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During infectious disease epidemics, an important question is whether
cases travelling to new locations will trigger local outbreaks. The risk of
this occurring depends on the transmissibility of the pathogen, the suscepti-
bility of the host population and, crucially, the effectiveness of surveillance in
detecting cases and preventing onward spread. For many pathogens, trans-
mission from pre-symptomatic and/or asymptomatic (together referred to as
non-symptomatic) infectious hosts can occur, making effective surveillance
challenging. Here, by using SARS-CoV-2 as a case study, we show how
the risk of local outbreaks can be assessed when non-symptomatic trans-
mission can occur. We construct a branching process model that includes
non-symptomatic transmission and explore the effects of interventions
targeting non-symptomatic or symptomatic hosts when surveillance
resources are limited. We consider whether the greatest reductions in local
outbreak risks are achieved by increasing surveillance and control targeting
non-symptomatic or symptomatic cases, or a combination of both. We find
that seeking to increase surveillance of symptomatic hosts alone is typically
not the optimal strategy for reducing outbreak risks. Adopting a strategy
that combines an enhancement of surveillance of symptomatic cases with
efforts to find and isolate non-symptomatic infected hosts leads to the largest
reduction in the probability that imported cases will initiate a local outbreak.
1. Introduction
Emerging epidemics represent a substantial challenge to human health world-
wide [1–4]. When cases are clustered in specific locations, two key questions
arise: (i) will exported cases lead to local outbreaks in new locations? and
(ii) which surveillance and control strategies in those new locations will
reduce the risk of local outbreaks?

Branching process models are used for a range of diseases to assess whether
cases that are newly arrived in a host population will generate a local outbreak
driven by sustained local transmission [5–11]. These models can also be used to
predict the effectiveness of potential control interventions. For example, early in
the coronavirus disease 2019 (COVID-19) pandemic, Hellewell et al. [12] used
simulations of a branching process model to predict whether new outbreaks
would fade out under different contact tracing strategies. Thompson [13]
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Figure 1. The branching process model used in our analyses. (a) Schematic showing the different event types in the branching process model. The parameters of
the model are described in the text and in table 1. (b) The relationship between the surveillance intensification effort (ρ) and the proportional reduction in the
expected time to isolation ( f (ρ, δ)), shown for different values of the parameter δ (solid lines). The parameter δ∈ (0, 1) represents the upper bound of f (ρ, δ)
(dotted lines). This general functional relationship between surveillance effort and isolation effectiveness is assumed to hold for surveillance of both
non-symptomatic and symptomatic individuals, although non-symptomatic hosts are more challenging to detect than symptomatic hosts (ε < 1).
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estimated the probability of local outbreaks analytically using
a branching process model and found that effective isolation
of infectious hosts leads to a substantial reduction in the out-
break risk.

A factor that can hinder control interventions during
any epidemic is the potential for individuals to transmit a
pathogen while not showing symptoms. For COVID-19,
the incubation period has been estimated to last
approximately 5 or 6 days on average [14,15], and pre-
symptomatic transmission can occur during that period
[16–20]. In addition, asymptomatic infected individuals
(those who never develop symptoms) also contribute to
transmission [16,21,22].

Motivated by the need to assess the risk of outbreaks out-
side China early in the COVID-19 pandemic, we show how
the risk that imported cases will lead to local outbreaks can
be estimated using a branching process model. Unlike stan-
dard approaches for estimating the probability of a major
epidemic analytically [23–26], non-symptomatic individuals
are included in the model explicitly. By using a function
that characterizes the efficacy of interventions for different
surveillance efforts (denoted f (ρ, δ) in the model), we explore
the effects of interventions that aim to reduce this risk. Under
the assumption that detected infected hosts are isolated effec-
tively, we consider whether it is most effective to dedicate
resources to enhancing surveillance targeting symptomatic
individuals, to instead focus on increasing surveillance for
non-symptomatic individuals or to use a combination of
these approaches.

We show that, when surveillance resources are limited,
the maximum reduction in the outbreak risk almost always
corresponds to a mixed strategy involving enhanced surveil-
lance of both symptomatic and non-symptomatic hosts.
This remains the case even if the surveillance effort required
to find non-symptomatic infected individuals is substantially
larger than the effort required to find symptomatic individ-
uals. This highlights the benefits of not only seeking to find
and isolate symptomatic hosts but also dedicating resources
to detecting non-symptomatic cases during infectious disease
epidemics.
2. Methods
2.1. Model
We consider a branching process model in which infectious indi-
viduals are classified as asymptomatic (A), pre-symptomatic (I1)
or symptomatic (I2). Hosts in any of these classes may generate
new infections. The parameter ξ represents the proportion of
new infections that are asymptomatic, so that a new infection
either involves increasing A by one (with probability ξ) or
increasing I1 by one (with probability 1− ξ).

Pre-symptomatic hosts may go on to develop symptoms
(transition from I1 to I2) or be detected and isolated (so that I1
decreases by one). Symptomatic individuals (I2) can be isolated
(so that I2 decreases by one) or be removed due to recovery or
death (so that again I2 decreases by one). Similarly, asymptomatic
hosts may be detected and isolated or recover (so that A
decreases by one in either case).

A schematic showing the different possible events in the
model is shown in figure 1a. The analogous compartmental
differential equation model to the branching process model
that we consider is given by

dA
dt

¼ j(hbAþ abI1 þ bI2)� 1g

1� f(r1,d)
A� nA,

dI1
dt

¼ (1� j)(hbAþ abI1 þ bI2)� 1g

1� f(r1,d)
I1 � lI1

and
dI2
dt

¼ lI1 � g

1� fðr2,dÞ
I2 � mI2:

The parameters of the model, and the form of the function
f (ρ, δ) that describes how the expected time to isolation is
reduced for a given surveillance effort, are outlined below.

In our model, the parameter β and its scaled counterparts αβ
and ηβ represent the rates at which symptomatic, pre-sympto-
matic, and asymptomatic hosts generate new infections,
respectively. Since we are modelling the beginning of a potential
local outbreak, we assume that the size of the susceptible popu-
lation remains approximately constant and do not track the
depletion of this population. The parameter λ governs the rate at
which pre-symptomatic individuals develop symptoms, so that
the expected duration of the pre-symptomatic period is 1/λ days
in the absence of interventions. Similarly, without interventions,
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the expected durations of the symptomatic and asymptomatic
infectious periods are 1/μ days and 1/ν days, respectively.

The baseline rate at which symptomatic individuals are
detected and isolated is determined by the parameter γ. Assuming
that non-symptomatic individuals aremore difficult to detect than
symptomatic individuals, we take the analogous quantity for non-
symptomatic hosts to be εγ, where the scaling factor ε < 1 reflects
the fact that interventions targeting non-symptomatic hosts are
likely to be less effective for the same surveillance effort. We
assume that the sensitivity of surveillance is identical for pre-
symptomatic and asymptomatic individuals and therefore use
the same isolation rate for both of these groups.

The parameters ρ1 and ρ2 represent the surveillance intensifi-
cation effort targeted at non-symptomatic and symptomatic
hosts, respectively. The function f(r, d) ¼ dr=ð1þ rÞ governs the
proportional reduction in the expected time to isolation for a
given surveillance effort, ρ (for a similar approach in which the
proportion of infectious cases prevented is assumed to be a func-
tion of control effort, see Matthews et al. [27]). The functional
form of f (ρ, δ) is chosen for three main reasons. First, it generates
a reduced expected time to isolation when the surveillance effort
increases. Second, since the proportional reduction in the
expected time to isolation is bounded above by the parameter
δ∈ (0, 1), the isolation rate saturates and cannot increase
indefinitely. Third, the gradient @f=@r decreases with the surveil-
lance effort ρ, meaning that an increase in the surveillance effort
has a greater impact at low surveillance efforts compared to
when this effort is already large [27]. The function f (ρ, δ) is
shown in figure 1b for different values of the parameter δ.

2.2. Reproduction number
The basic reproduction number, R0, represents the expected
number of secondary infections generated by a single infected
individual introduced at the start of their infection into a
fully susceptible population in the absence of intensified
surveillance:

R0 ¼ jhb

nþ eg
þ (1� j)

ab

lþ eg
þ l

lþ eg

b

gþ m

� �
:

This expression is the sum of the expected number of trans-
missions from a host who begins in the asymptomatic class
and from a host who begins in the pre-symptomatic infectious
class, weighted by the respective probabilities ξ and 1− ξ
that determine the chance that the host experiences a fully
asymptomatic course of infection. The expected number of trans-
missions from a host who begins in the pre-symptomatic
infectious class comprises transmissions occurring during the
incubation period and transmissions occurring during the symp-
tomatic period, accounting for the possibility that the host is
isolated before developing symptoms.

The proportion of infections arising from pre-symptomatic
hosts in the absence of intensified surveillance is then given by

Kp ¼ (1� j)a=(lþ eg)
jh=ðnþ egÞ þ (1� j)[aþ l=ðgþ mÞ]=ðlþ egÞ , ð2:1Þ

and the equivalent quantity for asymptomatic hosts is given by

Ka ¼ jh=(nþ eg)
jh=ðnþ egÞþ (1� j)[aþl=ðgþmÞ]=ðlþ egÞ : ð2:2Þ
2.3. Baseline values of model parameters
Since this study was motivated by the need to estimate outbreak
risks outside China in the initial stages of the COVID-19 pan-
demic, we used a baseline set of parameter values in our
analyses that was informed by studies conducted during this pan-
demic (table 1). Where possible, these parameter values were
obtained from the existing literature. However, we also performed
sensitivity analyses to determine how our results varied when the
parameter values were changed (see electronic supplementary
material, text S3 and figures S3–S12). In table 1, and throughout,
rounded values are given to three significant figures.

The value of the parameter governing the baseline rate at
which symptomatic individuals are isolated, γ, was chosen to
match empirical observations, which indicate that individuals
who seek medical care before recovery or death do so around
4–6 days after symptom onset [35]. Specifically, we assumed
that the period of time to the first medical visit could be used
a proxy for the time to isolation, and chose γ so that the expected
time period to isolation conditional on isolation occurring during
the symptomatic period was given by 1=ðgþ mÞ ¼ 4:6 days [35].
This is different to the time period that we refer to as the expected
time to isolation for symptomatic hosts, which is 1/γ days
(see Methods).
2.4. Probability of a local outbreak
For stochastic simulations of compartmental epidemiological
models starting from a small number of hosts infected initially,
there are generally two qualitatively different types of beha-
viours. The pathogen may fade out rapidly, or case numbers
may begin to increase exponentially (only starting to fade out
once the number of susceptible individuals has been sufficiently
depleted, unless public health measures are introduced to reduce
transmission). Consequently, running many simulations of those
types of model with R0 larger than but not close to one, the epi-
demic size is distributed bimodally, with the total number of
individuals ever infected falling into one of two distinct ranges
(for a simple example, see electronic supplementary material
figure S1A; see also refs. [39–41]). In that scenario, a natural defi-
nition for the probability of a local outbreak is therefore the
proportion of outbreak simulations for which the total number
of infected individuals falls into the higher of these two ranges.

Here, sincewe are considering the initial phase of potential local
outbreaks, we instead considered a branching process model in
which depletion of susceptibles was not accounted for. If simu-
lations of branching process models are run, then in each
simulation, the pathogen either fades out with few infections or
case numbers generally increase indefinitely. The probability of a
local outbreak starting from a small number of infected hosts then
corresponds to the proportion of simulations inwhich the pathogen
does not fade out quickly and case numbers increase indefinitely
instead. This again provides a natural definition of a local outbreak
since simulations can be partitioned into two distinct sets (for an
example in which simulations of a simple branching process
model are used to calculate the probability of a local outbreak, see
electronic supplementary material, figure S1B).

As an alternative to repeated simulation, we instead use our
branching process model (figure 1a) to perform analytic calcu-
lations of the probability that a single imported infectious host
initiates a local outbreak. To do this, we denote the probability
of a local outbreak not occurring, starting from i pre-sympto-
matic hosts, j symptomatic hosts, and k asymptomatic hosts, by
qi,j,k. Starting from one pre-symptomatic host (so that i = 1 and
j = k = 0), there are four possibilities for the next event. That
host could:

(i) generate a new asymptomatic infection (with probability
ξαβ/[αβ + λ + εγ/(1− f (ρ1, δ))]);

(ii) generate a new pre-symptomatic infection (with prob-
ability (1− ξ)αβ/[αβ + λ + εγ/(1− f (ρ1, δ))]);

(iii) develop symptoms (with probability
λ/[αβ + λ + εγ/(1− f (ρ1, δ))]); or

(iv) be isolated (with probability
[εγ/(1− f (ρ1, δ))]/[αβ + λ + εγ/(1− f (ρ1, δ))]).



Table 1. Parameters of the model and the values used in the baseline version of our analysis.

parameter meaning baseline value justification

R0 expected number of secondary infections

caused by a single infected individual

(when ρ1 = ρ2 = 0)

R0 = 3 within estimated range for SARS-CoV-2 [28–31]

ξ proportion of infections that are asymptomatic ξ = 0.2 [32–34]

β rate at which symptomatic individuals generate

new infections

β = 0.336 days−1 chosen so that R0 = 3

α relative infectiousness of pre-symptomatic

individuals compared to symptomatic

individuals

α = 2.78 chosen so that 48.9% of transmissions arise from pre-

symptomatic hosts (i.e. Kp = 0.489) [16]

η relative infectiousness of asymptomatic

individuals compared to symptomatic

individuals

η = 0.519 chosen so that 10.6% of transmissions arise from

asymptomatic hosts (i.e. Ka = 0.106) [16]

γ isolation rate of symptomatic individuals

without intensified surveillance

γ = 0.0924 days−1 chosen so that 1=ðgþ mÞ ¼ 4:6 days [35]

ε relative isolation rate of non-symptomatic

individuals without intensified surveillance

(compared to symptomatic individuals)

ε = 0.1 assumed; chosen within the range ε∈ (0, 1) (for

different values, see electronic supplementary

material, figure S7)

λ rate at which pre-symptomatic individuals

develop symptoms

λ = 0.5 days−1 [20]

μ recovery rate of symptomatic individuals μ = 1/8 days−1 [36–38]

ν recovery rate of asymptomatic individuals ν = 0.1 days−1 chosen so that, in the absence of interventions, the

expected duration of infection is identical for all

infected hosts (1/ν = 1/λ + 1/μ)

δ upper bound on the fractional reduction in the

time to isolation

δ = 0.8 assumed; chosen within the natural range δ∈ (0, 1)

(for different values, see electronic supplementary

material, figure S11)

ρ1 surveillance intensification effort targeted at

non-symptomatic hosts

ρ1 allowed to vary

in the range

[0, 20]

N/A—range of values explored

ρ2 surveillance intensification effort targeted at

symptomatic hosts

ρ2 allowed to vary

in the range

[0, 20]

N/A—range of values explored

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20201014

4

These probabilities are obtained by considering the rates at
which different possible events occur in the branching process
model. Pre-symptomatic hosts generate new infections at rate
αβ, and these new infections occur in asymptomatic and pre-
symptomatic hosts with probabilities ξ and 1− ξ, respectively.
Therefore, starting from a single pre-symptomatic host, new
asymptomatic infections occur at rate ξαβ, while new pre-symp-
tomatic infections occur at rate (1− ξ)αβ. In addition, pre-
symptomatic hosts develop symptoms at rate λ, and are isolated
at rate eg=ð1� f(r1,d)Þ. The overall rate at which events occur is
the sum of these individual event rates:

total event rate ¼ abþ lþ eg

1� f (r1,d)
:

For each of the four possible next events ((i)–(iv), earlier), the
probability that event occurs next is the individual rate at which
that event occurs divided by the total event rate, leading to the
expressions given.
We use these probabilities to condition on the event
that occurs next in the branching process, following the introduc-
tion of a single pre-symptomatic infectious individual into
the population. If that event is the generation of a new
asymptomatic infection, which occurs with probability
jab=ðabþ lþ 1g=ð1� f(r1,d)ÞÞ, the probability that a local out-
break subsequently does not occur is q1,0,1. Applying
analogous reasoning to the other possible events, we obtain

q1,0,0 ¼ jab

abþ lþ 1g=ð1� f(r1,d)Þ
q1,0,1

þ (1� j)ab
abþ lþ 1g=ð1� f(r1,d)Þ

q2,0,0

þ l

abþ lþ 1g=ð1� f(r1,d)Þ
q0,1,0

þ 1g=ð1� f (r1,d)Þ
abþ lþ 1g=ð1� f(r1,d)Þ

q0,0,0:
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If there are no infectious hosts present in the population (i.e.
i = j = k = 0), then a local outbreak will not occur and so q0,0,0 = 1.
Assuming that transmission chains arising from two infectious
individuals are independent gives q1,0,1 = q1,0,0 q0,0,1 and
q2,0,0 ¼ q21,0,0. Hence,

q1,0,0 ¼ ajq1,0,0 q0,0,1 þ a(1� j)q21,0,0 þ bq0,1,0 þ (1� a� b), ð2:3Þ
where a ¼ ab=ðabþ lþ 1g=ð1� f(r1,d)ÞÞ and b ¼ l=ðabþ lþ
1g=ð1� f (r1,d)ÞÞ.

Similarly, considering the probability of a local outbreak
failing to occur starting from a single symptomatic host gives

q0,1,0 ¼ jb

bþ g=ð1� f (r2,d)Þ þ m
q0,1,1 þ (1� j)b

bþ g=ð1� f (r2,d)Þ þ m
q1,1,0

þ g=ð1� f (r2,d)Þ þ m

bþ g=ð1� f (r2,d)Þ þ m
q0,0,0:

As before, noting that q0,0,0 = 1 and assuming that different
infection lineages are independent leads to

q0,1,0 ¼ cjq01,0q0,0,1 þ c(1� j)q1,0,0q0,1,0 þ (1� c), ð2:4Þ
where c ¼ b=ðbþ g=ð1� f (r2,d)Þ þ mÞ.

Finally, considering the probability of a local outbreak failing
to occur starting from a single asymptomatic host gives

q0,0,1 ¼ djq20,0,1 þ d(1� j)q1,0,0q0,0,1 þ (1� d), ð2:5Þ
where d ¼ hb=ðhbþ nþ 1g=ð1� f(r1,d)ÞÞ.

Equations (2.3), (2.4) and (2.5) may be combined to give a single
quartic equation for q0,0,1, yielding four sets of solutions for q1,0,0,
q0,1,0 and q0,0,1 (see electronic supplementary material, text S1).
It is straightforward to verify that q1,0,0 = q0,1,0 = q0,0,1 = 1 is always
a solution, and further solutions can be found numerically. The
appropriate solution to take is the minimal non-negative real
solution q1,0,0 ¼ q�1,0,0, q0,1,0 ¼ q�0,1,0, q0,0,1 ¼ q�0,0,1 (see electronic
supplementary material, text S1). Then, the probability of a local
outbreak occurring beginning from a single pre-symptomatic host
is given by

p1,0,0 ¼ 1� q�1,0,0,

with equivalent expressions holding for p0,1,0 and p0,0,1 (the prob-
ability of a local outbreak occurring beginning from a single
symptomatic host or a single asymptomatic host, respectively).

Throughout, we consider the probability p of a local outbreak
starting from a single non-symptomatic host entering the popu-
lation, accounting for the possibility that the non-symptomatic
host is either pre-symptomatic or asymptomatic:

p ¼ (1� j)p1,0,0 þ jp0,0,1:
3. Results
3.1. Probability of a local outbreak
We considered the effect of R0 and the duration of the pre-
symptomatic and asymptomatic periods on the probability
of a local outbreak when a non-symptomatic host enters a
new host population (figure 2). We examined pre-sympto-
matic periods of length 1/λ = 1 day, 1/λ = 2 days and 1/λ =
4 days; in each case, the duration of the asymptomatic
period (1/ν days) was adjusted so that the relative proportion
of infections arising from asymptomatic hosts compared to
pre-symptomatic hosts remained fixed (Ka/Kp = 0.218, as in
the baseline case). If instead non-symptomatic infections are
not accounted for, the infectious period follows an exponen-
tial distribution and the probability of a local outbreak is
given by p = 1− 1/R0 (red dash-dotted line in figure 2a).
Including non-symptomatic infection in the model therefore
led to an increased risk of a local outbreak in the absence
of surveillance intensification (figure 2a).

We then considered the dependence of the probability of
a local outbreak on the intensity of surveillance targeting
non-symptomatic and symptomatic hosts (figure 2b–d). The
maximum value of the surveillance intensification effort
that we considered (given by ρ1 or ρ2 values of 20) corre-
sponded to a 76% reduction in the expected time to
isolation (blue line in figure 1b), i.e. a 76% reduction in
1/εγ or 1/γ.

The length of the pre-symptomatic and asymptomatic
periods significantly affected the dependence of the prob-
ability of a local outbreak on the level of surveillance
targeted at non-symptomatic and symptomatic hosts. In
figure 2b, in which the duration of the pre-symptomatic
period was 1 day, increasing surveillance targeted at non-
symptomatic hosts (ρ1) had a limited effect on the probability
of a local outbreak, while increasing surveillance targeted at
symptomatic hosts (ρ2) had a more significant effect. For
example, increasing the surveillance effort targeted at non-
symptomatic hosts to ρ1 = 5 (a 67% reduction in the time to
isolation) only reduced the probability of a local outbreak
from 0.730 to 0.716, whereas the equivalent effort targeted at
symptomatic hosts (ρ2 = 5) reduced the probability to 0.630.
As shown in figure 3c,d, however, when the pre-symptomatic
and asymptomatic periodswere longer, the benefit of directing
surveillance resources towards detecting non-symptomatic
individuals increased. This was because longer pre-
symptomatic and asymptomatic periods increased the
proportion of infections generated by non-symptomatic indi-
viduals (Kp +Ka, see eqns (2.1) and (2.2)); a pre-symptomatic
period of 1 day, 2 days and 4 days corresponded to values of
Kp +Ka equal to 0.424, 0.595 and 0.746, respectively.
3.2. Optimizing surveillance enhancement
Wenext considered inmore detail the impact of surveillance tar-
geted at non-symptomatic hosts (ρ1) relative to the impact of
surveillance targeted at symptomatic hosts (ρ2). Forour baseline
parameter values, we considered the probability of a local
outbreak starting from a single imported non-symptomatic
individual for a range of values of ρ1 and ρ2. We calculated the
steepest descent contours (white lines in figure 3a) numerically
using a gradientmaximization approach, inwhich at each point
the contour direction was determined by minimizing the local
outbreak probability over a fixed search radius (see electronic
supplementary material, text S2 and figure S2). These contours
indicate how ρ1 and ρ2 should be altered to maximize the
reduction in the probability of a local outbreak. In this case,
enhancing surveillance targeting both symptomatic and non-
symptomatic hosts is always optimal (the steepest descent
contours are neither horizontal nor vertical).

We then considered a scenario in which, at any time, it is
only possible to direct resources towards enhancing surveil-
lance of either non-symptomatic individuals or symptomatic
individuals (e.g. antigen testing of non-symptomatic contacts
of known infectious individuals, or screening for symptomatic
individuals at public events). In figure 3b, the blue region rep-
resents values of ρ1 and ρ2 for which enhancing surveillance
targeting symptomatic hosts (i.e. increasing ρ2) leads to a
larger reduction in the local outbreak probability than enhan-
cing surveillance targeting non-symptomatic hosts (i.e.
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Figure 2. The effect of the duration of the pre-symptomatic and asymptomatic periods on the probability of a local outbreak (p), starting from a single non-
symptomatic host. (a) The probability of a local outbreak as a function of the basic reproduction number R0, for pre-symptomatic periods of lengths 1/λ = 1 day
( purple), 1/λ = 2 days (blue) and 1/λ = 4 days (green) in the absence of enhanced surveillance (ρ1 = ρ2 = 0). In each case, the duration of the asymptomatic
period (1/ν) is adjusted so that the relative proportion of infections arising from asymptomatic hosts compared to pre-symptomatic hosts remains constant (Ka/Kp =
0.218, as in the baseline case). The red dash-dotted line indicates the probability of a local outbreak in the absence of non-symptomatic transmission. The vertical
grey dotted line indicates R0 = 3, the baseline value used throughout. (b) The probability of a local outbreak as a function of the surveillance intensification efforts
ρ1 and ρ2, for 1/λ = 1 day. (c) The analogous figure to B but with 1/λ = 2 days. (d ) The analogous figure to B but with 1/λ = 4 days. Red dotted lines indicate
contours of constant local outbreak probability (i.e. lines on which the probability of a local outbreak takes the values shown). The value of β is varied in each panel
to fix R0 = 3. All other parameter values are held fixed at the values in table 1 (except where stated).
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increasing ρ1). In contrast, in the green region, enhancing sur-
veillance of non-symptomatic individuals is more effective
than enhancing surveillance of symptomatic individuals.
The white line represents the steepest descent contour starting
from ρ1 = ρ2 = 0, under the constraint that surveillance can be
enhanced only for symptomatic or non-symptomatic hosts at
any time.

Practical deployment of surveillance is often subject to
logistical constraints, and policy makers may wish to
design surveillance strategies to achieve a specific objec-
tive—for example, to maximize the effectiveness of limited
resources or to minimize the cost of achieving a desired out-
come. We therefore also considered the following two
examples of such objectives.
3.2.1. Objective 1: minimize the probability of a local outbreak
for a fixed total surveillance effort

First, we considered the question: given a fixed maximum
surveillance effort (ρ1 + ρ2 = C), how should surveillance be
targeted at non-symptomatic and symptomatic hosts? This
involves setting the values of ρ1 and ρ2 to minimize the
local outbreak probability. The optimal strategies in this
case are shown in figure 3c. The red dotted lines represent
contours along which the total surveillance effort ρ1 + ρ2 is
held constant (i.e. different values of C). On each contour,
the red circle indicates the point at which the local outbreak
probability is minimized.

If surveillance resources are increased (i.e. C increases), a
further question is how surveillance should then be
increased. In figure 3c, the white line represents the contour
of steepest descent, under the constraint that the total
change in surveillance effort (ρ1 + ρ2) is held constant at
each step (rather than a constant search radius, as shown in
figure 3a—for more details, see electronic supplementary
material, text S2 and figure S2). This contour coincides exactly
with that shown in figure 3b.

These results indicate that if surveillance resources are
such that C is greater than 2.8 (corresponding to a 59%
reduction in the time to isolation of symptomatic hosts), the
optimal surveillance strategy involves both enhanced surveil-
lance of symptomatic individuals and non-symptomatic
individuals (the red dots correspond to strictly positive
values of both ρ1 and ρ2, unless C is less than 2.8).
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Figure 3. Optimal surveillance strategies to reduce the probability of a local outbreak (p) starting from a single non-symptomatic host. (a) The local outbreak
probability for different values of ρ1 and ρ2, with the steepest descent contours overlaid (white lines). For the maximum reduction in the probability of a
local outbreak at each point, surveillance must be enhanced for both non-symptomatic and symptomatic individuals, with different levels of prioritization depending
on the current values of ρ1 and ρ2. (b) Values of ρ1 and ρ2 for which increasing surveillance for non-symptomatic hosts (i.e. increasing ρ1) is more effective
at reducing the local outbreak probability than increasing surveillance for symptomatic hosts (i.e. increasing ρ2) (green region) and vice versa (blue region).
The white line represents the steepest descent contour starting from ρ1 = ρ2 = 0, under the constraint that surveillance can only be enhanced for either sympto-
matic or non-symptomatic hosts at any time. The diagonal section of the steepest descent contour is made up of small horizontal and vertical sections. (c) Strategies
for minimizing the local outbreak probability for a given fixed total surveillance effort (ρ1 + ρ2 = C ). Red dotted lines indicate contours on which ρ1 + ρ2 is
constant, and red circles indicate the points along these contours at which the local outbreak probability is minimized. The white line indicates the optimal
surveillance enhancement strategy if the maximum possible surveillance level (i.e. the maximum value of ρ1 + ρ2 = C ) is increased. (d ) Strategies for minimizing
the surveillance effort required to achieve a pre-specified risk level (an ‘acceptable’ local outbreak probability). Red dotted lines indicate contours of constant
local outbreak probability (i.e. lines on which the probability of a local outbreak takes the values shown); red circles indicate the points along these contours
at which the total surveillance effort ρ1 + ρ2 is minimized. The white line indicates the optimal strategy to follow if the pre-specified risk level is increased
or reduced.
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3.2.2. Objective 2: minimize the total surveillance effort to
achieve a pre-specified reduction in the probability of a
local outbreak

Second, we considered the question: given a pre-specified
acceptable risk level (i.e. probability of a local outbreak),
how should the surveillance level targeted at non-sympto-
matic and symptomatic hosts be chosen? This involves
choosing ρ1 and ρ2 to minimize ρ1 + ρ2 along a given contour
corresponding to a fixed local outbreak probability (red
dotted lines in figure 3d ). On each contour, the red circle
indicates the point along that contour at which the total sur-
veillance effort ρ1 + ρ2 is minimized. These optimal points
also lie exactly along the line on which enhancing surveil-
lance targeted at symptomatic hosts is equally effective
compared to enhancing surveillance targeted at non-sympto-
matic hosts.
As long as the target local outbreak probability is less than
0.69, optimal surveillance involves enhanced surveillance of
non-symptomatic individuals as well as symptomatic individ-
uals. For example, to reduce the local outbreak probability to
0.6, the optimal approach is to deploy resources such that
ρ1 = 12.4 (a 74% reduction in the time to isolation of non-
symptomatic individuals) and ρ2 = 18.0 (a 76% reduction in
the time to isolation of symptomatic individuals).

Plots analogous to figure 3d in which the parameters were
varied from their baseline values are shown in electronic sup-
plementary material, figures S3–S12. In each case that we
considered, our main finding remained unchanged. There
always exists a threshold local outbreak probability such that,
if the target local outbreak probability is below this threshold,
the optimal strategy for further reduction in the local outbreak
probability involves enhancing surveillance targeting both
non-symptomatic and symptomatic individuals.
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4. Discussion
A key component of infectious disease epidemic manage-
ment is inferring the risk of outbreaks in different locations
[5–8,11,41,42]. Surveillance and control strategies can be
introduced to reduce the risk that imported cases will lead
to local outbreaks [12,13,43–46]. However, for a range of
pathogens, public health measures are hindered by non-
symptomatic infectious hosts who can transmit the pathogen
yet are challenging to detect [16,42,44,47–49].

Here, we showed how the probability of a local outbreak
can be estimated using a branching process model that
accounts for transmission from non-symptomatic infected
individuals (figure 1). The model can be used to assess the lo-
cal outbreak probability for different surveillance strategies
that target non-symptomatic or symptomatic hosts (figure 2).
Previous studies have shown that detection of non-
symptomatic infections can be a key component of epidemic
forecasting [42] and containment [44] and have demonstrated
the benefits of identifying and isolating infectious non-
symptomatic hosts to reduce transmission [16,17]. We
focused instead on investigating how surveillance should be
targeted at non-symptomatic or symptomatic hosts to
reduce the probability that cases imported to new locations
will trigger a local outbreak (figure 3a,b). We also showed
how the optimal surveillance level targeting these two
groups can be assessed when surveillance resources are lim-
ited and policy makers have specific objectives (figure 3c,d ).
In each case, our main conclusion was that surveillance for
non-symptomatic infected hosts (ρ1 > 0) can be an important
component of reducing the local outbreak risk during epi-
demics. This result has broad implications, and our analysis
could be extended to assess the potential for containing out-
breaks at their source using a range of specific interventions
targeting symptomatic and non-symptomatic hosts.

Our goal here was to use the simplest possible model to
explore the effects of surveillance of non-symptomatic and
symptomatic individuals on the risk of local outbreaks. How-
ever, this model is not without its limitations. One area of
uncertainty is the precise values of the parameters governing
pathogen transmission and control. In this article, we chose a
baseline set of parameter values that is consistent with the
findings of studies conducted during the COVID-19 pan-
demic, although constructing a detailed transmission model
for this pandemic was not our main focus. For example,
we set the relative rates at which pre-symptomatic and
asymptomatic individuals generate new infections compared
to symptomatic individuals so that 48.9% of transmissions
arise from pre-symptomatic infectors and 10.6% arise from
asymptomatic infectors [16]. While this is in line with
reported estimates [50,51], there is substantial variation
between studies. Similarly, the proportion of individuals
who experience a fully asymptomatic course of infection
(denoted by ξ in our model) is subject to a considerable
degree of uncertainty. Here, we chose ξ = 0.2 as the baseline
value [32–34], but estimates in the literature range from 0.04
to over 0.8 [33,52–54]. We therefore also conducted sensitivity
analyses in which we explored a range of different values of
model parameters (electronic supplementary material, text S3
and figures S3–S12). In each case that we considered, our
main conclusion was unchanged: surveillance of non-symp-
tomatic individuals can contribute to reducing the risk of
local outbreaks. This result is expected to hold for epidemics
of any pathogen for which non-symptomatic individuals con-
tribute significantly to transmission.

For our modelling approach to be used to make precise
quantitative predictions during epidemics, it would be
necessary to update the model to include the range of differ-
ent specific surveillance and control interventions that are in
place. For example, detection of non-symptomatic infected
individuals is facilitated by contact tracing and antigen test-
ing, which are carried out routinely during epidemics and
can be included in models explicitly [12,44,55,56]. Reductions
in contacts due to social distancing strategies and school or
workplace closures could also be accounted for [57,58],
although such interventions are often introduced after a
local outbreak has begun rather than in the initial phase of
a potential local outbreak as considered here. We modelled
the level of surveillance targeted at non-symptomatic
and symptomatic hosts in a simple way using a function
describing the relationship between surveillance effort and
effectiveness (figure 1b). We assumed that this general
functional relationship could be applied to interventions tar-
geting both symptomatic and non-symptomatic hosts,
accounting for logistical differences in the ease of targeting
either group by scaling the effectiveness of surveillance for
non-symptomatic hosts using the parameter ε (results are
shown for different values of ε in electronic supplementary
material, figure S8). In principle, it would be possible to
include entirely different functional forms describing the
relationship between surveillance effort and effectiveness
for strategies targeting symptomatic and non-symptomatic
individuals, and these could be tailored to the effects of par-
ticular interventions. If different public health measures are
included in the model explicitly, then it would be possible
to increase the accuracy of assessments of the relative
public health benefits of specific interventions that only
target symptomatic individuals (e.g. screening for passengers
with heightened temperatures at airports [59,60]) compared
to interventions that also target non-symptomatic hosts (e.g.
travel bans or quarantine of all inbound passengers [61,62]).
Of course, this would require data from which the relative
effectiveness of different measures could be inferred.

The underlying transmission model could also be
extended to include additional realism in several ways.
Transmission dynamics are influenced by marked heteroge-
neities in the patterns of contacts between individuals in
different age groups [63,64], and, for SARS-CoV-2, suscepti-
bility to infection, the likelihood of developing symptoms,
and the average severity of those symptoms increase with
age [65,66]. Age-dependent variation in the proportion of
asymptomatic cases in particular implies that the optimal
balance of surveillance between symptomatic and non-
symptomatic hosts may differ between age groups. An
age-structured version of the model presented here is a
focus of our ongoing research. Similarly, for a range of infec-
tious diseases, the distribution characterizing the number of
secondary infections generated by each infected host (the off-
spring distribution) exhibits a high degree of overdispersion
[67–70]. For a fixed value of R0, a higher degree of overdisper-
sion increases the likelihood that initial cases will fade out
without leading to a local outbreak [71,72] and suggests
that greater reductions in local outbreak risks could theoreti-
cally be achieved for the same surveillance effort if potential
superspreaders or superspreading events can be identified
and targeted.
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Despite the necessary simplifications, we have shown
how the risk of local outbreaks can be estimated during epi-
demics using a branching process model that includes non-
symptomatic infectious hosts explicitly. Determining the
extent to which non-symptomatic individuals contribute to
transmission is essential early in emerging epidemics of a
novel pathogen. As we have shown, if transmissions occur
from non-symptomatic infectors, dedicating surveillance
resources towards finding non-symptomatic cases can be an
important component of public health measures that aim to
prevent local outbreaks.
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