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A. Data collection 

A.1. Mortality 

We obtained mortality data from the Multi-City Multi-Country (MCC) database. The current 

analysis was limited to cities that have air pollution, temperature, and urban characteristics 

indicator data in the same time frame as the PM2.5 composition dataset. It includes a total of 210 

urban areas in 16 countries/regions: Australia (3 cities, 2000–2009), Canada (19 cities, 1999-2015), 

Chile (4 cities, 2008–2014), China (3 cities, 2013–2015), Estonia (1 city, 2008–2015), Finland (1 

city, 1999–2014), Germany (11 cities, 2004-2015), Greece (1 city, 2007–2010), Japan (36 cities, 

2011–2015), Mexico (3 cities, 2003–2012), Portugal (1 city, 2004–2017), Spain (15 cities, 2004–

2014), Sweden (1 county, 2001–2010), Switzerland (4 cities, 1999–2013), United Kingdom (25 

cities, 1999–2016), and United States (82 cities, 1999–2006). 

In the present study, mortality is represented by daily counts of either non-external causes 

(International Classification of Diseases, ICD-9: 0-799; ICD-10: A00-R99) or, where not available, 

all-cause only. Countries/regions with mortality from non-external causes include: Australia, China 

and Spain. Countries/regions with mortality from total causes include: Canada, Chile, Estonia, 

Finland, Germany, Greece, Japan, Mexico, Portugal, Switzerland, Sweden, United Kingdom, and 

United States. 

A.2. Exposure 

We obtained daily 24-h average concentrations of PM2.5 in 210 cities. The geographic distributions 

of cities with PM2.5 data and the corresponding annual-mean concentrations during respective study 

periods are shown in Figure 1 (main manuscript). We also collected daily mean temperature for 

the 210 cities in the analysis. In brief, measurements for air pollutants were obtained from fixed 
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site monitoring networks operated by local authorities. The majority of monitors were located in 

urban areas, and only those daily measurements reporting above 75% of hourly data were included. 

On average, there were 4.7 monitors per city (ranging from 1 to 28), and measurements were 

averaged among all available monitors within one city to represent the exposure levels of the 

general population. In the main statistical analyses, we excluded the highest 5% and lowest 5% of 

PM2.5 measurements to avoid the potential consequences in relation to inaccuracies driven by the 

outlying data points.  

A.3. PM2.5 composition 

We extracted annual concentration of sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), black 

carbon (BC), organic carbon (OC), mineral dust (DUST) and sea salt (SS) for the 210 selected 

MCC cities from the V4.GL.03 dataset produced by the Dalhousie University Atmospheric 

Composition Analysis Group and freely available at 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140. This dataset is produced at a 1 x 1 km grid 

across the world by integrating information from several satellite products of aerosol optical depth 

(AOD) and the GEOS-CHEM chemical transport model, corrected by ground measurement. 

Validation of the dataset in North America indicates good agreement between reconstructed data 

and monitor data, with cross-validated R2 between 0.57 and 0.96 (van Donkelaar et al., 2019). As 

the methodology is constant across regions with only monitor data for validation changing, 

reconstruction performances are expected to be similar for the rest of the dataset. 

To link the components to MCC cities, all grid points of the composition dataset falling inside a 

circle of 10 km radius around the city reference location were aggregated. Obtained annual 

concentrations were then divided by the sum of all components for each year and location to obtain 

proportion of components. Note that we divided by the sum of components rather than the 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
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measured total PM2.5 mass to account for the small reconstruction error in the sum, as the provided 

classification is supposed to be comprehensive. The annual compositions were then averaged using 

compositional data analysis tools to obtain single composition representing the whole period. 

B. Socio-economic and environmental indicators PCA 

eTable 1 details the socio-economic and environmental city-specific indicators considered in the 

analysis. The Scree plot of eFigure 1 shows that the two first components include 67% of the 

indicators’ variance. According to the biplot, the first principal components (PC) represents 

environmental indicators by opposing average city greenness (E_GR_AV00 and E_GR_AV14) as 

well as temperature range (totalrange) to average temperature of the city (avgtmean). The second 

component is mainly driven by Built-up area proportion (B00 and B15) but also represents the 

proportion of people 65 years and older (oldpopprop). Finally, note that GDP is well represented 

by these two components. 

eTable 1: Description of socio-economic and environmental indicators used in the PCA. 

Name Description Time frame Source 

oldpopprop 
Proportion of people age 65 

years and above 
2000 OECD Regional and 

Metropolitan 

Database GDP 
Gross domestic product per 

capita (in USD) 
Mean 2001-2010 

avgtmean Average temperature City specific 

availability 
MCC study database 

totalrange Total temperature range 

E_GR_AV00 Average greenness 

estimated through NDVI 

2000 

GHS Urban Center 

Database 

E_GR_AV14 2014 

B00 
Total Built-up area 

2000 

B15 2015 
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eFigure 1: Principal component analysis of socio-economic and environmental indicators. 

Scree plot showing the proportion of variance captured by each component (left) and biplot 

showing cities scores and indicators representation on the first two principal components. 

C. Meta-regression residuals 

The histogram of eFigure 2 indicates that, except for few outliers with negative residuals (three 

Spanish cities as outlined in the main text), the residuals are roughly normal. In addition, according 

to eFigures 3 and 4, residuals do not indicate consistent bias, nor obvious heteroscedasticity. 

Therefore, the basic assumptions of a linear regression such as the second-stage meta-model are 

appropriate. 
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eFigure 2: Distribution of the residuals.  

 

eFigure 3: Residuals of the meta-regression model clustered by the region of the city. 
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eFigure 4: Residuals of the meta-regression model versus the proportion of each component. 
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D. Alternative representation of results 

 

eFigure 5: Predicted relative risks (RRs) for different proportions of the components while 

keeping the other sub-composition constant. The predicted RR is associated to an increase of 

10μg/m3 of PM2.5. Thick lines indicate the range of observed values for each component, while 

thin dashed lines indicate extrapolations. 
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eFigure 6: Ternary plots of predicted RR for different sub-compositions. Black dots represent 

the observed values. 

E. Correlation between components and total PM2.5 

 

eFigure 7: Variation matrix of the PM2.5 composition. The upper side colour and circle size 

represent the values displayed on the lower side of the diagonal. Variation between components 

𝒙𝒋 and 𝒙𝒌 is defined as 𝒗𝒂𝒓(𝒍𝒐𝒈(𝒙𝒋/𝒙𝒌)). A large variation value indicates that components 

tend to vary against each other. For instance, the large variation values associated to DUST 

mean that when it is present, other components tends to represent low proportions.  
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eTable 2: Correlation between components and total PM2.5. The first line display the 

correlation between their absolute value and the total (the sum of components). The second 

line displays the correlation between the relative proportion and mean PM2.5 computed in each 

city. 

 SO4 NH4 NO3 BC OC SS DUST 

Absolute 0.77 0.90 0.59 0.72 0.78 -0.04 0.33 

Relative 0.03 0.13 -0.04 0.01 -0.02 -0.08 -0.07 

 


