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SUMMARY: Identification of new biomarkers to distinguish between viral and bacterial 

pneumonia. These markers could provide the basis for a rapid diagnostic for field-based 

triage for antibiotic treatment of pediatric pneumonia. 
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ABSTRACT:  

BACKGROUND: 

Differential etiologies of pediatric acute febrile respiratory illness pose challenges for all 

populations globally but especially in malaria-endemic settings because the pathogens 

responsible overlap in clinical presentation and frequently occur together. Rapid 

identification of bacterial pneumonia with high quality diagnostic tools would enable 

appropriate, point of care antibiotic treatment. Current diagnostics are insufficient, and the 

discovery and development of new tools is needed.  We report a unique biomarker 

signature identified in blood samples to accomplish this.   

METHODS:  

Blood samples from 195 pediatric Mozambican patients with clinical pneumonia were 

analyzed with an aptamer-based, high dynamic range, quantitative assay (~1200 proteins). 

We identified new biomarkers using a training set of samples from patients with established 

bacterial, viral, or malarial pneumonia. Proteins with significantly variable abundance across 

etiologies (FDR<0.01) formed the basis for predictive diagnostic models derived from 

machine learning techniques (Random Forest, Elastic Net). Validation on a dedicated test set 

of samples was performed.  

RESULTS:  

Significantly different abundances between bacterial and viral infections (219 proteins) and 

bacterial infections and mixed (viral and malaria) infections (151 proteins) were found. 

Predictive models achieved >90% sensitivity and >80% specificity, regardless of number of 

pathogen classes. Bacterial pneumonia was strongly associated with neutrophil markers, in 
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particular degranulation including HP, LCN2, LTF, MPO, MMP8, PGLYRP1, RETN, SERPINA1, 

S100A9, and SLPI.  

CONCLUSION: 

Blood protein signatures highly associated with neutrophil biology reliably differentiated 

bacterial pneumonia from other causes. With appropriate technology, these markers could 

provide the basis for a rapid diagnostic for field-based triage for antibiotic treatment of 

pediatric pneumonia.  

Keywords: malaria, pediatric, pneumonia, biomarker, diagnostic 
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Introduction 

Pediatric febrile respiratory illness is a leading cause of mortality and morbidity globally. 

Identifying the etiology — bacterial1, viral, or (less commonly) malaria2,3 — is crucially 

important but difficult due to similar clinical presentations. The critical need globally is to 

identify bacterial infections3, so they can be treated appropriately and reduce mortality.4,5  

Rapid bacterial diagnosis is challenged by current diagnostic tests: laborious microbiological 

culture or molecular testing methods, if available, often lack sensitivity to detect bacterial 

pathogens6 as do radiological evaluations (through chest-X-ray or ultrasound) with equal 

limitation in availability. Malaria or viral infections and bacterial secondary co-infections 

occur commonly together, increasing the challenge of a specific, treatable diagnosis.7,8  

Host cellular responses to bacterial, viral, and malaria infections are distinct, being chiefly 

neutrophilic, lymphocytic, or monocytic, respectively, and represent prime targets as 

diagnostic indicators. To date, these approaches are not sufficiently reliable9–13, based on a 

recommended benchmark14 of thresholds for sensitivity (desirable ≥95%, acceptable 

≥90%) and specificity (≥90% and ≥80%). We hypothesized that the distinctive cellular host 

responses could be detected at the protein level. We test this hypothesis based on the 

differential expression of proteins in pediatric febrile respiratory illness blood specimens 

from southern Mozambique, where malaria is endemic. Febrile respiratory illness cases 

were classified by available gold standards, and using highly specific case-definition, to one 

of three underlying causes--bacteria, viruses, or malaria--or to a combination (“mixed 

infections”). Proteins were assayed with SOMAScan technology (Somalogic, Boulder, CO), an 

array-based modified aptamer platform covering a range of biological pathways including 

inflammation, signal transduction, and immune processes. This quantitative assay of 
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approximately 1200 proteins simultaneously offers a high dynamic range  and has modest 

sample requirements (150 ul plasma).15  

The resulting protein expression data were used to create machine learning-based models 

for distinguishing bacterial from viral or malaria infections. The same data, along with data 

from our prior RNA- and protein-based studies9,13, provided the basis for pathway analyses, 

to help confirm the underlying biology of the host response. 

Methods 

Study Design 

The study recruited two groups of children (<10 years of age) at the Manhiça District 

Hospital in Mozambique as follows: (1) children with febrile respiratory illness admitted to 

the hospital fulfilling the “clinical pneumonia” criteria (as defined by WHO), and (2) afebrile 

and asymptomatic healthy community controls used to establish a baseline. Febrile 

respiratory illness cases were assigned by all available gold standard tests to one of three 

underlying causes, bacteria, viruses, or malaria, or to a combination (“mixed infections”). 

Study population and sample classification procedure 

Children with fever at admission (>37.5°C axillary temperature) or prior-24-hour history of 

fever meeting the WHO case definition for clinical pneumonia (increased respiratory rate 

and cough or difficulty breathing)16 were selected for the study. Informed consent was 

obtained from parents/guardians. All children underwent anteroposterior chest 

radiography; images were independently interpreted following the WHO recommended 

guidelines for pneumonia diagnosis by two experienced clinicians.17  
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Patients were classified as having clinical pneumonia associated with bacterial, malaria, or 

viral infection using the criteria described in Valim et al. (2016), with minor modifications. In 

brief, patients were classified as bacterial pneumonia when pathogenic bacteria were 

isolated (or detected through RT-PCR) from blood or pleural exudate, and after confirming 

the absence of malarial infection. Viral pneumonia required the detection in the 

nasopharyngeal aspirate (NPA) of a viral respiratory pathogen, no isolated bacteria in the 

blood culture or RT-PCR, no “endpoint pneumonia” in the chest X-ray, and negative malaria 

microscopy. Finally, a malaria case required a positive malaria smear microscopy (according 

to predetermined parasitemia thresholds in relation to age18), normal chest X-ray and no 

detectable bacterial infection. We analyzed our case definitions against ALMANACH criteria 

(supplemental material and Table S7).  

To address the known insensitivity of blood culture for bacterial pneumonia, cases were also 

assigned a bacterial etiology if the NPA was negative for virus but the patient had 

leukocytosis and a dense radiographic consolidation (endpoint pneumonia) based on 

consensus of two independent experts. Since NPAs are often positive on RT-PCR for 

potential viral respiratory pathogens even in clinically well children, the detection of a virus 

in the nasopharyngeal aspirate did not alter the class assignments for confirmed bacterial or 

malarial cases. See Fig. S1 for a comprehensive flowchart for patient classification. 

In addition, patient samples with mixed infections were also included in the study (for 

details see Table S3). “Virus & probable bacterial secondary co-infection” samples were 

virus positive, culture and PCR-negative for bacteria but with leukocytosis and radiographic 

endpoint pneumonia, suggestive of a secondary bacterial infection.  
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SOMAScan protein assay 

The SOMAScan assay uses SOMAmers (Slow Off-rate Modified Aptamers) to capture 

proteins and translates binding events into signals measured in Relative Fluorescence Units 

(RFU). RFU are directly proportional to target protein abundance in the sample, calculated 

by a standard curve generated for each protein-SOMAmer pair. The dynamic range is 

enhanced by three serial dilutions, with the least concentrated dilution used to quantify the 

most abundant proteins (~μM concentration in the original sample), and the most 

concentrated used for the least abundant proteins (fM to pM concentration).15 Samples 

were assayed in two batches (15 samples replicated to verify consistency); the SOMAScan 

assays used in the first set of 167 samples quantified 1129 proteins and the SOMAScan 

assay used in the second set of 49 samples quantified 1279 proteins. In the two batches, 

96.4% (161/167) and 100% (49/49) of samples passed Somalogic normalization acceptance 

criteria. 

We use Somalogic protein marker labels throughout this manuscript (supplementary data 

file S1 provides full protein names). 

Protein marker selection and predictive model building 

Selection was based on statistical significance of differences in marker abundance between 

the bacteria versus virus (BvV) and bacteria versus malaria or virus (BvVM) comparisons. 

Classifiers discriminated (1) BvV and (2) BvVM using the 219 and 151 statistically significant 

(FDR<0.01) markers, respectively, and their corresponding surrogates. Using optimal subsets 

of N protein markers (N=5, 10, 15, 25, 50, 100) identified using genetic algorithms, 2-class 

Random Forest (RF) and Elastic Net (EN) models were constructed, achieving predictive 
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results with high sensitivity and specificity with a small subset  of markers (see Fig. 1; details 

in the “Data Analysis Pipeline” in the Supplementary Appendix and Fig. S3). 

Biological processes and pathways 

To better understand the biological significance of the differentially expressed proteins, 

differential markers were used as input to the Metascape Gene Annotation and Analysis 

Resource (http://metascape.org) to query multiple ontology resources including KEGG 

pathway, Gene Ontology (GO) Biological Processes, Reactome Gene Sets, Canonical 

Pathways, and CORUM. Both three-way (Bacteria vs Malaria vs Virus) and binary (BvV) 

comparisons were explored (see Supplementary Appendix for details). 

Comparative marker analysis between technologies 

To assess whether markers identified as indicating bacterial infection were consistent across 

technology platforms, extensive comparisons were made between this and two previous 

marker studies of the same patients (RNA-sequencing and multiplex bead-based protein 

immunoassays); both studied different but overlapping samples within the same study 

population (see details in the Supplementary Appendix). 

Results  

Patient characteristics  

Between July 2010 and November 2014, 576 patients were recruited as inpatients, along 

with 117 community controls. 195 patients under 10 years of age with acute febrile 

respiratory illness met the stringent inclusion criteria and were included in this analysis. To 

identify differentially expressed proteins between underlying etiologies, patients were 
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characterized as having bacterial (69 patients), malaria (42 patients), viral (48 patients), or 

mixed (23 patients) infections (for details see Table S3). 13 healthy subjects were included 

as controls. The classification scheme was similar as previously described (see Fig. S1 for a 

patient classification flowchart).9,13 No significant differences in age, sex, weight, height, 

nutritional status, or duration of hospital admission were observed between bacterial, viral, 

and malaria sample sets. (See Table 1 and Table S1 for patient demographic and disease 

characteristics). Case fatality rates were high (6%) for the bacterial group, but none of the 

malaria cases or viral cases died. Malnutrition was highly prevalent among the three groups, 

and HIV prevalence was also high, although significantly higher among the bacterial group. 

Bacterial cases had the highest leukocyte count and respiratory rates. Malaria cases were 

most anemic, had the highest mean axillary temperature, and had the lowest respiratory 

rates. Viral cases had the lowest leukocyte count, had lower mean axillary temperature and 

were less anemic. Neutrophil levels were statistically higher for the bacterial etiology, but 

the overlap between etiologies was too great for this to serve as a classifier. 

From the 195 patients, 210 peripheral blood samples (including 15 replicates, four of which 

were excluded from downstream analysis) were assayed for protein composition using the 

SOMAScan platform (see Fig. 1). Sample characteristics and designations of single (167 

samples) and mixed infections with controls (39 samples) can be found in Table S2 and S3, 

respectively.  

Differential markers 

Using the SOMAScan data, 219 and 151 differentially expressed protein markers (FDR<0.01) 

were identified in the BvV comparison (Table S4 A, heatmap in Fig. 2) and the BvVM 

comparison (Table S4 B, heatmap in Fig. S2 B), respectively. The differential protein 
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expression signatures determined by SOMAscan are shown in the heatmap in Fig. 2 A. This 

signal is manifest only after marker selection; unsupervised clustering in the space of the 

entire 1107 protein panel does not reveal a clear dominant structure related to infectious 

etiology (Fig. S2 A). Box and whisker plots of the 100 top ranked markers are depicted in Fig. 

S4. 

Performance of predictive diagnostic models 

Our chief aim was to develop a protein-based biomarker panel to distinguish bacterial from 

other etiologies of clinical pneumonia with accuracy which would support clinical decision-

making. RF and EN models had generally similar performance, with RF models performing 

slightly better overall (see Table S5 C and D) and declining in performance more smoothly 

with fewer input markers. We therefore focused subsequent analyses on RF results. 

In single etiology samples, performance of the BvV model (evaluated on the held-aside 

validation samples) was excellent. Sensitivity and specificity for bacterial cases using all 219 

markers were 90% and 100%, respectively meeting the Foundation for Innovative New 

Diagnostics (FIND) proposed criteria for a diagnostic test of these characteristics.14 

Furthermore, sensitivity and specificity remained at 90% and 85% with only 5 markers, 

potentially simplifying the translation to a field deployable diagnostic. Accuracy was 94% 

(95% CI 0.79, 0.99) and 88% (95% CI (0.71, 0.96)), with 219 and 5 markers, respectively 

(Table 2 A and Table S5 A). 

The BvVM RF model had an accuracy of 87% (95% CI (0.74, 0.95), a specificity of 100% and a 

sensitivity of 68%. When decreasing the panel size to only 5 markers, accuracy decreased to 

60%, specificity to 64%, and sensitivity to 53% (see Table 2 and Table S5 B). 

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article/doi/10.1093/cid/ciaa1843/6127315 by guest on 06 Septem

ber 2021

https://paperpile.com/c/rdyarf/fIHe


Acc
ep

ted
 M

an
us

cri
pt

On healthy controls and mixed infection samples, the BvV RF model performed well with 

95% sensitivity, 84% specificity, and 90% accuracy (95% CI (0.76, 0.97)) (Table 2 B). The 

model correctly predicted the majority of bacterial infections and bacterial co-infections, 

successfully distinguishing these from non-bacterial infections (malaria and/or virus). Table 

S6 depicts BvV and BvVM RF model statistics on mixed infection samples without controls. 

To compare, we found that the clinical ALMANACH models were uniformly inferior to our 

molecular predictors, with a particularly dramatic loss of specificity (see Table S7 for 

details). 

Genetic algorithm-derived and surrogate markers 

Marker subsets (with N ranging from 5 to 100 markers) were selected using genetic 

algorithms. Since the results can be nondeterministic, the method was re-run multiple 

times. Across all runs of the genetic algorithm, IL1RL1, HMGB1, PDCD1LG2, ROBO2, and 

PAPPA were the five protein markers most often selected. For the BvVM models, the most-

selected markers were LTA.LTB1 (Lymphotoxin alpha2/beta1 protein), TPI1, SERPINA1, 

IGFBP2, and ROR1 (see supplementary data file S2 for complete marker lists). 

We next assessed whether models were robust to replacement of individual markers by 

corresponding surrogates. This provides an index of model stability and has practical 

relevance when converting predictive models into diagnostics, which may require marker 

substitution for technical reasons. The RF (and EN) classifiers for both BvV and BvVM proved 

to be robust to the choice of specific markers: classifier accuracy did not significantly decline 

even when 20% of the markers were replaced with surrogates (Fig. S5). 
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Biological processes and pathway analysis  

To gain insight into the biology underlying the markers of bacterial and viral infection, 

multiple databases were queried for functional and pathway annotations. Terms 

significantly enriched in the bacterial or viral pneumonia marker sets were automatically 

clustered into non-redundant groups (details in methods). Marker support for terms is 

shown in Fig. 3 A and the top twenty clusters in Fig. 3 B. Individual terms (and therefore 

clusters) could be supported by both bacterial and viral markers. Most clusters had support 

from both etiologies, but a subset (blue or red circles in Fig. 3) was strongly associated with 

a single etiology. Two GO clusters, chemotaxis and regulation of neurogenesis, were driven 

almost exclusively by viral markers, while response to bacterium (our top ranked GO term 

with 39 gene hits), regulated exocytosis, antimicrobial humoral response, positive regulation 

of response to external stimulus, and signaling by interleukins were driven almost exclusively 

by bacterial markers.  

Neutrophil-related biological processes emerged as a key biological theme associated with 

bacterial infection. In particular, the regulated exocytosis GO cluster (34 gene hits) is mostly 

neutrophil- or leukocyte-related terms. Within the top 36 GO clusters (out of 1388 total 

clusters, ranked by p value), six highly significant clusters consisting of 14 to 26 gene hits 

each were identified as neutrophil processes (migration, mediated-immunity, activation, 

degranulation, activation involved in immune response, and chemotaxis). Notably, no other 

cell type or subpopulation besides neutrophils appeared within the first 243 rank-ordered 

GO clusters. The neutrophil degranulation cluster was particularly prominent in markers that 

were identified by both SOMAScan and RNA-sequencing; it contained 10 of the 24 markers 
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that emerged from that cross-platform comparison (Fig. 3 B, D & E). This was further 

demonstrated by three-way enrichment heatmap comparisons (Fig. S9). 

Comparisons between datasets and technologies 

To assess the consistency of the results, we compared gene marker sets from similar 

marker-focused studies of the same population using different technologies. First, the 

current BvVM marker set was compared with markers found in our previously published 

RNA-sequencing approach.9 Of the 1107 proteins included in our SOMAScan assay, 78 were 

represented by genes from the set of 600 significant differentially expressed markers in the 

RNA-sequencing analysis (of ~12,000 expressed genes) (Data file S1 D). Twenty-five of these 

78 genes (corresponding to 24 proteins) proved to be statistically significant markers in our 

comparison (Fig. S6). 

In the RNA data, 18 of those 24 proteins were markers for bacterial infection and 6 were 

markers for malaria infection. A heatmap of these markers highlights the strong class 

distinctions (Fig. S7). Haptoglobin (HP) is markedly down and hemoglobin up in malaria 

samples, but the majority of markers are elevated in bacterial samples (Fig. 3 E, and see Fig. 

S6 and Fig. S8 for details on the malaria markers). When we used the SOMAScan data for 

these 24 markers to build RF and EN models, they performed similarly to 25 protein marker 

models optimized by the genetic algorithm (Table S5 E and F), suggesting that those 24 

markers would also be good candidate markers for a diagnostic assay. 

We also compared the SOMAScan marker sets with findings from a previous protein-based 

immunoassay (the RBM multiplex immunoassay).13 Five markers were identified as 

differential markers for bacterial pneumonia in both datasets: CKM, HP, IL6, MPO, and 
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SERPINA1 (Fig. 3, Fig. S6). Three markers, Haptoglobin (HP), Myeloperoxidase (MPO), and 

Alpha1-Antitrypsin (SERPINA1), were identified as significant markers in all three studies 

(SOMAScan, multiplex immunoassay, and RNA-sequencing) despite the very different 

methodologies employed (Venn diagram in Fig. 3D). Two markers appear in both the 

SOMAScan and multiplex immunoassay data as likely markers for malaria infection, VCAM1 

and APCS.13  

 

Discussion  

We present diagnostic models based on aptamer-derived blood protein signatures that 

accurately discriminate bacterial from viral infections of pediatric febrile respiratory illness 

with as few as 5 protein markers (94% accuracy, 90% sensitivity, 85% specificity), 

meeting/exceeding the FIND-sponsored expert consensus guidelines on diagnostics for 

bacterial pneumonia.14 Accurate discrimination of bacterial infection from both viral and 

malaria etiologies was achieved with  25 markers.  

Because the BvV model was highly predictive, we investigated the proteins to understand 

the processes that typify bacterial and viral infections. Gene enrichment and pathway 

analyses showed neutrophil-dominated processes in bacterial infections. The consistency of 

a neutrophilic host response signature is highlighted by common signals (18 bacterial 

markers) across prior studies at both the RNA and protein level, despite model and platform 

differences (Fig. 3 E). Reinforcing this observation, a cross-platform 24 marker set, highly 

enriched for neutrophil-associated proteins (neutrophil degranulation being prominent), 

proved to be equally effective in differentiating bacteria versus other (Table S5 F). Ten of the 
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18 bacterial markers were associated with bacterial airway inflammation, modifying, 

mitigating or augmenting neutrophil immunological responses. For example, SERPINA1 and 

SLPI are both protease inhibitors regulating neutrophil elastase activity.19–21 

Bacterial pneumonia diagnostics are a challenge globally for all countries in pediatric 

populations with a need for better diagnostics to improve antibiotic stewardship and 

mortality outcomes. The limitations of the current WHO clinical pneumonia definition were 

improved upon by our strict further criteria, laboratory testing, and consensus review to 

produce the best possible set of pneumonia cases. Our objective was to develop protein-

based predictors that could eventually be ported to a field-deployable device for 

discriminating bacterial from non-bacterial pneumonia. While larger validation studies are 

needed, this study provides strong evidence that a blood-based protein panel of limited size 

can achieve the sensitivity and specificity required to guide clinical decisions regarding 

antibiotic therapy. By identifying biologically plausible sets of markers, the groundwork for 

development of a point of care test has been established, particularly considering that some 

of these markers (haptoglobin, SERPINA1, MPO etc.) are relatively simple to measure. We 

identified surrogate proteins that can be exchanged for markers in our models without loss 

of accuracy, allowing flexibility in developing a diagnostic test. Though optimized for single 

etiology samples, our models performed well in mixed infections representing the natural 

complexity of febrile respiratory illness. Importantly, these markers seem to discriminate 

appropriately, even in the context of a high underlying malnutrition or HIV prevalence, such 

as the one in Manhiça, southern Mozambique.22,23 This is a significant benchmark, as a 

predictor must be effective across the spectrum of real-life clinical scenarios. Finally, our 

study provided insights into the host response biology in our discriminant marker proteins. 
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These observations may inform marker selection in future prospective studies, and together 

with our specific models and markers may facilitate the development of the optimized 

markers for pneumonia diagnosis with the eventual transition to point-of-care tests that are 

needed to change future clinical practice, particularly for those settings where associated 

case-fatality rates for common infections remain high and diagnostic tools scarce. 
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Figure Legends 

Fig. 1 Data analysis workflow. 210 samples passed QC on the SOMAScan assay to quantify 1107 

proteins. The 171 single etiology samples were classified as malaria, virus, or bacteria and included 

12 repeats that were randomly split between the training and validation datasets; the 4 repeats that 

ended up in the validation dataset were excluded from downstream analysis. The remaining 39 

samples consisted of 16 healthy community controls and 23 samples with mixed etiology. Single 

etiology samples were divided into a training set of 120 and a validation set of 47 samples. The 

training data were used for identifying differentially expressed markers between bacteria and virus, 

or bacteria and malaria or virus samples. Genetic algorithms were used to select the best 5, 10, 15, 

25, 50, and 100 markers. Classifiers for Bacteria vs Virus (BvV) and Bacterial vs Malaria or Virus 

(BvVM) were trained using Random Forest (RF) and Elastic Net (EN) algorithms. Models were tuned 

using cross validation, and final model performance was assessed using the validation data. In order 

to contend with the situation where a marker is unavailable (e.g., due to difficulty in measuring the 

marker in a clinical setting), we determined a set of surrogate markers for each differential marker 

using information correlation, a criterion based on mutual information. We then assessed model 

performance when 10% or 20% of differential markers were substituted with their corresponding 

surrogates. 

 

Fig. 2. Heatmap of the Bacteria vs Virus model and top 10 rank-aggregated markers (A) 

Hierarchically clustered heatmap of normalized SOMAscan expression values for 219 significant 

markers (FDR<0.01) from the SOMAScan Bacteria vs Virus (BvV) comparison in the space of all single 

etiology bacterial and viral samples in this study (see Fig. S10 for full resolution with details). Top 

track: viral (yellow) and bacterial (blue) etiology. (B) Top 10 rank-ordered protein markers (highest to 

lowest, left to right) in our BvV and BvVM marker sets. CCL23 (C-C motif chemokine 23),  CSF3 

(Granulocyte colony-stimulating factor), CX3CL1 (Fractalkine), ESD (S-formylglutathione hydrolase), 
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HP (Haptoglobin), RETN (Resistin), PLA2G2A (Phospholipase A2), LCN2 (Neutrophil gelatinase-

associated lipocalin), IL1RL1 (Interleukin-1 receptor-like 1), NTN4 (Netrin-4), SERPINA1 (Alpha-1-

antitrypsin), IL6 (Interleukin-6), ITIH4 (Inter-alpha-trypsin inhibitor heavy chain H4), S100A9 (Protein 

S100-A9), KYNU (Kynureninase), SLPI (Antileukoproteinase) 

 

Fig. 3 Pathways and gene enrichment analysis with differential markers shared between this 

study, RNA-sequencing, and RBM multiplex assay studies with the same study population. (A,B,C) 

Clustered terms enriched in our bacteria vs virus 2-class comparison. Each node represents one term 

describing a biological process or pathway. Edges connect similar terms (similarity score (κ) > 0.3); 

the thickness of the edge represents the similarity score. Each term is represented by a circle node, 

where the size is proportional to the number of input markers. The underlying file can be found as 

an additional supplementary file (“Cytoscape BvV network”).  (A) Distribution of support for each 

node from bacterial (red) and viral (blue) markers, i.e. each pie sector is proportional to the number 

of hits that originated from a particular marker list. (B) Nodes colored by their membership in one of 

the top 20 clusters. Each cluster is named for the term (node) with the best p-value. Inset table: 

neutrophil degranulation, considered as a sub-pathway of regulated exocytosis, was detected as the 

major biological GO pathway shared between the BvVM marker set of this study and RNA-

sequencing data. Of the 18 bacterial markers overlapping between the studies, 10 markers are 

directly involved in neutrophil degranulation (see Fig. 3E for all 18 markers). (C) Bacteria vs Virus 

marker set with nodes colored by p-value. The darker the color, the more statistically significant the 

node (see legend for p-value ranges). (D and E) RBM and SOMAScan protein aliases were converted 

into their gene names to compare markers between studies. (D) Overlap of selected marker sets: 

SOMAScan (BvVM, n=156), RNA-Sequencing (BvVM, n=431), and RBM immunoassay (BvV and BvM, 

n=21). (E) Two direct comparisons of marker sets derived through the same approach (bacteria vs 

virus (BvV) and bacteria vs virus or malaria (BvVM)); filled circles indicate a marker identified in the 
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specified analysis. Markers that overlapped in the two direct comparisons are depicted by filled 

circles, but not between the four individual marker sets. The color indicates the direction of 

expression change. Red:  upregulation in bacterial samples; dark blue: downregulation. Light grey: 

the marker was not detected or not included in at least one of the two marker sets. Haptoglobin 

(HP), Myeloperoxidase (MPO), Alpha1-Antitrypsin (SERPINA1) 
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Table 1 Patient Demographic and Disease Characteristics at Admission  

Features on admission (signs, 

symptoms, and laboratory results) 

Bacteria and 

PCR 

Bacteria 

No.  Malaria No. Virus No. P† 

Age (month), mean (SD) 
29.7 (29.4) 69 

26.3 

(23.3) 
42 

19.4 

(19.9) 
48 0.12 

Female sex, n (%) 24 (45) 69 28 (67) 42 23 (48) 48 0.07 

Clinical Examination results on 

arrival  
       

Weight (kg), mean (SD) 
10.2 (4.8) 69 

10.3 

(4.6) 
42 9 (3.4) 48 0.44 

Height (cm), mean (SD) 
80.3 (18.7) 69 

79.7 

(18) 
42 

74.5 

(14.9) 
48 0.35 

MUAC (cm), mean (SD) 
13.5 (2) 69 

14.3 

(2) 
40 

14.0 

(1.5) 
48 0.75 

Temperature (°C), mean (SD)  
38.2 (1.2) 69 

38.4 

(1.4) 
42 

37.6 

(1.1) 
48 0.041 

Respiratory rate (cycles per min), 

mean (SD) 
60.3 (14.7) 69 

53.1 

(8.7) 
40 

56.7 

(9.4) 
48 0.02 

Nutritional status        

WAZ > -1 SD, n (%) 16 (24.6) 69 17 42 24 (50.0) 48  
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(40.5) 

WAZ -1 SD to -3 SD, n (%) (low to 

severe underweight) 
30 (52.2) 69 

18 

(42.9) 
42 17 (35.4) 48  

WAZ < -3 SD, n (%) (severe 

underweight) 
12 (23.2)  69 

7 

(16.7) 
42 7 (14.6) 48  

WAZ: Mean (SD) 
-2 (1.8) 69 

-1.5 

(1.7) 
42 -1.5 (1.7) 48 0.09 

Anaemia status on admission         

Hemoglobin (g/dL), mean (SD) 
8.6 (2.2) 69 

7.4 

(2.3) 
40 

10.0 

(2.1) 
48 <0.0001 

Hematocrit, mean (SD) 
26.1 (6.2) 69 

22.1 

(7) 
40 

29.7 

(5.9) 
48 <0.0001 

No anaemia (HCT > 33%), n (%) 4 (6) 69 2 (5.0) 40 14 (29.2) 48  

Mild anaemia (HCT 25 - | 33%), n 

(%) 
31 (46.3) 69 

11 

(27.5) 
40 25 (52.1) 48  

Moderate anaemia (HCT 15 - | 

25%), n (%) 
32 (47.8) 69 

22 

(55.0) 
40 8 (16.7) 48  

Severe anaemia (HCT ≤ 

15%), n (%) 

0 (0) 69 
5 

(12.5) 
40 1 (2.1) 48  

Micro-biology and other laboratory 

results on admission 
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HIV status positive, n (%) 25 (36.2) 69 3 (7.1) 42 5 (10.4) 48 <0.0001 

Viral coinfections, n (%) 32 (46) 69 22 (52) 42 - - 0.56⫪ 

Positive blood culture, n (%) 29 (42.0) 69 0 (0) 42 0 (0) 48  

WBC count (103/uL), mean (SD) 
21.3 (13.1) 69 

14.2 

(8.4) 
41 

10.8 

(2.7) 
48 <0.0001 

Neutrophil granulocytes (103/uL), 

mean (SD) 
13.7 (9.8) 57 5.2 (3) 32 4.8 (2.4) 45 <0.0001 

Plasmodium density 

(parasites/uL), geometric mean 

(SD) 

0 (0) 69 
5.9 

(5.8) 
42 0 (0) 48  

Malaria positive 
0 (0) 69 

42 

(100) 
42 0 (0) 48 <0.0001 

Chest X-Ray results        

Normal, n (%) 
9 (15.0) 69 

42 

(100) 
42 27 (56.3) 48 <0.0001 

Other infiltrate/abnormality, n 

(%) 
7 (11.7) 69 0 (0) 42 21 (43.8) 48  

Primary endpoint pneumonia, n 

(%) 
44 (73.3) 69 0 (0) 42 0 (0) 48  

Evolution during admission         

Length of admission (days): Median 
4.1 6 3.4  4 3.8 4 0.29 
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(IQR) (2 - 6.1) (2 - 

5) 

 (2.2 - 

4.8) 

Case fatality rate (in hospital 

death), n (%) 
3 (4.4) 6 0 (0) 4 0 (0) 4 0.15 

 

HCT = hematocrit; IQR = Interquartile Range; MUAC = middle upper arm circumference; n= number of patients, SD = 

Standard Deviation; WAZ = weight-for-age Z score, Z-score cut-off point of <-2 SD and <-3 SD is classified as low 

weight for age and severe undernutrition, respectively. † P-values for continuous variables were estimated through 

analysis of variance (Kruskal-Wallis test). P-values for categorical variables used Chi Square test.⫪ P-value of the 

categorical variable was estimated through Fisher’s exact test. 

 

The “bacteria” group includes blood or pleural fluid culture-positive samples, samples PCR-positive for respiratory 

pathogens, and samples with positive leukocytosis and a dense radiographic consolidation (endpoint pneumonia) as 

independently assessed by two experts. Samples that were culture or PCR positive for contaminant bacteria were 

excluded. 
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Table 2 Single etiology and mixed infection validation set predictive diagnostic results  

(A) Confusion matrices and performance specifications for models using all (219 and 151, 

respectively)  markers and 5 markers, as well as accuracy for models using 5, 10, 15, 25, 50, 100, and 

219 markers with 0%, 10% or 20% surrogates. The BvV validation set contains 19 bacteria and 13 

virus samples, and the BvVM samples 19 bacteria, 15 malaria, and 13 virus samples. (B) Confusion 

matrices and performance statistics with all (151) or only 5 markers depicted. The mixed infection 

test set contains 39 samples. All samples that contain the term “bacteria” are considered positive 

bacterial pneumonia cases.  
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Figure 1 
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Figure 2 
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Figure 3 
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