.[60,61] Emission of octanoic acid has previously
been reported via both breath and skin secretion pathways.[29] It
is important to accentuate that the validation and quantification
of the compounds were carried out by calibration curves. The
identification and quantification of ethyl-cyclopropane, hexyl
butyrate, and octanoic acid were not achieved due to permission
system limitations in terms of operational temperatures needed
to obtain a stable gas-liquid equilibrium.

2.3. Nanomaterial-Based Sensors Array Analysis

In the third stage (Figure 1c), we designed an array of
nanomaterial-based sensors for detecting a variety of skin-based
TB VOCs.[15,16,62,63] TB is a complex condition involving many
bodily systems, making it very difficult to be asscoaited with just
one unique biomarker. For this reason, using a cross-reactive ap-
proach in which a combination of nonselective sensors is used to
provide one full picture or metabolic picture of the tested state
can overcome the lack of specific markers.[16,64–68] In this ap-
proach, each sensor responds differently to individual or pattern
of VOCs in the sample, aiding the evaluation of the VOC pat-
tern in a qualitative and semi-quantitative manner, while selectiv-
ity is achieved by predictive methods that are based on machine
learning.[15,16,20,64–66,69,70] The sensors were based on chemiresis-
tive films of spherical gold nanoparticles (GNPs; core diameter
3–4 nm) capped with different organic ligands, 2D random net-
works of single-walled carbon nanotubes (RN-SWCNTs) capped
with different organic layers, and polymeric composites (Figure
3a). Sensor response and reproducibility (within a batch and be-
tween batches) were evaluated upon exposure to octane at dif-
ferent concentrations (Figure 3b). The results exhibited high re-
producability and repeatability. Prior to use with skin samples,
the response of the sensors upon expoure to toluene, as a rep-
resentative TB skin-based probe molecule, was examined. The
response of GNP-based sensors was rapid, fully reversible, and
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Figure 3. Sensor array responses. a) Schematic illustration a sensor array. b) Representative responses of decanethiol-capped GNP sensors from two
different batches toward increasing concentrations of octane. c) Representative response of the same sensor to increasing toluene concentration. d)
Response rate to 0.6 ppb toluene in nitrogen of sensors based on different thiol ligands at 34 °C (left) and temperature effect on sensor response during
decanethiol (B209)-based GNPs exposure to toluene at 1.2 ppm (right). e) Representative responses of dodecanthiol-based GNPs toward 1-Methyl
Naphthalene at 272 ppb in nitrogen exposure in different storage conditions at the starting point (M0) and after 9 months (M9). f) Representative
signals of the same sensor to confirmed pulmonary active TB and non-TB skin samples from the clinical site in India as well as confirmed pulmonary
active TB with or without smoking habits and HIV infection.

responsive to a wide variety of toluene concentrations below and
above levels reported above (Figure 3c). Different responses (pos-
itive and negative) were observed upon exposure to toluene at
0.6 ppb concentration in nitrogen at 34 °C (Figure 3d left). The
effect of temperature on sensor response was evaluated during
the expoure of decanethiol-based GNPs to toluene at 1.2 ppm
(Figure 3d right). No differences were observed between the re-
sponses over the tested range of temperatures. Dodecanthiol-
capped GNPs, as a representative example, were prepared and
exposed to 1-Methyl Naphthalene at 272 ppb in nitrogen, before
and after 9 months storage period, at different storage conditions:
vacuum (≈300 mbar), nitrogen (99.9998% pure) and room air:
18 °C, 40% RH. Figure 3e demonstrates the change in the resis-
tivity (i.e., ΔRend/Rb) for the different storage conditions. As can
be seen, the change in the room air is the largest (35%), while
the change in vacuum and nitrogen conditions is smaller, 19%
and 17%, respectively. Moreover, the variances between the sen-
sors’ signals became larger in room air and nitrogen storage after
9 months of storage, in comparison to vacuum conditions. There-
fore, sensors were selected to be stored in vacuumed conditions.

Similar characteristics were obtained during sensor exposure to
real skin headspace of healthy and TB subjects from both geo-
graphical locations with different confounding factors. Represen-
tative examples of the characteristics are shown in Figure 3f.

Use of an individual sensor of any of the chemistries (see the
Experimental Section) gave a maximum accuracy of 64% for dis-
criminating between the studied groups. To improve classifica-
tion, signals from multiple sensors were combined, so that the
information missed by one sensor is provided by the others, and
the imprecision of a single sensor could be compensated by sim-
ilar ones. Indeed, using multiple sensor signals together acts as
an internal safety check on data – allowing the system software
to discount temporarily erroneous readings, or, better still, cor-
rect them. Toward this end, Discriminate Factor Analysis (DFA)
from 22 sensors (43 features) were used to separate confirmed
pulmonary active TB patients from controls and non-TB cases.
The analysis was based on arm sampling and included a total of
475 samples, of which 176 were from confirmed pulmonary ac-
tive TB patients and 299 from non-TB and healthy volunteers.
The evaluation of the performance of the quadratic DFA model
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was based on a randomly selected blinded-test group (30% of the
total dataset). In the training phase, the results yielded 84% accu-
racy, 90.3% sensitivity, and 80.3% specificity after training (Fig-
ure 4a). The area under the curve of the receiver-operating curve
(ROC) scored 0.92 (Figure 4b). The analysis of the blinded-test
group (30%) resulted in 85.7% specificity, 90.4% sensitivity, and
87.4% accuracy. The performance in both phases meets the re-
quirements of a triage test according to the WHO, a non-sputum
test with the performance of sensitivity of >90% and specificity
a>70%.[12] Based on the same model, further analysis targeting
sub-populations was carried out, which included discrimination
between confirmed pulmonary active TB patients and non-TB
and healthy controls among (i) QuantiFERON-TB Gold (QFT)
positive population, and (ii) HIV negative within the positive QFT
population. The clinical importance of this analysis is its ability to
distinguish between confirmed active pulmonary TB and latent
TB. Discrimination between confirmed pulmonary active TB and
non-TB and healthy controls among QFT positive population in-
volved 301 samples; 131 confirmed pulmonary active TB cases
and 170 non-TB and healthy controls. Discrimination between
confirmed pulmonary active TB and non-TB and healthy controls
among the QFT-positive and the HIV-negative population was
based on 255 subjects; 96 confirmed pulmonary active TB cases
and 159 non-TB and healthy controls. The results of both analy-
ses indicated similar performances, with 91.6–93.8% sensitivity,
70.4–71.2% specificity, and 78.4–81.1% accuracy (Figure 4c,d). 12
potential confounding factors and their influence on the results
of the model were evaluated. These included gender, HIV status,
time since the last bath, smoking status, and other factors. Their
influence was based on the accuracy of the model used to discrim-
inate between TB statuses. Figure 4e gives the accuracies, which
were ≈50%, i.e., quite arbitrary. Thus, no significant difference
within each of the confounding factors was found.

In the last stage (Figure 1d), an online exploratory pilot study
was conducted by utilizing a wearable electronic device directly
on the skin, without using absorbent material. The study was
conducted in Riga, Latvia with a study cohort of 29 healthy sub-
jects and 18 confirmed active pulmonary TB patients. The device,
which included 8 nanomaterial-based sensors, was placed on the
chest and anterior part of the arm. Postprocessing analysus by
quadratic DFA resulted in a leave-one-out validation model with
86.2% specificity, 94.4% sensitivity, and 89.4% accuracy in dis-
criminating between active pulmonary TB patients and controls
from sampling the anterior arm area (Figure 5).

3. Discussion and Conclusions

Studies on the detection of TB VOCs have been previously re-
ported from the headspace of TB cells,[71–73] human exhaled
breath,[74–77] and urine samples.[78] However, to date the use of
these techniques has been impeded by the compliance of the
suspected subject, a need for moderately to highly expensive
equipment, high levels of expertise required to operate the in-
struments, the speed required for sampling and analysis, and/or
the requirement for pre-concentration techniques.[79] The GC-
MS analysis results presented herein provide the first evidence
for a TB-related VOC profile emitted into the skin headspace.
Most of the introduced VOCs related to the TB are reported for
the first time. Toluene is a shared VOC in both geographical lo-

cations, with similar proportions among the tested groups, iden-
tified and quantitated, and has a potential metabolic pathway re-
lated to TB. The degradation occurs in the human body normally
by Cytochrome P450 isozymes in human liver microsomes[27,28]

and the normal degradation rates may be subjected to geographi-
cal difference.[27] Of all of that, toluene can be considered a probe
molecule discriminating between different TB statuses.

The use of a cross-reactive nanomaterial-based sensors array in
association with machine learning methods reveals the remark-
able potential that, on one hand, creates a systematic screening
for active case finding, and, on the other hand, rules out those
people who do not present active pulmonary TB with high cer-
tainty. The array is exposed to the whole skin headspace sam-
ple, without selectivity toward specific VOCs.[16] The selectivity
toward a health status is achieved by machine learning models.
The obtained results meet the WHO’s target product profile cri-
teria for a new TB triage test, expected to surpass 90% sensitiv-
ity and 70% specificity,[12] without being affected by confounding
factors, e.g. HIV status. VOC patterns are unique for every dis-
ease; therefore, the presence of one disease should not screen
other diseases.[15] As HIV is highly linked with TB infection, this
allows one to eliminate possible cross-effects in the diagnosis,
as demonstrated in the TB disease classifier. Advanced discrimi-
nation among sub-populations with both positive QFT and neg-
ative HIV statuses drew attention to the ability in distinguish-
ing between confirmed active pulmonary TB and latent TB, or
extra-pulmonary TB disease in some rare cases. These results
strengthen the potential of sensing TB-related VOCs as a suit-
able method also to detect and diagnose latent cases, regardless
of geographical differences. Future studies shall include an eval-
uation of the skin TB-related VOCs for the detecting and monitor-
ing treatment processes as well as inclusion of further geographic
locations to form a global TB classifier.

The pilot study with the wearable device was a further step
toward assimilation of the developed sensor-based system to be
applied in real-time at healthcare facilities without the need for
expensive laboratory equipment. Indeed, implementing the sen-
sors array approach into an adhesive bandage is an additional
step toward a simple and cost-effective wearable sensing patch
to establish a platform to address the TB epidemic risk in both
developing and developed countries. This platform is expected
to provide the foundation for the development of a wide variety
of low-end and high-end wearable patches that can detect a wide
variety of diseases and illnesses detectable by “sniffing” the cor-
responding skin-emitted VOCs.[14,80–82]

In summary, we developed a new method for detecting
Tuberculosis from skin headspace, harnessing nanomaterial-
based sensors for noninvasive and easy sampling, utilizing
volotalomics. This platform is suitable for serving as a triage test
for Tuberculosis and can be easily modified to meet the needs for
other diagnostics purposes.

4. Experimental Section
Study Design: To ensure the stability of the rule-in or rule-out test in

the proposed skin sampling, and based on a previous similar study,[83] the
sample sizes were determined by setting the lower limit of the Clopper–
Pearson binomial confidence interval to be no more than 5% points below
it. 210 per cohort (total) provides >90% power that the binomial 95% CI
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Figure 4. Quadratic DFA results of the global classifier. a) Boxplot of the canonical score. Each point represents one sample. The central dashed line
represents Youden’s cut-point. Samples above the cut-point are classified as non-TB and healthy, and samples below it are classified as confirmed
pulmonary active TB samples. Non-TB and healthy samples of the test group are marked as open spheres, whereas confirmed pulmonary active TB
samples of the test group are shown as closed spheres. b) Receiver operating characteristic (ROC) curve of the model. c) Boxplot of the canonical score
for the subpopulation with QFT positive status. d) Boxplot of the canonical score for the subpopulation with QFT-positive and HIV-negative statuses.
e) Boxplots of canonical score for confounding factors. QFT- QuantiFERON-TB Gold test.
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Figure 5. Wearable device TB diagnosis. a) Wearable devices on the chest and anterior arm of a volunteer. b) Representative normalized signals of one
of the sensors in the wearable device attached to the anterior arm area. The plotted signal is the normalized resistance to the baseline resistance before
a patch is attached to the experiment participant. c) Boxplot of the canonical score of linear DFA model. Each point represents one sample. d) ROC
curve of the model. AUC = area under curve.

will be no wider than ±5.0% for sensitivity or specificity of 89%, or no
wider than ±3.5% for sensitivity or specificity of 95%. In this multicentric
study, absorbent skin patches for capturing the VOCs were developed at
Technion, IIT, Israel. These patches were sent to 2 collaborating centers
(All India Institute of Medical Sciences (AIIMS), New Delhi, India, and the
Groote Schuur Hospital, Cape Town, South Africa) for VOC sampling from
the study groups. During April 2016 and June 2017, samples were collected
at AIIMS hospital in New Delhi. Sample collection took place in Groote
Schuur Hospital in Cape Town from August 2015 until November 2016.
All participants signed informed consent forms. The clinical trials received
ethical approvals by the Ethical Committees of the respective hospitals:
AIIMS, New Delhi: IEC/NP-103/13.03.2015, RP-39/2015 and University of
Cape Town: 307/2014. The study design included three groups at each
site with 105 participants per group: confirmed pulmonary active TB cases,
healthy volunteers, and confirmed non-TB cases. The clinical classification
referred to 2 gold standards: sputum culture on liquid medium [BACTEC
Mycobacteria Growth Indicator Tube MGIT 960 System (MGIT 960)] and
GexeXpert MTB/RIF. Moreover, all the participants were screened for HIV
and QuantiFERON-TB Gold In-Tube (QFT-TB) tests for further evaluation
on the effect of potential confounding factors. The participants were aged
between 18–85 years and the following inclusion criteria were applied. Vol-
unteers with a skin disease that was precluded at the sampling area were
excluded from the studies. In addition, smoking within half an hour prior
to testing was an additional exclusion criterion. The inclusion criteria for
confirmed pulmonary active TB patients included: 1) clinical symptoms 2)
positive microbiology (either a positive GeneXpert MTB/RIF or/and MGIT
culture for M. tb; 3) newly diagnosed patients. For the non-TB patients, the
inclusion criteria included 1) clinical symptoms; 2) negative culture result

(for HIV infected and uninfected) or Negative GeneXpert test result (HIV
uninfected only); 3) chest x-rays not supporting the diagnosis of active TB;
4) no clinical symptoms at follow-up at 8 weeks. The inclusion criteria for
healthy controls were: 1) no clinical symptoms in the past 12 months. For
the clinical site in India, all the samples were collected at a single loca-
tion with the same staff. For the SA site, the sampling was done in three
clinics within Cape Town city with the same staff. The study cohort was de-
signed initially for sampling with PDMS in both body locations and Tenax
in the chest area only. The decision to include Tenax sampling in the an-
terior arm area was made after the beginning of the sampling in the two
clinical sites. Therefore, the number of Tenax-based samples from an an-
terior arm area was lower than other sampling procedures. In addition,
before statistical analysis, due to technical reasons such as broken vials
during shipment, or during GC-MS failures, samples were excluded. For
the exploratory study for the wearable device, similar inclusion and exclu-
sion criteria were applied in Riga, Latvia (Nr.12-A/19). The study included
18 confirmed pulmonary active TB patients and 29 healthy controls.

Preparation of Poly(2,6-diphenylphenylene oxide)-Based Pouch as Off-Line
Sampling Tool: 132 mg of 20/35 meshed poly(2,6-diphenylphenylene
oxide) (Buchem BV) was used as an absorbing material. Poly(2,6-
diphenylphenylene oxide) was thermally conditioned at 300 °C in a con-
stant flow of pure nitrogen for 180 min. The polymer was conditioned in a
glass tube with a conditioned glass wool (Sigma-Aldrich) at 240 °C for 48 h.
After conditioning it was stored in polyester meshed pouches (40.3 mm X
65.11 mm, mesh opening: 47µ) (SAATI), which had been cleaned with a
solution of 5% Decon 90 decontaminant (Decon Laboratories) in distilled
water (18.2 MΩ) and later stored in a vacuum oven at 100 °C for >15 h.
The absorbing materials were stored in vials, closed, and wrapped with
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Parafilm at an average temperature of 4 °C. the shelf-life examination was
done at 4 °C storage conditions for up to 8 months.

Sampling Procedure: Each participant wore two poly(2,6-
diphenylphenylene oxide) pouches on an anterior arm area, which
had to be analyzed by both GC/MS and a nanomaterial-based sensor
array. In addition, room samples were collected for each participant
to monitor the exogenous VOCs during skin sampling. The absorbent
materials were placed on the skin after cleaning with a sterile alcohol
pad (saturated with >70% isopropyl alcohol) for 10 min before sampling.
The used pads were discarded into a closed bag, in order to reduce
the IPA vapors in the sampling room. The absorbent materials were
covered with aluminum foil and sealed with medical adhesive tape to
avoid any VOCs absorption from the surrounding environment. No
shaving procedure was done in order to avoid injury to the skin and
change the VOC pattern. Sampling was done over 1h. A questionnaire
was filled for every participant and the absorbent material vial numbers
were also documented. The questionnaire included data regarding the
main content of the last food and drink taken prior to sampling, hygiene,
vaccinations, genetic, chronic, and infectious diseases, family TB history,
smoking and drinking habits, allergies, medications and vitamins, among
other details. For the room samples, the poly(2,6-diphenylphenylene
oxide) pouch was placed on the table near the participant for 1h to be
exposed to the room air. During the whole sampling process, participants
wore facemasks. After sampling, the absorbing materials were stored in
vials, closed, and wrapped with Parafilm. These samples were stored in
a refrigerator atan average temperature of 4 °C up to a maximum period
time of 8 months. The air transportation of the samples was with the
same conditions. Opening of the vials was done in a biological hood in a
BSL2+ laboratory with the needed protective equipment. The disinfecting
material was Oosafe Surface Disinfectant (SparMED) which does not
contain alcohol and bactericide (confirmed for M. tuberculosis). The
manufacturer claims that this disinfectant does not release VOCs. Prior
to the instrumental runs of the samples, the polyester pouches were
cut, and the poly(2,6-diphenylphenylene oxide) powder was transferred
immediately into a glass tube containing a glass wool stopper. After the
transfer, the second opening was closed manually with the glass wool and
capped from both sides.

Sample Analysis with the Gas Chromatography–Mass Spectrometry (GC-
MS): An analytical evaluation of the compounds absorbed on the
poly(2,6-diphenylphenylene oxide) was done with a GC/MS-QP2010 in-
strument (Shimadzu Corporation). It was equipped with an SLB-5ms capil-
lary column (with 5% phenyl methyl siloxane; 30 meters in length; 0.25 mm
internal diameter; 0.5 mm thicknesses; purchased from Sigma-Aldrich),
and was combined with a thermal desorption (TD) system (TD20; Shi-
madzu Corporation). Samples were analyzed by the GC-system in split
mode (20%) at 30 cm sec−1 constant linear speed and in a 0.70 ml min−1

column flow. The following oven temperature profile was set: (a) 6 min at
40 °C; (b) 13 °C min−1 ramp up until 170 °C; (c) a hold-time 2 min; (d)
6 °C min−1 ramp up until 300 °C; and (e) 15 min at 300 °C. The run du-
ration was 55 min in total. A mixture of alkane standard solution C8-C20
in hexane solvent (Sigma-Aldrich) was used as an external standard for
GC/MS system calibration and normalization of the retention times and
abundance changes as a result of column aging. Compounds present in
>80% of skin samples until R.T. 30 min, were included in the analysis,
as after 30 min compound release from Tenax and glass wool compo-
nents occurred. Sample chromatograms were further analyzed using an
open-source program OpenChrom Community Edition, version 1.1, and
custom codes using MATLAB version 9.5.0.944444 (R2018b). The chro-
matograms were converted into txt files with the following batch process-
ing: 1. Denoising filter (M.Z. 73, 75, 28, 147, 207, 221, 281, 295, 335, 429);
2. Savitzky-Golay filter; 3. Smoothed TIC baseline detector; 4. Peak detector
first derivative (MSD); and 5. Combined integrator trapezoid. The analysis
steps were programmed in order to overcome retention time shifts due to
a prolonged study run and changes in the detector sensitivity.

Calibration Curves of VOCs for GC-MS: Identification and quantifica-
tion of the VOCs that were found to be significant, involved creation of
a calibration curve for each candidate. VOCs at different concentrations
were generated using a commercial permeation/diffusion tube dilution

(PDTD) system (Umwelttechnik MCZ, Germany). The system allows con-
trolling the concentration of the VOCs. Purified dry nitrogen (99.9999%)
from a commercial nitrogen generator (N-30, On Site Gas Systems, USA)
equipped with a nitrogen purifier was used as a carrier gas. Samples were
actively absorbed on poly(2,6-diphenylphenylene oxide) tubes at the same
weight (132 mg) as used for the skin sampling from the PDTD system
by pumping for 2.5 min at a flow rate of 0.2 L min−1. 3–5 repetitions
were done per concentration. The following concentrations were gener-
ated: toluene: 60100212300400583744 ppb; acetic acid: 700, 900, 1100,
1300 ppb and for 2-ethyl-1-hexanol: 6, 20, 40, 60, 80 ppb. The samples
were analyzed by the same GC/MS method, and a calibration curve was
generated and compared to the abundance range of the clinical and room
samples, using a weighted linear regression with errors in abundance. A
mixture of alkane standard solution C8-C20 in hexane solvent was used
during the calibration as well.

Sample Analysis with the Nanomaterial-Based Sensor Array: A stainless-
steel cell for exposure contained an array of 40 nanomaterial-based
sensors mounted on a customized polytetrafluoroethene circuit. The
sensors included gold-nanoparticles (organically stabilized spherical Au
nanoparticles (core diameter: 3–4 nm), 2D random networks of single-
walled carbon nanotubes (RN-SWCNTs), and polymers capped with
different organic layers. For the modeling, the following sensors proved
to be key: (i) Au nanoparticles covered with octadecanethiol, decanethiol,
tert-dodecanethiol, butanethiol, 2-ethylhexanethiol, dibutyl disulfide,
4-chlorobenzenemethanethiol, 3-ethoxythiophenol, octadecylamine
(Sigma-Aldrich) and 2-nitro-4-(trifluoromethyl) benzenethiol, benzylmer-
captan (Carbone scientific). (ii) Random networks (RNs) of carbon
nanotubes (CNTs) with crystal hexa-perihexabenzocoronene (HBC) with
C12 chemiresistor (HBC-C12). (iii) Polymer composites black carbon with
poly(propylene-urethaneureaphenyl-disulfide) PPUU-2S chemiresistor
and a composite of black carbon with poly(propylene-urethaneureaphenyl-
disulfide) PPUU-2S mixed with poly(urethane-carboxyphenyl-disulfide)
PUC-2S chemiresistor. Details regarding the fabrication and modification
of the abovementioned sensors can be found in the literature.[63,84–86]

The poly(2,6-diphenylphenylene oxide) samples were transferred prior
to analysis into empty thermal desorption (TD) tubes (Sigma-Aldrich),
containing glass wool stoppers, compatible with the TD system. The
samples were thermally desorbed at 270 °C for 10 min in an auto-sampler
desorption system (TD20; Shimadzu Corporation, Japan). The sample
was injected into the GC-system (Shimadzu Corporation, Japan) in a di-
rect (splitless) mode at a constant 3 mL min−1 total flow and the desorbed
sample was temporarily stored in a stainless-steel column (150 °C). The
samples from the TD were then delivered by a 6-way Valco valve, equipped
with 10 mL stainless steel loop (VICI, Valco Instruments Company Inc.,
USA) into a stainless-steel chamber containing the sensors with a volume
of 330 cm3. When a one-way valve connecting the chamber to the column
was open, the sample was sucked into the chamber, while the remaining
volume was filled with N2 until reaching atmospheric pressure in the
chamber. A Keithley 2701 DMM data acquisition/data-logging system
was used to measure the resistance of all the sensors simultaneously as a
function of time. The sensors’ baseline responses were recorded for 5 min
in a vacuum (≈30 mTorr), 5 min under pure nitrogen (99.999%), 5 min
in a vacuum, and 5 min under the sample exposure, followed by a further
3 min under vacuum conditions. To supervise the sensor’s functionality
during the experiment, and to overcome possible sensor response drift,
a fixed calibration gas mixture containing 11.5 ppm isopropyl alcohol,
2.8 ppm mesitylene and 0.6 ppm 2-ethyl-1-hexanol was exposed to the
sensors daily. This calibration gas was generated PDTD system. The
calibration mixture was absorbed on a clean tube for 2 min. Several
features are extracted from each of the sensor’s signals upon exposure,
including area under the curve, delta R peak, delta R middle, and delta
R end. The last three features are based on the difference between the
baseline resistance, usually during vacuum, and the resistance during the
response toward the exposure: peak point, middle part, and the end part
of the signal.

Discriminant Function Analysis (DFA): DFA is a statistical method for
data analysis when the groups to be discriminated are defined (labeled)
before analysis.[87] The input variables are the features extracted from
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sensors’ responses toward the skin samples. The decision on either lin-
ear or quadratic model was based on the homogeneity of the variance-
covariance matrices of the tested groups according to statistical tests, e.g.
Bartlett’s.[88,89] During this study, equal prior probabilities were set to con-
firm pulmonary active TB and non-TB with healthy volunteers, respectively.
For the off-line approach, the model was evaluated by randomly splitting
the original database into 70% training set and 30% test set. The number
of the features used was examined for preventing the potential overfitting
by following the accuracies of both training and test datasets as a func-
tion of the number of features. In this dataset, a model with >48 features
was close to the overfitting range, whereas the proposed model contains
fewer features (Figure S7, Supporting Information). For the on-line device
system, a quadratic DFA model was applied, based on 3 sensor features
with leave-one-out validation, due to the low number of samples. Poten-
tial overfitting was prevented by limiting the number of the model features
to only 4, leading to a ratio of 1:11 between the sample number and the
model features. Feature selection and related calculations relied on Python
version 3.7.

Wearable Device for Online Measuring: The device, connected to the
PC, and the developed software was launched. Initially, the device samples
room air for 10 min, then the device was strapped to the participant for
60 min. There was no direct contact between the skin and the sensors.
The device included eight sensors based on capped gold nanoparticles
as described in previous method sections. On exposure, several features,
such as area under the curve, delta R peak, delta R middle, and delta R
end, are extracted from the sensor signal. The last three characteristics
are based on the difference between the resistance of the baseline, typically
during the room air exposure, and the resistance upon exposure response:
peak point, middle, and end part, respectively. The obtained quadratic DFA
model was based on three features from three sensors.

Statistical Analysis: GC-MS analysis in South Africa included i) 89 con-
firmed pulmonary active TB patients; ii) 90 non-TB patients with healthy
controls; and iii) 262 room samples (a total of 441 samples). In India, the
analysis was based on i) 89 confirmed pulmonary active TB patients; ii)
193 non-TB patients with healthy controls; and iii) 193 room samples (a
total of 475 samples). The data pre-processing included normalization of
the peak abundances with an external standard for GC/MS system calibra-
tion. No transformation or outlier elimination was done except for ethyl-
cyclopropane analysis; 60 samples were excluded due to saturated peak
of IPA, leading to the following tested groups: i) 85 confirmed pulmonary
active TB patients; ii) 182 non-TB patients with healthy controls; and iii)
148 room samples.

Statistical evaluation was based on an adjusted p-value for multiple
peaks, using a nonparametric Kruskal-Wallis test and a nonparametric
Steel method (0.05) in comparison to the TB group as posthoc test-
ing. For the nonparametric Kruskal-Wallis test, the following P values of
0.00185 and 0.00143 were used, respectively, for the clinical sites in South
Africa and India. GC-MS analysis revealed 27 and 35 peaks with at least
80% non-zero values in all skin samples collected fron the clinical sites
in South Africa and India, respectively, after discarding column bleed-
ing compounds, such as siloxane-related ones. All the peaks presented
a right-skewed distribution. All quantitative data were given as mean ±
standard error. JMP software version 14.0.0 (SAS Institute Inc., Cary, NC,
USA, 1989–2005) was used for statistical evaluation.
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Supporting Information is available from the Wiley Online Library or from
the author.
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