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ABSTRACT: Hydrological systems are naturally complex and nonlinear. A large number of variables, many of which not

yet well considered in regional frequency analysis (RFA), have a significant impact on hydrological dynamics and conse-

quently on flood quantile estimates. Despite the increasing number of statistical tools used to estimate flood quantiles at

ungauged sites, little attention has been dedicated to the development of new regional estimation (RE) models accounting

for both nonlinear links and interactions between hydrological and physio-meteorological variables. The aim of this paper

is to simultaneously take into account nonlinearity and interactions between variables by introducing the multivariate

adaptive regression splines (MARS) approach in RFA. The predictive performances of MARS are compared with those

obtained by one of themost robust REmodels: the generalized additivemodel (GAM). Both approaches are applied to two

datasets covering 151 hydrometric stations in the province of Quebec (Canada): a standard dataset (STA) containing

commonly used variables and an extended dataset (EXTD) combining STAwith additional variables dealing with drainage

network characteristics. Results indicate that REmodels usingMARSwith the EXTDoutperform slightlyREmodels using

GAM. Thus, MARS seems to allow for a better representation of the hydrological process and an increased predictive

power in RFA.
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1. Introduction and literature review

The main objective of regional frequency analysis (RFA) is

the estimation of the return period of extreme hydrological

events at target sites where little or no hydrological data are

available. Examples of these events include floods and low-

flow quantiles which are crucial for infrastructure design and

management. In general, RFA comprises two main steps:

(i) the delineation of homogenous region (DHR) to determine

gauged sites similar to the target one and (ii) regional esti-

mation (RE) to transfer the information from sites determined

in the DHR step to the target one (e.g., Chebana and Ouarda

2008). Various methods have been suggested for each of these

two steps (e.g., Ouarda 2016).

Among the most common DHR methods, we can mention

the region of influence (ROI) (Burn 1990a) and the canonical

correlation analysis (CCA) (Ouarda et al. 2001). Recently,

several advanced nonlinear neighborhood approaches were

suggested (e.g., Ouali et al. 2016; Wazneh et al. 2016). Among

the commonly used RE approaches, we can distinguish the

regression-based models and the index-flood models. Among

the former, the log-linear regression models are the most

commonly used ones in practice, because of their simplicity and

good predictive performances. We focus here on regression-

based models in the RE step.

Hydrological processes depend on a large number of vari-

ables, such as the topographic variability of the basins, their soil

structure and texture, their geological formations, and the cli-

matology. This leads to a natural complexity, which has been

widely recognized and documented in the hydrological litera-

ture (e.g., Ibbitt andWoods 2004; Sivakumar 2007; Wang et al.

2008; Xu et al. 2010). In statistical terms, this complexity

manifests itself through three aspects: (i) the high number of

explanatory variables necessary to paint a realistic picture of

the processes, (ii) the nonlinear impact of these explanatory

variables, and (iii) the important interaction between the

different explanatory variables. It is thus important that the

RE step in RFA accounts for these three aspects in order

to yield accurate estimations of the target site’s quantiles of

interest.

In RFA studies, the RE step usually requires a large number

of explanatory variables to result in satisfactory predictive

performances. This number usually exceeds five, as in Ouarda

et al. (2018), but should increase in the future with the dis-

covery of new potential variables. For instance, evidence is

growing that drainage network characteristics have a strong

impact on hydrological dynamics, and are consequently linked

to flood quantiles (Jung et al. 2017). Thus, integrating addi-

tional characteristics related to the drainage network may lead

to more accurate estimates of the regional quantiles. Hence,

there is a need to propose efficient approaches that are able to

manage such high-dimensional databases.

Another consequence of the natural complexity of hydro-

logical processes is the nonlinearity between explanatory var-

iables and the at-site quantiles. To handle this problem and

better reproduce the dynamics of hydrological processes, var-

ious nonlinear approaches have been proposed (e.g., Shu and

Burn 2004). The classical log-linear method used in the RE

step assumes that the relation between the logarithm of the

response variable (hydrological) and explanatory variablesCorresponding author: AminaMsilini, amina.msilini@ete.inrs.ca
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(physio-meteorological) is linear, which is too simplistic for

such complex nonlinear processes. Therefore, several RE ap-

proaches, such as random forest (RF), artificial neural network

(ANN), and generalized additive models (GAM) have been

proposed in the literature to account for the possible nonlinear

links between variables (e.g., Aziz et al. 2014; Khalil et al. 2011;

Ouali et al. 2017; Ouarda et al. 2018; Saadi et al. 2019).

Random forest (Breiman 2001) is a powerful nonlinear and

nonparametric method commonly used to handle regression

and classification problems based on decision trees. Due to its

good performance, it has been applied in several fields, such as

hydrology (e.g., Diez-Sierra and del Jesus 2019; Muñoz et al.

2018;Wang et al. 2015), ecology (e.g., Cutler et al. 2007; Prasad

et al. 2006), environmental modeling (e.g., Masselink et al.

2017; Pourghasemi and Kerle 2016), and RFA (e.g., Booker

and Woods 2014; Brunner et al. 2018). Despite its predictive

power, RF suffers from major limitations such as the difficulty

of interpretation and the large memory requirements for

storing the model when used with a large dataset (Geurts

et al. 2009).

The ANN is a nonparametric mathematical model, whose

design is inspired by the biological functioning of brain neurons

(Bishop 1995). It was considered in several RFA studies for the

estimation of flood and low-flow quantiles at ungauged sites

(e.g., Aziz et al. 2014; Ouarda and Shu 2009). However, ANNs

present a major common problem which is the tendency to

overfit (e.g., Gal and Ghahramani 2016; Lawrence and Giles

2000). In addition, their calibration is relatively complex, es-

pecially for debutant users, which requires some subjective

choices since no explicit regression equations can be given

(Ouali et al. 2017).

GAMs do not suffer the same drawbacks as ANNs. GAMs

are flexible nonlinear regressionmodels (Hastie and Tibshirani

1987) that have been introduced in the RFA context by

Chebana et al. (2014). The authors found that the GAM-based

methods present the best performances when compared to the

classical log-linear model and other common methods. GAMs

are increasingly being adopted in several fields such as hy-

droclimatology and environmental modeling (e.g., Rahman

et al. 2018; Wen et al. 2011), public health (e.g., Bayentin et al.

2010; Leitte et al. 2009), and renewable energy (e.g., Ouarda

et al. 2016). However, it still presents a number of disadvan-

tages. Indeed, the method can be computationally intensive,

especially when a large number of variables is involved. It can,

then, be difficult to fit GAM to high-dimensional databases

because of memory limitations imposed by the numerical

complexities of this model (Leathwick et al. 2006). More im-

portantly, GAMs do not cope well with the interaction be-

tween variables (e.g., Ramsay et al. 2003), which is difficult to

integrate in the model.

The interaction between physiographical variables within

the watershed has long been recognized (e.g., Niehoff et al.

2002). Thus, the inclusion of the terms of interactions between

the explanatory variables used to model the hydrological dy-

namics seems to be essential for better estimates of flood

quantiles. However, this aspect is difficult to take into account

in the REmodels due to the high complexity that it may add to

the models (see above for the specific example of GAMs). This

affects the quality of the estimates and makes it less accurate.

Hence, the motivation behind the present paper is to propose

and explore alternative techniques able to realistically repro-

duce the hydrological process while avoiding the problems

mentioned above.

The method considered here is multivariate adaptive re-

gression splines (MARS), a procedure designed to build

complex nonlinear regression models in a high dimensional

setting. It is attractive in the RFA context since it actually

addresses the three issues developed above which are: high

number of variables, nonlinearity, and interactions. Indeed,

MARS is efficient in a high dimensional setting and naturally

selects the relevant predictors in this context. In addition, it

does not require assumptions about the form of the relation-

ships between the response and the explanatory variables

(Friedman 1991). MARS also allows the modeling of complex

structures between variables, which are often hidden in high-

dimensional data, without imposing strongmodel assumptions.

Hence, it can easily include interactions between variables,

allowing any degree of interaction to be considered (Lee

et al. 2006).

All of these desirable properties lead to a very flexible ap-

proach able to adapt well to the hydrological phenomenon.

Due to its simplicity and capacity to capture complex nonlinear

relationships, it has been successfully applied in several fields

such as ecology and environment (e.g., Balshi et al. 2009; Bond

and Kennard 2017; Leathwick et al. 2006, 2005), finance (e.g.,

Lee and Chen 2005; Lee et al. 2006), geology (e.g., Zhang and

Goh 2016; Zhang et al. 2015), energy (e.g., Li et al. 2016; Roy

et al. 2018), and hydrology (e.g., Bond and Kennard 2017; Deo

et al. 2017; Emamgolizadeh et al. 2015; Kisi 2015; Kisi and

Parmar 2016). Despite the extensive use of the MARS model

in various frameworks and contexts, its potential has never

been exploited and investigated in the context of RFA of ex-

treme hydrological events.

The main objective of the present study is to introduce the

MARS approach in the RFA context to estimate flood

quantiles and evaluate its predictive potential when it is

applied to an extensive database. It is hereby applied in

combination with the DHR with the CCA and the ROI

approaches. MARS is also applied without DHR to test its

performance when applied to all stations without consid-

eration of hydrological neighborhoods. A jackknife proce-

dure is used to evaluate the model performances, with

GAMs used as a benchmark.

This paper is structured as follows. Section 2 presents the

theoretical background of MARS and the other RFA ap-

proaches adopted. The considered methodology is outlined

in section 3. Section 4 describes the case study and the

considered datasets. The obtained results are presented and

discussed in section 5. The conclusions of the study are

summarized in the last section. The appendix contains a list

of terms and abbreviations.

2. Theoretical background

In this section, the adopted statistical tools are briefly pre-

sented and discussed.
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a. Neighborhood identification approaches

Here we present the two most commonly considered neigh-

borhood identification approaches as a necessary step before

the RE one.

1) CANONICAL CORRELATION ANALYSIS APPROACH

CCA (Hotelling 1935) is a multivariate analysis technique

used to identify the possible correlations between two groups

of variables. It consists of a linear transformation of two groups

of random variables into pairs of canonical variables, which are

established in such a way that the correlations between each

pair are maximized.

Let X 5 (X1, X2, . . . , Xr) and Y 5 (Y1, Y2, . . . , Ys) be sets

of random variables including, respectively, the r physio-

meteorological variables and the s hydrological variables of

n gauged sites. The objective of CCA is to construct linear

combinations Vi and Wi (called canonical variables) of the

variables X and Y, i.e.,

V
i
5A

i1
X

1
1A

i2
X

2
1 � � � 1A

ir
X

r
, (1)

W
i
5B

i1
Y

1
1B

2
Y

2
1 � � � 1B

is
Y

s
, (2)

where i 5 1, . . . , p, with p 5 min (r, s). The first weights

vectors A1 and B1 maximize the correlation coefficients

between resulting canonical variables, i.e., l1 5 corr (V1,

W1), under constraints of unit variance. Once the first pair of

canonical variables is identified, other pairs (Vi, Wi, i . 1)

can be obtained under the constraint corr (Vi, Wj) 5 0

(where i 6¼ j).

For neighborhood delineation in RFA, the considered Xr

are physio-meteorological variables while the YS are the flood

quantiles of interest. CCA is then used to construct canonical

variables Wi that correlate well with physio-meteorological

variables. The neighborhood is the set of sites such that the

canonical hydrological score wk, k 5 1, . . . , K, is close to the

canonical physio-meteorological score of the target un-

gauged site y0. The distance is measured by a Mahalanobis

distance between the hydrological mean position of the

target site Ly0 and the positions of other sites wk, where L5
diag(l1, . . . lp) and y0 is the physio-meteorological canonical

score of the target site. Provided the X variables are ap-

proximately normal, the Mahalanobis distance converges

to a x2 distribution with p degrees of freedom. The size of

the neighborhood is controlled by the parameter a that

represent the (1 2 a) x2
p quantile above which sites are ex-

cluded from the neighborhood. As extreme cases, all sta-

tions are considered if a5 0, and no station is included in the

neighborhood when a 5 1. For more details, the reader is

referred to Ouarda et al. (2001).

2) REGION OF INFLUENCE APPROACH

The ROI approach was introduced by Burn (1990b) to

identify the neighborhood of a given target site based on the

similitude between watersheds characteristics. The similitude

is measured using a Euclidean distance in themultidimensional

physio-meteorological space (e.g., Burn 1990b; Tasker et al.

1996), i.e.,

ROI
i
5

�
sites j 2 (1, . . . ,n);D

ij
5

�
�
r

k51

W
k
(X

k,i
2X

k,j
)
2

�1/2
# u

�
,

(3)

where Dij is the weighted Euclidean distance between the

target site i and the gauged one, j5 1, . . . , n,Xk,j (k5 1, . . . , r)

is the standardized value of the kth variable at site j, Wk is the

weight associated with the kth variable, and u represents the

threshold value. The threshold value is defined for each site in

such a way that it permits a compromise between the amount

of information to be used and the degree of hydrological

homogeneity of the neighborhood (Ouarda et al. 1999). For

more details, the reader is referred to (e.g., Burn 1990b;

GREHYS 1996).

b. Regional estimation approaches

Once a neighborhood is identified, the methods described

below are used to transfer information from the neighborhood

stations to the target site.

1) GENERALIZED ADDITIVE MODEL

GAM (Hastie and Tibshirani 1987) is a flexible class of

nonlinear models that is able to efficiently model a wide

variety of nonlinear relationships. In addition, it allows for

non-Gaussian response variables (Wood 2006) making it

relevant for streamflow data. Thus, GAM allows a more

realistic description of the hydrological phenomenon be-

cause of the flexible nonparametric fitting of the smooth

functions.

Formally, a GAM is defined as (Wood 2006)

g(Y)5a1�
m

j51

f
j
(X

j
)1 « , (4)

where g is a monotonic link function and fj are smooth func-

tions giving the relationship between the explanatory variables

Xj and the response Y. Parameter a is the intercept and « is the

error term. The structure of Eq. (4) allows for a distinct in-

terpretation of each explanatory variable.

To estimate themodel, the smooth functions fj are expressed

as a set of q spline basis functions, a common choice for

smoothing (Wahba 1990). They are expressed as

f
j
(X)5�

q

i51

b
ji
b
ji
(X) , (5)

where bji are unknown parameters to be estimated and bji are

the spline basis functions. The expansion in (5) allows linear-

izing the model that can then be estimated through backfitting

(Hastie and Tibshirani 1987) or simple penalized least squares

(Wood 2004).

For more details, the reader is referred toWood (2006, 2017).

2) MULTIVARIATE ADAPTIVE REGRESSION SPLINES

MARS was introduced by Friedman (1991) as a flexible

nonparametric regression approach able to deal with high-

dimensional data. The MARS model f(X) can be seen as a

flexible extension of GAM, in that it is expressed as a linear

combination of basis functions and their interactions as
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f (X)5b
0
1 �

r

n51

b
n
B

n
(X) , (6)

where b0 is the intercept, and bn are regression coefficients of

the basis functions [Bn(X)]. In the MARS model, the Bn(X)

terms can take one of the following forms: (i) a constant (just

one term) which represent the intercept, (ii) a linear spline

functions on a single variable Xj called hinge function, i.e., of

the form hm(Xj)5 (tm 2 Xj)1 or hm(Xj)5 (Xj 2 tm)1, where t

is a knot, and (iii) a products of two or more hinge functions,

e.g., Bn(X)5 hm(Xj)hm0 (Xk) where j 6¼ k. The latter represent

interaction between two or more variables. The Bn(X) are

defined in pairs and separated by a knot which represents an

inflection point along the range of a given explanatory variable

(see Fig. 1). Allowing the product of several linear spline terms

hm(Xj) 5 (tm 2 Xj)1 as basis functions further allows the in-

tegration of interaction in the model, an aspect GAMs are not

well designed for.

In mathematical terms, the hinge functions hm(Xj) are de-

fined as (Rounaghi et al. 2015)

(t2X
j
)
1
5

�
t2X

j
, if t.X

j

0, otherwise
, (7)

(X
j
2 t)

1
5

�
X

j
2 t, if X

j
. t

0, otherwise
, (8)

where t is the knot position.

The main difference of MARS with GAM is in the estima-

tion algorithm. Where the spline bases are defined a priori in

GAM, they are iteratively constructed in MARS, adapting

hence to the data. Indeed, building the model in (6) is carried

out through two phases: (i) a forward addition of linear spline

terms [i.e., of the form (7) and (8)] to build a large model and

(ii) a backward deletion to delete irrelevant terms. The forward

phase begins with an empty model containing only the inter-

cept b0. The Bn coefficients are then iteratively added to the

model, each time choosing the variable and knot yielding

the largest decrease in the residual error of the model. This

process of adding Bn coefficients continues until the model

reaches some predetermined maximum number, leading to a

large model which may overfit the data. A backward deletion

phase is then performed to improve the model performance by

removing the less significant Bn coefficients until obtaining the

best submodels. Comparison of submodels is made based on

the generalized cross validation (GCV). Figure 2 illustrates the

details of the MARS model algorithm.

Another interesting feature of MARS is the assessment of

the variable importance for the prediction of the response.

Variable importance can be measured in two different ways:

(i) the number of submodels that include the variable, or (ii)

the increase in GCV caused by deleting the considered vari-

ables from the final MARS model (e.g., Roy et al. 2018).

3. Methodology

a. Regional models

In this study, the methods presented in section 2 for

neighborhood delineation (CCA and ROI) are used in com-

bination with the regional estimation models GAM and

MARS for transfer of hydrological information. As men-

tioned in section 1, other evaluated models are obtained by

applying the GAM and MARS using all stations, i.e., without

defining any neighborhoods. Table 1 summarizes all six re-

sulting combinations.

The two most commonly used neighborhood approaches,

the CCA and the ROI (Ouarda 2016), are applied to the DHR

using two sets of variables. For these methods, the relevant

variables are selected based on their correlation degree with

the hydrological variables.

Considering the classical procedures used to define the

threshold in ROI and CCA, the density of stations in the

neighborhoods can vary considerably from one region to

another. Indeed, for a given fixed threshold, stations located

near the center of the cloud points defined by the canonical

space for CCA or the Euclidean space for ROI will have more

stations within their neighborhoods and vice versa (Leclerc

and Ouarda 2007). Since, the sample may affect the accuracy

of the estimates obtained by regressionmodels, it was decided

that for each target station, the size of the region is increased

until a selected optimal size is reached. The optimal number

of stations to be considered in the DHR step is chosen based

on the optimization procedure of Ouarda et al. (2001). The

optimal number of sites in the neighborhood is the one that

FIG. 1. Knots and linear splines for a simple example of MARS.
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minimizes a given performance criterion of the log-linear

model applied in each neighborhood.

MARS is fitted using the R package ‘‘earth’’ (Milborrow

2018). The application of MARS needs the tuning of three

main parameters (see Fig. 2): the maximum number of terms in

the model in the forward phase (Nk), the degree of interaction

(degree), and the maximum number of terms in the backward

phase (N_prune). A range of values of these parameters was

tested and evaluated in order to optimize them based on the

GCV, the residual sum of squares (RSS), and the coefficient of

determination (R2) criteria of the fitted models.

GAM is also implemented in R, through the package

‘‘mgcv’’ (Wood 2006). The thin plate regression spline is used

in this study as basis bji in the smoothing function fi in (5). The

latter is selected due to its advantages, i.e., low calculation

time, flexibility, and fewer number of parameters compared to

FIG. 2. Graph of MARS modeling process.
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other smoothing functions (Wood 2003). The used link func-

tion g in (4) is the identity function because of the approxi-

mately normal log-transformed quantiles such as considered in

Ouali et al. (2017).

Different physio-meteorological variables are considered in

each regional model. A backward stepwise approach is applied

in this study to select the relevant explanatory variables to be

used in each RE models (GAM and MARS). This method is

presented in the next section.

b. Variable selection

The backward stepwise selection procedure is applied in this

work to select the optimal explanatory variables as in Ouarda

et al. (2018) and Chebana et al. (2014). It consists in a pro-

gressive deleting of the least effective variables from an initial

full model containing all available variables. At each step, the

removed variable is the one having either the highest p value

for the null hypothesis that the smooth term forGAM is zero or

those whose consideration yields the most significant increase

in the GCV score of the model for MARS.

Note that the MARS algorithm naturally includes a variable

selection feature since it builds a sparse model and a variable

for which no term is added is by default discarded. This is not

the case for GAM within which an automatic backward step-

wise procedure was specially developed for this study.

c. Validation

For each RFA combination in Table 1, performances are

evaluated using a leave-one-out cross validation, commonly

called jackknife procedure in the field of hydrology. It consists

of temporarily deleting each site to consider it the target one

and perform RE. This process is repeated for each gauged site.

Then, the regional estimate is compared to its observed values.

Note that, in statistics, the validation with the jackknife tech-

nique is carried out on the retained data, not on the data re-

moved as in the leave-one-out cross validation (Quenouille

1949). However, we will retain the jackknife term for ease of

presentation.

Based on the jackknife procedure, several standard perfor-

mance criteria are used to evaluate the prediction power of

each regional model (e.g., Ouali et al. 2016). First, the Nash

criterion (NASH) gives a global evaluation of the prediction

quality. Second the root-mean-square error (RMSE) provides

information about the accuracy of the prediction in an absolute

scale, and the relative RMSE (RRMSE) removes the impact of

each site’s order of magnitude from the RMSE computation.

Finally, the bias (BIAS) and the relative bias (RBIAS)

provide a measure of the magnitude of the systematic overes-

timation or underestimation of a model.

4. Case study and datasets

The dataset considered in the present paper consists in 151

hydrometric stations located in the southern part of the prov-

ince of Quebec, Canada (Fig. 3). Two versions of the datasets

with different variables are considered. The first is a standard

one (STA) with only well-known variables used in previous

RFA studies (e.g., Shu et al. 2007; Chebana et al. 2014;

Durocher et al. 2016; Ouali et al. 2016; Wazneh et al. 2013,

2015, 2016). Note that geographical coordinates of the stations

are considered instead of the geographical coordinates of the

centroids. The second is an extended dataset (EXTD) com-

bining STA with less common variables characterizing the

drainage network systems. Table 2 lists all variables con-

sidered as well as whether they are in the EXTD dataset and

thorough definitions of the new variables can be found in,

for example, Adhikary and Dash (2018). These new vari-

ables are calculated based on drainage networks extracted

using the D8 approach implemented in ArcGIS (Arc Hydro)

using the digital elevation models (DEMs) (Jenson and

Domingue 1988; O’Callaghan and Mark 1984; Tarboton

et al. 1991). This method consists of calculating the flow

direction and the flow accumulation layers based on the direc-

tion of the steepest slope among the eight neighbors of a given

DEM. Using this information, the drainage networks can

be defined considering a constant threshold value which repre-

sents the stream head locations (O’Callaghan and Mark 1984).

TABLE 1. Adopted regional models.

Step

Regional model DHR RE

STA/EXTD

ALL/GAM ALL (all stations) GAM

ALL/MARS ALL (all stations) MARS

CCA/GAM CCA GAM

CCA/MARS CCA MARS

ROI/GAM ROI GAM

ROI/MARS ROI MARS

FIG. 3. Geographical location of the studied sites in the southern

part of the province of Quebec, Canada.
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Descriptive statistics of the new variables used in the EXTD

dataset (Msilini et al. 2020, manuscript submitted to J. Hydrol.)

are given in Table 3. In both datasets the considered hydrolog-

ical response variables are at-site specific flood quantiles, chosen

to match the specific return periods of 10, 50, and 100 years.

These quantiles are thus denoted by QS10, QS50, and QS100.

To ensure the convergence of theMahalanobis distance to a x2

distribution in CCA, note that the logarithmic transformation is

used for the following variables to achieve approximate normal-

ity: AREA, MBS, MATP, DDBZ, and RT and a square root

transformation for PLAKEandRC.After transformation normal

Q–Q plot indicate that all variables are approximately normal.

5. Results and discussion

a. Region delineation with CCA and ROI

The CCA and the ROI are applied to the DHR using two

sets of variables. The first set contains variables from STA,

which are the area (AREA), mean basin slope (MBS), per-

centage of the area occupied by lakes (PLAKE), mean annual

total precipitation (MATP), mean annual degree days below

08C (DDBZ), and the longitude of the centroid of the basin

(LONGC). The second one includes variables from the EXTD,

namely, PLAKE, MATP, DDBZ, LONGC, texture ratio

(RT), and circularity ratio (RC).

The obtained optimum sizes of the neighborhood are nopt

(STA) 5 85 sites and nopt (EXTD) 5 78 sites according to the

RRMSE for the CCA method. For the ROI approach, we

obtain nopt (STA) 5 54 sites and nopt (EXTD) 5 44 sites ac-

cording to the same criterion. Thus, these neighborhood sizes

are used for each target station.

b. Selection of optimal variables

The selection of significant explanatory variables is applied

for each specific quantile (QS10, QS50, and QS100) and for each

estimation model (GAM andMARS). Table 4 summarizes the

final variables for each dataset (STA and EXTD). Following

the application of the backward technique with GAM and

TABLE 2. Variables used in the STA and the EXTD.An asterisk indicates variables considered in the standard dataset (STA). Plus signs

indicate variables considered in the extended dataset (EXTD). The variables considered in the neighborhoods and their transformations

are presented in bold.

QST Specific quantile associated to the return periodT

(T 5 10, 50, and 100 years)

* 1

AREA Basin area * 1 Log
MCL Main channel length * 1

MCS Main channel slope * 1

MBS Mean basin slope * 1 Log

PFOR Percentage of the area occupied by forest * 1
PLAKE Percentage of the area occupied by lakes * 1

ffiffi�p
MATP Mean annual total precipitation * 1 Log

MALP Mean annual liquid precipitation * 1
MASP Mean annual solid precipitation * 1

MALPS Mean annual liquid precipitation (summer–fall) * 1

DDBZ Mean annual degree days below 08C * 1 Log

LATC Latitude of the centroid of the basin * 1
LONGC Longitude of the centroid of the basin * 1 —

RT Texture ratio 1 Log

RC Circularity ratio 1
ffiffi�p

MRL Mean stream length ratio 1
MRB Mean bifurcation ratio 1

WMRB Weighted mean bifurcation ratio 1

rWMRB RHO WMRB coefficient 1

DD Drainage density 1
FS Stream frequency 1

IF Infiltration number 1

RN Ruggedness number 1
PN1 Percentage of first-order streams 1

PL1 Percentage of first-order stream lengths 1

TABLE 3. Descriptive statistics of new physiographical variables.

Variable Min Mean Max Std dev

DD (km21) 2.41 2.96 4.73 0.34

FS (km22) 7.34 9.74 11.86 0.97

IF (km23) 17.69 29.26 67.09 6.56

RT (km21) 8.09 32.11 131.84 21.41

MRB 1.67 2.40 17.27 2.08

WMRB 1.95 2.08 4.14 0.24

MRL 0.85 0.97 1.11 0.05

rWMRB 0.23 0.47 0.55 0.04

RN 0.20 1.89 7.48 1.03

RC 0.06 0.18 0.46 0.08

PN1 (%) 50.12 50.41 52.50 0.30

PL1 (%) 44.09 52.89 66.36 4.10
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MARS, we note the selection of the same new variables for

the two models (RN, MRL, and DD). The definition of these

variables can be found, for example, in Adhikary and Dash

(2018). For each quantile and for each model, different

combinations of variables are selected. The variables that

seem to be the most important are AREA, PLAKE, MCL,

and LONGC.

c. MARS model results

Figure 4 shows the variable importance graph for QS100
obtained using the EXTD (we present only the results of QS100
to avoid repetitions). The variable with the most influence for

the QS100 is the percentage of the area occupied by lakes,

PLAKE. Indeed, lakes act as a sponge absorbing the excess

water during extreme events. Thus they may have a significant

effect on flood peaks.

Figure 5 shows the GCV R2 (GRSq) value for the QS100
predictions versus the number of terms in the final MARS

model. The GCV R2 statistic is equivalent to the ordinary R2

statistic calculated with the variance for error replaced with the

GCV statistic. It allows quantifying the goodness of fit for

models that use unobserved data. The vertical dashed line at 12

indicates the optimal number of terms retained wheremarginal

increases in GCV R2 are less than 0.001. The 12 final terms

include seven variables in this case. Five terms are related to

interaction effects.

d. Comparison between MARS and GAM models

Table 5 shows the jackknife results for each model combi-

nation. The comparison of GAM and MARS models confirms

that the simple linear spline fitting generated by MARS cap-

tures more information from the EXTD than the more so-

phisticated smoothing functions used in GAM. Indeed, MARS

adds the terms in an iterative way leading to a simple and

performant model including the effects of interactions. This

model performs well with the ROI, which contains a smaller

number of stations than CCA. Thus, based on the results of our

case study MARS seems applicable in small neighborhoods

even with complex terms (interaction effects) and able to give

good predictions with fewer stations than GAM.

The response functions fitted by GAM and MARS models

for selected explanatory variables are given in Fig. 6. It can be

seen that the smoothing functions fitted by MARS approxi-

mate closely the more continuous smooth curves fitted by

GAM, in a simpler way. This result has been observed by

Leathwick et al. (2006) in a comparative study made between

GAM and MARS applied in the field of ecology. The smooth

curves generated by GAM add degrees of freedom to the

TABLE 4. Explanatory variables selected for the various regression models.

Regional models Quantile Selected predictor variables

ALL/GAM/STA, CCA/GAM/STA, ROI/GAM/STA QS10 AREA, MBS, PLAKE, MALP, MASP, DDBZ, LONGC

QS50 AREA, MCL, MBS, PLAKE, MALP, DDBZ, LONGC

QS100 AREA, MCL, MBS, PLAKE, MALP, DDBZ, LONGC

ALL/GAM/EXTD, CCA/GAM/EXTD, ROI/GAM/EXTD QS10 MCL, PLAKE, MATP, DDBZ, DD, RN, LATC

QS50 MCL, PLAKE, MALP, DDBZ, DD, MRL, LONGC

QS100 MCL, PLAKE, MALP, DDBZ, DD, MRL, LONGC

ALL/MARS/STA, CCA/MARS/STA, ROI/MARS/STA QS10 PLAKE, LONGC, MCL, LATC, MALP, AREA, MBS

QS50 PLAKE, LONGC, MCL, LATC, PFOR, MASP

QS100 PLAKE, LONGC, MCL, LATC, PFOR, MASP

ALL/MARS/EXTD, CCA/MARS/EXTD, ROI/MARS/EXTD QS10 PLAKE, LONGC, MCL, DD, MRL, MALP

QS50 PLAKE, LONGC, MCL, DD, MRL, MASP

QS100 PLAKE, LONGC, MCL, LATC, DD, RN, MASP

FIG. 4. Variable importance while predicting QS100. The red line represents the variation of

the square root GCV values caused by the removal of a given variable from the MARS model

during the backward phase. The black line represents the variation of the number of submodels

including a given variable.
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model which makes it relatively more complex. This may be

the reason for the better prediction results obtained by MARS

than GAM.

Figure 7 illustrates the interaction effects between some

explanatory variables fitted byGAM andMARSmodels. Note

that we considered the same interactions automatically iden-

tified by MARS to be able to make the comparison. The in-

teraction surface generated by both models is also close. GAM

gives more continuous and complex interaction effects, which

lead to a large model with a large number of coefficients. This

makes it difficult or impossible to integrate the interaction

effects with GAM if we have a large number of explanatory

variables in the model. For example, for the QS100, the inte-

gration of the same interactions identified by MARS to GAM

considering the same variables gives a model with 79 coeffi-

cients, versus only 12 using MARS. In addition, MARS

searches for and integrates interaction effects automatically

into the model, which allows obtaining flood quantile estimates

overall better than those obtained by GAM. We take as a

simple example of interaction the first effect illustrated in

Fig. 7, which represents the predicted response (specific

quantile) as DD and LONGC vary. It can be seen that the

LONGC affects little the hydrological variable level unless the

DD is high where a nonlinear effect is seen.

e. Comparison of regional models

According to Table 5 (see above), the highest NASH values

(0.80) and the lowest RRMSE values (28.30% for QS100) are

given by the ROI/MARS/EXTD, which leads to the most ac-

curate estimates compared to all other combinations. It can

also be seen that, with ALL, MARS has a comparable per-

formance to GAM considering both databases. However,

using the neighborhoods, especially the ROI, MARS overall

outperforms GAM in terms of RRMSE and RBIAS criteria.

This may be attributable to the flexibility of MARS and its

generalization ability in small size neighborhoods.

FIG. 5. MARS model selection for QS100. The gray line and the red dashed line represent,

respectively, the variation of the GCV R2 (GRSq) and the R2 (RSq) values in the backward

phase. For this model, 12 terms were retained, which are based on seven predictors (nbr preds).

TABLE 5. Jackknife validation results (STD and EXTD). Best results are in bold.

STA EXTD

ALL CCA ROI ALL CCA ROI

Quantile GAM MARS GAM MARS GAM MARS GAM MARS GAM MARS GAM MARS

NASH QS10 0.774 0.788 0.797 0.771 0.829 0.866 0.802 0.820 0.837 0.797 0.865 0.859

QS50 0.745 0.648 0.762 0.749 0.796 0.785 0.754 0.742 0.775 0.748 0.816 0.802

QS100 0.715 0.643 0.723 0.679 0.762 0.752 0.725 0.625 0.742 0.682 0.791 0.803

RMSE (m3 s21 km22) QS10 0.060 0.058 0.057 0.060 0.053 0.047 0.056 0.054 0.051 0.057 0.047 0.047
QS50 0.089 0.104 0.086 0.088 0.080 0.081 0.087 0.089 0.080 0.088 0.076 0.076

QS100 0.107 0.119 0.105 0.113 0.097 0.099 0.105 0.122 0.101 0.112 0.091 0.089

RRMSE (%) QS10 40.937 40.781 37.163 35.316 34.690 25.950 34.970 32.065 30.619 30.435 27.974 24.423

QS50 49.420 51.552 43.333 43.086 39.365 30.439 36.659 35.214 35.086 35.282 27.818 29.210

QS100 51.832 47.953 45.678 42.298 41.661 37.775 38.630 41.215 37.416 38.818 29.235 28.298

BIAS (m3 s21 km22) QS10 0.005 0.004 0.006 0.004 0.003 0.007 0.005 0.005 0.007 0.008 0.004 0.008

QS50 0.008 0.008 0.015 0.014 0.006 0.009 0.008 0.006 0.015 0.015 0.009 0.009

QS100 0.011 0.008 0.020 0.014 0.009 0.011 0.011 0.007 0.020 0.016 0.012 0.001

RBIAIS (%) QS10 25.461 24.650 25.555 25.095 24.177 21.682 24.179 24.003 23.871 22.818 22.836 20.250

QS50 27.047 28.563 25.632 25.778 25.487 23.154 24.954 24.862 23.513 23.514 22.892 22.176

QS100 27.663 28.451 25.780 26.291 25.816 25.275 25.472 25.767 23.714 24.465 23.172 23.583

DECEMBER 2020 MS I L I N I E T AL . 2785

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/12/2777/5018257/jhm

d190213.pdf by I.N
.R

.S. user on 27 N
ovem

ber 2020



FIG. 6. Examples of smoothing functions produced by the GAM andMARSmodels for

some explanatory variables. Dashed lines represent the 95% confidence intervals (CI). A

Bayesian approach to variance estimation is used to calculate the CI for GAM. For

MARS, the approach considered to identify the CI for MARS is the one that we can use

for a linear regressionmodel as it is simply a linear regression of linear basis functions. All

the terms are estimated with a sum to zero constraint, leading to lower uncertainty as-

sociated with the mean in the plots.
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FIG. 7. Examples of the multivariate effects of some explanatory variables produced by

the GAM and MARS models on the response variable (interactions).
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Figure 8 illustrates the relative error, which is the most im-

portant criterion (Hosking and Wallis 2005), as a function of

the sites ordered according to their area associated to the best

models (ROI/MARS/EXTD and ROI/GAM/EXTD). One

can notice that, overall, MARS with the EXTD performs

better than GAM. The figure also shows that the performances

at the level of extreme size basins are much worse than those

obtained at the level of medium size basins.

Figure 9 presents the differences between relative errors of

MARS and GAM calculated using ROI/EXTD. One can no-

tice that, in terms of RRMSE, MARS outperforms GAM in 84

sites out of 151, which represents 56% of the total number of

sites. Accordingly, MARS is shown to be a simple performant

model that can be considered as an alternative RE model.

6. Conclusions

The aim of this study is to introduce MARS in the RFA of

extreme hydrological variables and to compare its performance

to GAM. The MARS model is able to model complex rela-

tionship between physio-meteorological variables, including

variables dealing with drainage network characteristics, and

flood quantiles at ungauged sites.

MARS is hereby compared to the GAM, which is gaining

popularity in RFA and is one of the best performing models.

Results show that slightly better flood quantile estimates are

obtained from regional models that combine MARS with the

EXTD including a STA with additional variables dealing with

drainage network proprieties. Results indicate also that better

performances are obtained with the ROI which includes low

density of stations than CCA. This suggests that MARS is able

to transfer hydrological information adequately even with

fewer data than GAM. Further efforts are required to gener-

alize this conclusion and to evaluate the benefits of MARS in

other study areas and with other hydrological variables.

Although MARS is an effective and simple tool for esti-

mation that can be used in RFA, there are some constraints

such as the maximum number of terms and the maximum

FIG. 8. Relative errors associated to the at-site quantile QS100 calculated using ROI/GAM/EXTD and

ROI/MARS/EXTD.

FIG. 9. Relative errors differences associated to the at site quantile QS100 calculated between MARS and GAM.

The considered combinations are ROI/GAM/EXTD and ROI/MARS/EXTD.
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allowable degree of interaction in the forward pass that have to

be specified by the user. These depend on the problem at hand

and should be considered carefully. In addition, MARS does

not cope well with missing data and, like many machine

learning algorithms, is prone to overfitting. Note, however, that

the backward deletion phase is meant to address this drawback.

Aside from the abovementioned shortcomings, MARS is

easy-to-use as shown in this work. It is able to addresses the

issues of high number of variables, nonlinearity, and interac-

tions involved in the hydrological phenomena. This yields flood

quantile estimates that compete with those obtained from

GAM, while being simpler and more applicable to smaller

datasets. Flood quantiles represent important information that

is used in the design of hydraulic structures (e.g., dams). The

construction of these structures is very expensive. The avail-

ability of simple and sophisticated tools for the reliable esti-

mation of flood quantiles is crucial for hydraulics engineers.

In this work we considered linear neighborhood approaches

(CCA and ROI), which are the most used methods in RFA.

Future efforts can focus on the assessment of the performance

of the MARS model in combination with nonlinear neighbor-

hood approaches such as the nonlinear canonical correlation

analysis (Ouali et al. 2016) and the nonlinear neighborhood

based on the statistical depth function (Wazneh et al. 2016).
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APPENDIX

Abbreviations

ANN Artificial neural network

AREA Basin area

BH Basin relief

BIAS Mean bias

CCA Canonical correlation analysis

DD Drainage density

DDBZ Mean annual degree days below 08C
DEM Digital elevation model

DHR Delineation of homogenous regions

Edf Estimated smooth degree of freedom

EXTD Extended dataset

FS Stream frequency

GAM Generalized additive model

GCV Generalized cross validation

IF Infiltration number

LATC Latitude of the centroid of the basin

LONGC Longitude of the centroid of the basin

MALP Mean annual liquid precipitation

MALPS Mean annual liquid precipitation (summer–fall)

MARS Multivariate adaptive regression splines

MASP Mean annual solid precipitation

MATP Mean annual total precipitation

MBS Mean basin slope

MCL Main channel length

MCS Main channel slope

MRB Mean bifurcation ratio

MRL Mean stream length ratio

NASH Nash efficiency criterion

NL-CCA Nonlinear canonical correlation analysis

PFOR Percentage of the area occupied by forest

PL1 Percentage of first-order stream lengths

PLAKE Percentage of the area occupied by lakes

PN1 Percentage of first-order streams

QST Specific quantile associated to the return period T

R2 Coefficient of determination

RB Bifurcation ratio

RBIAS Relative mean bias

RC Circularity ratio

RE Regional estimation

RFA Regional frequency analysis

RL Stream length ratio

RMSE Root-mean-square error

RN Ruggedness number

ROI Region of influence

RRMSE Relative root-mean-square error

RSS Residual sum of squares

RT Texture ratio

STA Standard dataset

WMRB Weighted mean bifurcation ratio
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