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A B S T R A C T   

Respiratory Syncytial Virus (RSV) and Influenza cause a large burden of disease. Evidence of their interaction via 
temporary cross-protection implies that prevention of one could inadvertently lead to an increase in the burden 
of the other. However, evidence for the public health impact of such interaction is sparse and largely derives from 
ecological analyses of peak shifts in surveillance data. To test the robustness of estimates of interaction pa-
rameters between RSV and Influenza from surveillance data we conducted a simulation and back-inference 
study. We developed a two-pathogen interaction model, parameterised to simulate RSV and Influenza epide-
miology in the UK. Using the infection model in combination with a surveillance-like stochastic observation 
process we generated a range of possible RSV and Influenza trajectories and then used Markov Chain Monte 
Carlo (MCMC) methods to back-infer parameters including those describing competition. We find that in most 
scenarios both the strength and duration of RSV and Influenza interaction could be estimated from the simulated 
surveillance data reasonably well. However, the robustness of inference declined towards the extremes of the 
plausible parameter ranges, with misleading results. It was for instance not possible to tell the difference between 
low/moderate interaction and no interaction. In conclusion, our results illustrate that in a plausible parameter 
range, the strength of RSV and Influenza interaction can be estimated from a single season of high-quality 
surveillance data but also highlights the importance to test parameter identifiability a priori in such situations.   

1. Introduction 

Respiratory Syncytial Viruses (RSV) and seasonal influenza viruses 
cause large burdens of respiratory disease, including in young children 
(Lafond et al., 2016; Shi et al., 2017). RSV was recently identified as the 
primary cause of hospitalisation for severe paediatric pneumonia 
(Pneumonia Etiology Research for Child Health (PERCH) Study Group, 
K. L. et al., 2019), particularly in the neonatal period. In the northern 
hemisphere both viruses cause pronounced annual winter epidemics 
peaking between October and March (Bloom-Feshbach et al., 2013). 

Evidence from epidemiological and biological studies implies there is 
competitive interaction between influenza and RSV (Opatowski et al., 
2017; Velasco-Hernández et al., 2015; Mak et al., 2012; Pascalis et al., 
2012; Yang et al., 2012; Walzl et al., 2000). The biological mechanism 
for competition is activation of the innate “antiviral response” by 
infection that can inhibit further or subsequent infection (Walzl et al., 
2000; Ascough et al., 2018; Lee et al., 2018), resulting in a period of 
cross-protection during and after infection. Mouse studies have shown 
this effect, where following influenza infection or live attenuated 

influenza vaccination (LAIV), RSV replication/severity was decreased 
(Walzl et al., 2000; Lee et al., 2018). Within-host animal studies, both in 
vitro and modelling, have shown that the growth rates of the viruses can 
be affected by other viruses present (Pinky and Dobrovolny, 2016; 
Shinjoh et al., 2000). The duration of this cross-reactive response is 
debated, varying from “short-term” (Ferguson et al., 2005), less than 
two weeks (Laurie et al., 2015) or up to 3 months (Kelly et al., 2010). 
Influenza epidemics caused by different strains are thought to exhibit 
competitive exclusion (Opatowski et al., 2017; Ferguson et al., 2003; 
Kucharski et al., 2016), and for RSV and influenza syndromic surveil-
lance has shown shifts in the seasonal incidence peaks of RSV following 
abnormal (pandemic or early) influenza seasons (Mak et al., 2012; Hirsh 
et al., 2014; Meningher et al., 2014; Gröndahl et al., 2014; Casalegno 
et al., 2010; van Asten et al., 2016), which suggest this mechanism may 
not only occur but can substantially alter the epidemiology of influenza 
and RSV. There is, however, little evidence that links the strength of 
competition between RSV and influenza within a host to observed 
population dynamics. Understanding the dynamics is critical for pre-
dicting the effects of alteration of their ecological balance, for example 
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through vaccination programs, and is the motivation for this study. 
Influenza vaccination rates, especially in key transmission groups 

could disrupt transmission, potentially leading to effects on interacting 
viruses. In the UK, the RSV epidemic usually precedes the influenza 
epidemic by one or two months, so reduced influenza transmission as a 
result of childhood influenza vaccination may not affect RSV trans-
mission dynamics. However, the competitive pressure exhibited by RSV 
on influenza may become highly relevant soon. The only RSV vaccine 
candidate yet that completed Phase 3 trials, the maternal vaccine, 
Novavax, demonstrated only partial efficacy that the Advisory Com-
mittee for Immunization Practices in the US deemed insufficient to 
warrant licensure (Novavax Announces, 2021). However, the RSV vac-
cine pipeline contains a number of Phase 1 and 2 candidates that aim to 
protect children in part by limiting RSV circulation. As such, these future 
RSV vaccines have the potential to decrease the competitive pressure on 
influenza and thereby increase influenza as an unintended consequence, 
both in children and other age groups, as children are a key driver of 
transmission. These impacts will need to be considered as part of their 
cost benefit proposition preceding routine use. 

Mathematical modelling is an important tool for testing mechanisms 
and hypotheses of epidemiologically significant RSV and influenza 
competition, such as the hypothesis that they competitively interact. 
Models offer an opportunity to mechanistically combine observations 
from surveillance data and extrapolate beyond the observed. However, 
in the case of RSV and influenza competition the identifiability of model 
parameters from viral surveillance data is uncertain. Hence, we con-
ducted a simulation study to test whether parameters can be back- 
inferred from a range of realistic model-generated scenarios that 
include only partial observation of the infection dynamics from 
surveillance-like data. 

2. Methods 

2.1. Model structure 

We developed an age-stratified deterministic compartmental trans-
mission model for RSV and Influenza with interactions (Fig. 1 and 
Supplement Section 2). The population could be Susceptible (S), Infec-
tious (I), Protected (P) or Recovered (R) for each of RSV and influenza 
viruses. We simulated one season so we did not consider potential loss of 
immunity, and current estimates for RSV immunity lasts less than a year 

(Weber et al., 2001), and we take influenza immunity into account by 
fitting the percentage susceptible at the start of the season (see below). 
There were separate transmission and recovery rates for each virus 
(subscripts RSV and INF), and i and j denote age groups. Susceptible 
individuals were infected at rates λINF, i and λRSV, i and enter the I 
compartment. They recovered at rates γINF and γRSV , and entered the P 
compartment where they were no longer infectious. In P, individuals 
were fully protected against homologous re-infection and also had some 
cross protection against the second virus. Loss of cross-protection 
occurred at rate ρ. Infection with a second virus was less likely in the I 
and P classes and occurred at a rate reduced by (σ). The key parameters 
determining interaction are therefore the strength of competition (σ) 
and the rate of loss of cross-protection (ρ). Compartments IRSV,iPINF,i and 
IRSV,iRINF,I, as well as PRSV,iIINF,I and RRSV,iIINF,I were combined as they 
were effectively identical when modelling only one season. 

The model was stratified into 5 age categories: infants: 0− 1 years, 
pre-school-aged children: 2− 4 years, school-aged children: 5− 15 years, 
adults: 16− 64 years, and older adults: aged 65 + . Age-dependent 
contact patterns relevant to the transmission of infections are highly 
age heterogenous (Mossong et al., 2008), and we used social contact 
patterns (including both physical and verbal contacts) in England from 
POLYMOD (Mossong et al., 2008), a European wide contact study in 
2005/6, and in the socialmixr R package (Funk, 2018). We calculated 
forces of Infection, λRSV,i and λINF,i, from the baseline transmission rates 
βINF and βRSV and the mixing parameters as: 

λRSV, i =
∑5

j=1
βRSV αijIRSV,j (1)  

λINF,i =
∑5

j=1
βINFαijIINF,j (2)  

where αij is the contact rate between groups i and j and IINF,j and IRSV,j are 
the proportion infected with Influenza and RSV in age group j. See 
Supplement Section 1 for model equations. 

We modelled one year from the start of the respiratory virus season, 
and initiated the model with a proportion of each age group susceptible 
to influenza set from serological data (Baguelin et al., 2013) (Table 2) 
and the rest in SRSVRINF. RSV immunity to re-infection may last less than 
a year (Weber et al., 2001), therefore we considered the population to be 

Fig. 1. Model diagram for RSV and Influenza 
(INF). Individuals could be either Susceptible 
(S), Infected, (I), Protected (P) or Recovered (R) 
to either virus. Following infection, (which 
occurred at rate λRSV,i and λINF,i), recovery 
occurred at a constant rate (γRSV and γINF), and 
the population entered the P state. Here they 
are immune to the virus they were infected by 
and protected to a varying extent (σ) against 
infection from the second virus. This protection 
waned at rate ρ, and the population entered the 
R compartment. In the R compartment the 
population was immune to the virus it was 
infected by, but not the other virus. We ran the 
model for one season and compartments IRSV, 

iPINF,i and IRSV,iRINF,I, were combined, and PRSV, 

iIINF,I and RRSV,iIINF,I were combined, because 
they are effectively identical. Parameters were: 
age susceptibility to RSV infection (τi), For 
clarity, age structure is given only by the 
subscript (i), for further details see supplement 
section 2.   
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susceptible to RSV at the start of the season. However, RSV susceptibility 
differs with age (Henderson et al., 1979), and therefore we reduced the 
susceptibility to the same range as in other models (Moore et al., 2014) 
by decreasing the infection rate by a susceptibility parameter, τi 
(Table 2). 

RSV was seeded at time ηRSV when one individual from the fully 
Susceptible class (SRSVSINF) becomes infected (IRSVSINF). Influenza in-
fections are introduced at a rate of 0.1 cases per day from SRSVSINF to 
SRSVIINF, starting on day ηINF. Influenza introduction assumptions differ 
from those of RSV as with a single introduction the influenza epidemic 
was supressed for the whole season at certain parameter values, which is 
not seen in UK surveillance. See Supplementary section 6 for further 
details. 

An observation process layer converted infections to detected cases 
using a binomial distribution. The number of detected cases is assumed 
to follow a binomial distribution as follows: 

P
(
xvirus,i,t = X

)
=

(
nvirus,i
Xvirus,i

)

Δvirus, i
X(1 − Δvirus,i)

(nvirus,i − Xvirus,i) (3)  

where X is the number of detected cases in n infections and xvirus,i,t is the 
cases detected for each virus, age group, and timestep. The proportion 
detected was different for each age group and virus (Table 2). 

We implemented the model in R (R Core Team, 2018) and C++ using 
the Rcpp (Eddelbuettel and Francois, 2011) and deSolve (Soetaert et al., 
2010) packages. 

2.2. Simulated data 

We generated simulations to resemble data collected through sur-
veillance systems in the UK (Reeves et al., 2017), such as the Respiratory 
Datamart System in England and Wales (Zhao et al., 2014) and other 
Public Health England surveillance systems (Weekly national flu re-
ports, 2021; Respiratory infections, 2021). This provides laboratory test 
results from routinely tested clinical respiratory samples from a range of 
respiratory viruses. The proportion detected varies by age-group for RSV 
(Table 1), as younger infants are more likely to present with severe 
symptoms (Ohuma et al., 2012). Output from the model is weekly 
number of positive tests in the under-five population for RSV and 
influenza. 

We generated simulations with parameter values from the literature 
and if unavailable we calibrated the values to realistic ranges (Table 1). 
Across simulations we varied σ (strength of interaction), for which we 
used 11 different values, and ρ (the rate of loss of cross-protection), for 
which we used 5 different values. This resulted in 55 combinations of σ 
and ρ and we simulated 5 replicates of each. 

2.3. Parameter estimation 

We assumed that the observed cases followed a Poisson distribution 
with likelihood: 

L(θx1… xn) =
∑n

j=1
e− θ 1

xj!
θxj (4)  

where θ is the modelled detected cases of RSV and influenza in the two 
youngest age groups, xj is the observation and n is the total number of 
observations. We fitted only to the lowest 2 age groups to represent 
where the majority of samples for RSV are taken from and detected. We 
fitted the model to simulated data using Metropolis Hastings Markov 
Chain Monte Carlo (MCMC) sampling. Estimated parameters were 
transmission rates (βRSV , βINF) detection probabilities (ΔRSV2, ΔINF) 
interaction parameters (ρ, σ) and season start times (ηRSV , ηINF). For each 
scenario, we ran two chains with 450 000 iterations as burn in followed 
by a further 250 000 iterations. For chains that did not converge, we 
extended the chains for a further 250 000 iterations iteratively until 

Table 1 
Parameter values used for generating simulations.  

Parameter Symbol Value used in 
simulations 

Source Status in 
inference 

Duration of 
infectiousness 
for RSV 

1/γRSV  9 days 

Weber et al. (2001) 

Fixed 

Range from 
published papers: 
6.7− 12 days ( 
Weber et al., 2001;  
Moore et al., 2014;  
Hall et al., 1976) 

Transmission 
parameter for 
RSV 

βRSV  0.043 

Calibrated to 
observed values. 
Equates to an R0 

and Reffective of 2.5. 
See Supplementary 
section 3 for details 

Estimated 
Log scale 

Time of first 
infection for 
RSV 

ηRSV  Day 1 

Calibrated to 
observed pattern. 
See Supplementary 
section 6 for 
details. 

Estimated 

Age 
susceptibility 
to RSV 
infection (0− 1, 
2− 4, 5− 15, 
16− 64, 65+) 

τi  
1, 0.75, 0.65, 
0.65, 0.65 

Henderson et al. 
(1979) see 
supplement section 
4. 

Fixed 

Proportion of 
RSV infections 
in ages 0− 1 
detected 

ΔRSV1  0.004 

Calibrated to 
observed values. 
See Supplementary 
section 5 for 
details. 

Estimated 

Log odds 
scale 

Proportion of 
RSV infections 
in ages 2− 4 
detected 

ΔRSV2  0.001 

Calibrated to 
observed values. 
See Supplementary 
section 5 for details 

Estimated 

Log odds 
scale 

Duration of 
infectiousness 
for influenza 

1/γINF  3.8 days 

Cauchemez et al. 
(2004) 

Fixed 

Range from 
published papers: 
1− 4.5 days ( 
Cauchemez et al., 
2004; Hayden 
et al., 1999;  
Chowell et al., 
2011; Cori et al., 
2012) 

Transmission 
parameter for 
Influenza 

βINF  0.063 

Calibrated to 
observed values. 
Equates to an R0 of 
2.91, Reffective of 
1.55. See 
Supplementary 
section 3 for 
details. 

Estimated 

Log scale 

Time of first 
infection for 
Influenza 

ηINF  Day 10 

Calibrated to 
observed pattern. 
See Supplementary 
section 6 for 
details. 

Estimated 

Proportion 
susceptible to 
influenza (<2, 
2− 4, 5+) 

ωi  
1, 0.688, 
0.525 

Assuming born 
susceptible (Nokes 
et al., 2004), then 
values from 
Baguelin et al from 
serology data from 
2003/4 (Baguelin 
et al., 2012) 

Fixed 

Proportion of 
Influenza 
infections in 
ages 0− 4 
detected 

ΔINF  0.002 

Calibrated to 
observed values. 
See Supplementary 
section 5. 

Estimated 

Log odds 
scale 

Strength of 
interaction 

σ  0.01, 0.1, 
0.2, 0.3, 0.4, 

Range of values 
tested Estimated 

(continued on next page) 
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convergence was reached or a total of 1 200 000 iterations were run. We 
used weak priors, and the priors for βRSV and βINF were calculated from 
R0 values, assuming no interaction (see Supplement Section 3). We 
adapted the shape of the proposal distribution during burn in, from 5000 
accepted proposals to a further 300000 proposals, to take correlation 
between parameters into account by allowing the covariance matrix for 
proposal distributions to change. Parameter limits are defined in Sup-
plement Section 7 and βRSV, βINF , ΔRSV1, ΔRSV2, ΔINF and ρ were sampled 
on a log scale to improve mixing where the parameter values were very 
low. 

We assessed MCMC convergence via the Gelman-Rubin statistic, 
which compares the within-chain variance to the between-chain vari-
ance for each parameter. Scenarios with a statistic greater than 1.1 we 
deemed as practically unidentifiable from simulated data. We also 
calculated the Pearson correlation coefficient between each two esti-
mated parameters and assessed how these changed with the values of 
the interaction parameters (σ and ρ), in order to further understand 
difficulties with parameter estimation. 

We compared the inferred parameter estimates to the simulated 
parameter values to determine inaccuracy and imprecision of the fit, 
where inaccuracy is defined as the difference between the median value 
of the posterior distribution and the true value, and imprecision is the 
range between the 95 % credible intervals (95 % CI). We present results 
from one replicate set of simulations in Results and others are given in 

the supplement. 

3. Results 

3.1. Epidemic profiles 

Altering the strength or duration of cross-protection did not notably 
affect the timing or shape of the RSV epidemic (Fig. 2), due to the higher 
transmission rate and earlier start of RSV in our scenarios. However, 
increasing the strength or duration of interaction delayed the influenza 
peak. The total number of influenza infections in the youngest two age 
groups did not change (percentage difference <1% between σ = 1 and σ 
= 0) with the strength of interaction (Supplement Section 8). Increasing 
the duration of cross-protection resulted in an 11 % lower total number 
of infections from the shortest (2 days) to longest (40 days) duration of 
cross-protection (Supplement Section 8). Plots showing the epidemic 
curves for each infectious compartment are shown in in Supplement 
Section 9. 

3.2. Correlation analysis 

The most strongly correlated parameters were consistently the 
transmission rate for RSV (βRSV) with the RSV season start time (ηRSV) 
and the transmission rate for influenza (βINF) with the detection rate for 
influenza (ΔINF) and the start of the influenza season (ηINF) (Fig. 3A). The 
correlation between parameters changed dependent on the values of the 
interaction parameters, an example of which is shown in Fig. 3B, where 
the correlation coefficient between the strength of interaction (σ) and 
the proportion of influenza cases detected (ΔINF) varies depending on 
the values of σ and ρ. As the strength of interaction decreases (as σ→0), 
the correlation between the strength of interaction and the proportion of 
influenza cases detected becomes more positive. The correlation 
changes across the interaction parameters for other parameter combi-
nations are shown in in the Supplement Section 10, and matrices for 
individual simulations are in supplement section 12. 

3.3. Inferring the strength of cross-protection (σ) 

Across simulations, the imprecision and inaccuracy of the estimated 
strength of cross-protection (σ) varied (Fig. 4), with the imprecision 
ranging from 0.15 to 0.66 (where 1 is poor precision) and average 
imprecision decreasing as the duration of protection (ρ) increased. We 
did not observe a trend in the inaccuracy of the parameter estimates and 
they ranged from 0 to 0.24. However, the lowest value tested (σ = 0.01) 

Table 1 (continued ) 

Parameter Symbol Value used in 
simulations 

Source Status in 
inference 

0.5, 0.6, 0.7, 
0.8, 0.9, 0.99 

Rate of loss of 
protection 

ρ  
0.025, 0.05, 
0.1, 0.2, 0.5 
per day 

Range of values 
tested 

Estimated 

Log scale  

Table 2 
Demography and susceptibility input used for model simulations.  

Demography Value used References/Comments 

Population size 56 758 
452 

UK. Demography from POLYMOD (Mossong 
et al., 2008) 

Population 2− 4 
years 

2070936 UK. Demography from POLYMOD (Mossong 
et al., 2008) 

Population <2 
years 

1380624 UK. Demography from POLYMOD (Mossong 
et al., 2008)  

Fig. 2. Mean weekly incidence of observed cases in under 5 s (sum of age groups 0-1 and 2-4) from simulations with A) varying σ values and a fixed protection 
duration of 10 days (ρ = 0.1), and B) varying ρ values, and a fixed σ of 0.5. Simulations were run and sampled 1000 times for each parameter set and the shaded 
windows are the 95 % quantiles for each week. In both A and B the top panel shows the observed cases for RSV, and the lower panel the cases for Influenza. 
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was overestimated in each simulation and the highest value tested (σ =
0.99) was underestimated, showing that the extreme values are less well 
estimated. This may be due to the true value being very close to the 
limit. 

3.4. Inferring the duration of cross-protection (1/ρ) 

The imprecision of the estimated duration of cross protection ranged 
from 7 to 87 days (Fig. 5). Estimates were generally less precise when the 
period of cross-protection is longer (Fig. 5). In 70 % of our simulations 

Fig. 3. A) Mean Pearson correlation coefficient between parameters. B) Correlation coefficient between σ ( strength of cross-protection) and ΔINF (start day of 
influenza). This is shown for 1 simulation, but the patterns were similar for all (Supplementary Section 12). 

Fig. 4. A) Estimated σ values for simulations with different σ and ρ values. Median value and 95 % CI are shown. The black line is the simulated (true) value of σ in 
each case. B) Imprecision of σ estimates calculated as the 95 % quantile range. C) Inaccuracy of the σ estimates, calculated as the difference between the posterior 
median and the true value. 
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where σ interaction reduced the transmission rate by no more than 10 % 
(i.e. σ = 0.1 or 0.01) the duration of protection estimates exceeded an 
imprecision of 50 days. For scenarios assuming stronger competition 
estimates were much more precise. Indeed, one would expect that once 
the strength of competition is negligibly small the duration of such 
protection would be largely irrelevant. ρ estimates increased for simu-
lations generated with longer duration of protection (smaller ρ). 

3.5. Variation between replicates 

Each parameter set was used to generate a further four replicate 
simulations of the observation process. Of these 275 simulations (5 
replicates of 55 parameter combinations), 259 reached convergence at 

the cut-off point (see Supplement Section 11). The true parameter values 
were included in the 95 % CI in the majority of replicates (Fig. 6). The 
true value of ρ was not included in the 95 % CI in 6 simulations (2%), 
whereas the true value of σ was not included in the 95 % CI in 31 sim-
ulations (11 %). These simulations were more concentrated in areas 
with extreme interaction strengths (0.99 and 0.01) and very short 
duration of protection. We conclude from this that the stochastic vari-
ation in the simulation of the observation can occasionally result in 
difficulty estimating the true value of the parameter. 

4. Discussion 

We tested whether a transmission model including competitive 

Fig. 5. A) Estimated 1/ ρ values for simulations with different σ and ρ. Lines represent 95 % quantiles of the posterior sample and the circle represents the median 
value. The black line shows the true 1/ ρ value in each case. B) Imprecision of ρ estimates calculated as the 95 % quantile range. C) Inaccuracy of the ρ estimates, 
calculated as the difference between the posterior median and the true value. 

Fig. 6. Proportion of simulations where the true value of σ (A) and ρ (B) was included in the 95 % CI of the posterior estimate.  
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interaction between RSV and influenza is identifiable from a single 
season of simulated high-quality surveillance data. We determined that 
it is possible to re-estimate strength and duration of interaction in most 
tested scenarios, although often imprecise due to large credible in-
tervals, but that there are some areas of parameter space where posterior 
estimates are potentially misleading, particularly when the strength of 
interaction is assumed to be low or the duration of interaction short. 
However, we only estimated the parameters from information from one 
season at a time, and without strong priors. 

While we are the first to test robustness of RSV and influenza 
competition inference, other identifiability studies, e.g. on Rift Valley 
Fever, have previously highlighted the importance of robustness testing 
to avoid misleading conclusions stemming largely from insufficient 
power of the data to inform the model parameters of interest (Kao and 
Eisenberg, 2018; Tuncer et al., 2016). Structural and practical identifi-
ability analysis have also been used to select appropriate models, given 
the data available (Tuncer et al., 2018; Roosa and Chowell, 2019), for 
example a study that evaluated six different Zika models, and the 
identifiability of parameters within each (Tuncer et al., 2018). 

Our analysis shows that there are potentially misleading results at 
extreme competition values, and it is almost impossible to get a “null 
estimate” for the strength of competition from this study. Evidence from 
mouse models suggest that the duration of RSV cross protection 
following influenza infection may last more than two weeks (Walzl 
et al., 2000; Hamilton, 2021) which, under the assumption that the 
duration of cross-protection is non-differential to the initiating virus, 
may suggest that the imprecision of our estimates at short durations of 
cross protection is unlikely to be a key risk for inference. However it may 
not be possible to distinguish such competition from no competition in 
our model, if the strength of the competition is low. We deliberately used 
uninformative priors for this parameter in order to be able to fully 
explore its identifiability, however, subsequent work may further 
improve precision of estimates by including prior estimates based on 
published evidence. This may also reduce the correlation of estimated 
parameters, which has challenged convergence in our simulations. 
Similarly, mouse models have suggested strong modulation of the RSV 
immune response if preceded by an influenza infection (Walzl et al., 
2000), which may suggest that difficulties in our inference in scenarios 
that assume very small amounts of competition may not be the most 
relevant. 

For parameter combinations where the simulated parameter value 
could not be re-estimated, we found that despite the relatively high 
assumed sample size stochastic noise from the observation model can 
occasionally result in incorrect estimates. This implies that inference 
based on a single season may be misleading purely because of the 
observational process associated with surveillance, however, including 
multiple seasons of observation should limit problems stemming from 
the observation process alone and further increase accuracy of 
estimates. 

We assumed that the RSV–influenza interaction was bidirectional; 
particularly we assume that the strength and duration of interaction that 
influenza exhibits on RSV is the same as vice versa. Given that the 
proposed mechanisms for interaction are not virus specific this seems 
reasonable, and is supported by studies looking at the shift in RSV epi-
demics following the early 2009 influenza pandemic (Mak et al., 2012; 
Hirsh et al., 2014; Gröndahl et al., 2014; Casalegno et al., 2010). 
However, the RSV epidemic in the UK typically precedes influenza and 
similarly we only investigate such scenario. Therefore, in this work we 
can only estimate the competition of RSV on influenza dynamics and do 
not have power to estimate the other direction. Hence our results are 
applicable for considerations around RSV vaccine introduction but 
should be treated cautiously for any studies interested in the impact of 
Influenza on the transmission dynamics of RSV. 

This model did not include multiple strains of either RSV or influ-
enza, which could have an impact on the interaction dynamics, as the 
interaction may differ between strains. Including strains would 

significantly increase the complexity of the model (see review on strain 
interaction models (Kucharski and Gog, 2012)), which we think would 
have rendered it unidentifiable. In addition, the aim was to assess the 
practical identifiability of the model parameters that govern viral 
interaction from routine surveillance data, and in many scenarios the 
surveillance data does not record strain type. The biological mechanism 
underpinning the period of cross-immunity is that of viral 
infection-induced protection, which is potentially induced by many vi-
ruses so may not be specific to RSV and influenza, and may not differ 
between influenza subtypes/strains. 

We ran the model for one season at a time in order to reduce the 
complexity, as in other influenza models (Baguelin et al., 2013). We 
captured influenza immunity from previous seasons in the proportion of 
individuals susceptible for influenza at the start of the season, and RSV 
immunity is considered to last less than a year (Weber et al., 2001), so 
we simplified to a single season but included the major multi-season 
effects. A further sensitivity analysis could be to vary the susceptibility 
of individuals to influenza at the start of the year, in order to simulate 
different dominant influenza strains. We have however not included 
this, as our aim here was to look at the identifiability of parameters, and 
these differences would be taken into account when fitting to surveil-
lance data from different seasons. Ideally, we would fit to multiple 
seasons of surveillance data, in order to account for variations by year. 
In the model we assumed a constant, age-dependent observation rate, as 
in other influenza models (Magal and Webb, 2018). Time varying 
reporting rates would substantially hinger inference, in fact a previous 
study comparing model fit of age-dependent vs time and age-dependent 
reporting rates concluded it was not possible to prefer one model terms 
of fit alone (Dorigatti et al., 2012), so we assume age-dependent only 
reporting rates for simplicity. We did not include additional seasonal 
effects in the model. While no or small effects have been reported for 
RSV and seasonal factors (Tian et al., 2017; Hogan et al., 2016), there is 
stronger evidence for the impact of climatic factors on influenza trans-
mission, particularly ambient temperature and absolute humidity 
(Shaman et al., 2010; Shaman and Kohn, 2009; Lowen and Steel, 2014). 
While this does not affect our results on identifying parameters from 
simulated data, it should be noted as a potential confounder when 
estimating these parameters using surveillance data. 

Further data may help to identify parameters in the model where it 
currently has difficulties. Data on the frequency of co-infections would 
allow us to use stronger priors for the strength of interaction, as well as 
providing an informative data source to fit the model to. Further in-
formation on the circulation of RSV, as opposed to only clinical cases, is 
also important due to the current uncertainty in infection numbers. In 
addition, surveillance systems would ideally provide daily data on RSV 
and influenza cases, giving us more granularity and potentially allowing 
us to identify all areas of parameter space. 

Behavioural changes may also impact respiratory viral circulation, 
after infection with a virus (staying inside while recovering), or large- 
scale behavioural change due to restrictions (social distancing mea-
sures in response to the SARS-CoV-2 pandemic). Whilst we do not 
investigate these mechanisms in this paper, such changes can have 
drastic impacts, such as the largely absent 2020 influenza season in 
Australia (Sullivan et al., 2020). 

Overall, this study shows that in principle interaction parameters can 
be estimated from high quality surveillance-like data using mathemat-
ical models, although the precision and accuracy of the estimates varies 
depending on the scenario and stochasticity in the surveillance data. 
More power to reliably infer parameters may be available if fitting 
multiple seasons. It also highlights the importance of validating complex 
models, especially in light of the rapid development of models in 
emergency situations, which can have large impacts on public policy 
(Panovska-Griffiths, 2020). 
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Author summary 

Influenza and Respiratory Syncytial Virus (RSV) cause a large disease 
burden. Rather than acting independently these viruses may interact, 
meaning that infection with one decreases the likelihood of infection 
with the other. While this could have important implications for control 
strategies, the evidence for the strength of the interaction and its 
importance for public health is largely based on ecological studies, and it 
is not clear that surveillance data are sufficient to determine if interac-
tion exists, and if so, how long the effect last. To test this assumption we 
used a mathematical model to simulate RSV and Influenza surveillance 
data and back-infer the strength and duration of interaction used to 
generate the data. We found that in the majority of cases it was possible 
to determine the strength and duration of interaction from even a single 
season of high-quality surveillance. However, we also showed that for 
extreme parameter values, model estimates may be unreliable despite a 
seemingly good fit to the data and hence highlight the importance of a 
priori model validation for similar analyses. 
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