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Abstract

Background

Visceral leishmaniasis (VL) is a zoonotic protozoal vector-borne disease that is a major pub-

lic health challenge. In Argentina, canine (CVL) and human visceral leishmaniasis (HVL)

have recently emerged. There is a lack of standardised diagnostic tests for CVL, which hin-

ders control of CVL and HVL.

Methodology/Principal findings

Sampling was carried out in Puerto Iguazú, Argentina, comprising 190 asymptomatic, oligo-

symptomatic and polysymptomatic dogs. The following diagnostics were applied: micros-

copy of lymph node aspirate (LNA); three immunochromatographic rapid diagnostic tests

(RDTs), prototype rK28-ICT, rK39-ICT (both Coris BioConcept), commercial rK39 (InBios);

ELISA for IgG, IgG1 and IgG2, against rK28, rK39 or crude lysate antigen. DNA detection

and analysis, with 30 dogs, was of the ITS1 region using skin samples, and loop-mediated

isothermal amplification (LAMP; Eiken Loopamp) of buffy coat, skin scrape or LNA. 15.4%

of dogs were positive by LNA microscopy. The rK28 RDT had higher seropositivity rate

(61%) than either a prototype rK39 RDT (31.4%) or commercial rK39 RDT (18.8%), without

cross-reactivity with six other pathogens. IgG anti-rK39 ELISA antibody titres, but not IgG2,

were positively correlated with number of clinical signs. LAMP with LNA had a higher positiv-

ity rate than PCR; buffy coat sampling was more sensitive than skin scrape. ITS1 confirmed

Leishmania (Leishmania) infantum as the agent of CVL. Leishmania (Viannia) spp. was

detected in skin samples from two dogs, compatible with Leishmania (Viannia) braziliensis.

Conclusions/Significance

Seroprevalence confirmed rapid increase in CVL in Puerto Iguazú. The rK28 RDT test

potentially has great value for improved point-of-care diagnosis. Given cost reduction and
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accessibility, commercial LAMP may be applicable to buffy coat. RDT biomarkers of CVL

clinical status are required to combat spread of CVL and HVL. The presence of Viannia, per-

haps as an agent of human mucocutaneous leishmaniasis (MCL), highlights the need for

vigilance and surveillance.

Author summary

Visceral leishmaniasis (VL) is a widespread parasitic disease caused by sand fly-borne par-

asites of the Leishmania donovani complex (L. donovani and L. infantum). Without early

diagnosis and successful chemotherapy symptomatic human VL is fatal. Dogs are reser-

voir hosts of L. infantum, and canine visceral leishmaniasis (CVL) often precedes out-

breaks in local human populations. With dogs sampled within a region of emergent CVL

in northern Argentina, we compared a range of diagnostic techniques, including micros-

copy, serology by enzyme linked immunosorbent assays (ELISAs) and rapid diagnostic

tests (RDTs), and detection and identification of LeishmaniaDNA. Novel serological

assays based on the rK28 antigen were more sensitive than those based on rK39, and with-

out evidence of cross reaction with six other canine pathogens. A commercial DNA detec-

tion kit (LAMP; Eiken Loopamp), used for the first time with CVL, was more sensitive

than PCR on lymph node samples. Unexpectedly, we also found canine infection with the

Viannia sub-genus of Leishmania. Our results reinforce the need for improved diagnosis,

vigilance, surveillance and control of CVL.

Introduction

The leishmaniases are widespread sand fly transmitted neglected infectious diseases (NTDs)

[1]. Leishmania (Leishmania) donovani is the predominant cause of human visceral leishmani-

asis (HVL) in Asia and Africa, where transmission is largely anthroponotic. In contrast, HVL

due to Leishmania (Leishmania) infantum in Latin America and the Mediterranean region,

has canine visceral leishmaniasis (CVL) as a highly effective reservoir. In Latin America, one

of the several agents of human cutaneous leishmaniasis (HCL), zoonotic Leishmania (Viannia)

braziliensis, is associated with destructive metastatic mucocutaneous leishmaniasis (MCL)

[2,3]

There is an increasing threat of spread of the leishmaniases to new regions, due to factors

such as climate change, movement of human and reservoir populations, urbanisation and

deepening of social inequalities [4].

Canine visceral leishmaniasis is endemic amongst dogs in many countries worldwide [5].

Although the transmission is principally via the sand fly vector, occasional direct and vertical

transmission between dogs has been reported [6,7]. There is a broad spectrum of CVL clinical

presentations after infection, from asymptomatic (up to 80% of infected dogs in some loca-

tions) to fatal systemic disease [8]. The most common clinical signs are systemic (generalised

lymphadenopathy, weight loss, lethargy) and cutaneous (dermatitis, alopecia, onychogrypho-

sis) [9].

Because the spread of HVL follows that of CVL [10], the diagnosis of infected dogs is vital

for public health as well as canine health and welfare. A variety of diagnostic methods is used

for CVL, both serological and molecular, positive tissue aspirate microscopy being the gold

standard [11]. There is no curative chemotherapy for dogs [12], and no canine vaccine that is
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proven to have a positive public health outcome [13]. Diagnosis is generally used to inform

selective culling of infected dogs in areas where HVL is a public health concern [14], which

can reduce HVL incidence [15]. Although there has been some recent progress in the field of

diagnosis of CVL, such as the development of rapid diagnostic tests (RDTs) based on the Leish-
mania rK28 or rK39 antigens, there remain multiple challenges in CVL diagnosis. Stray dogs

form a large part of the canine reservoir in endemic areas and these are difficult to trace, mean-

ing losses to follow up are common and repeated surveillance is difficult. Point of care RDTs

that meet the ASSURED criteria (Affordable, Sensitive, Specific, User-Friendly, Rapid and

robust, Equipment-free and Deliverable) are therefore desirable [16]. The extremely variable

clinical presentation means identification of ‘super-spreader’ dogs that are most infectious to

sand flies is difficult, particularly for those dogs that are asymptomatic. There is currently no

test that can definitively diagnose infected asymptomatic dogs. Furthermore, if a potentially

efficacious CVL vaccine becomes widely available, an RDT will be required to differentiate

vaccine-induced immune response from natural infection [17]. Other current restrictions that

hamper disease control include time delays, cost, and test limitations, in particular low sensi-

tivity meaning many positive dogs are not identified.

Canine and human visceral leishmaniasis are emerging diseases in the Iguazú department

and within Puerto Iguazú city, of Misiones Province, Argentina, near the triple border with

Brazil to the north and Paraguay to the west. Human cutaneous leishmaniasis (HCL) is

endemic in the north of the country, caused by Leishmania (Leishmania) amazonensis, L. (V.)
braziliensis and Leishmania (Viannia) guyanensis [18]. However HVL, caused by L. infantum,

is a newly emerging disease in Argentina [18]. The country’s first non-imported HVL case

occurred in Posadas, Misiones Province, in 2006, in association with cases of L. infantum CVL

in dogs [19]. In Puerto Iguazú human and canine infection with L. infantum was first con-

firmed in 2014 [20]. The location suggests that the vector (Lutzomyia longipalpis) and parasite

have spread from neighbouring Brazil and Paraguay [21]. A recent study found prevalence

rates of 26.2% in 2014 and 17.5% in 2018 amongst dogs in Puerto Iguazú [21]. As CVL is

newly emerging in Argentina, there has been little exploration of the available diagnostic tests

in the country, although a recent study compared RDTs for CVL in Oberá city, Misiones Prov-

ince, Argentina [22].

The cross-sectional study described here compares a variety of established and novel tests

for CVL, with a focus on their potential application to control the disease in Argentina.

Improved diagnoses, with molecular identification of the disease agents, are key to control

both canine and human leishmaniases. More sensitive and specific identification of CVL has a

measurable public health impact via control of the reservoir host and thus by reduction of inci-

dence and spread of HVL.

Methods

Ethics statement

The research was approved by the London School of Hygiene and Tropical Medicine

(LSHTM) Ethics Committee, and the Ethics Committee in Clinical Investigation at the Minis-

try of Health, Argentina. Formal verbal consent was obtained from each dog owner before the

clinical examination and sampling.

Study location

The study was carried out in the city of Puerto Iguazú, Misiones Province, Argentina, in July

and August 2018, with additional sampling carried out in June and July 2019. Puerto Iguazú

(population 42,849 circa 2010 [23]) is located near the triple border with Paraguay and Brazil,
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and has a subtropical climate, with no dry season (Fig 1). The Iguazú National Park of subtrop-

ical Atlantic Forest (67,698 hectares) borders the west of the municipality.

Sample collection

After dividing the city into an 80-cell grid of 400 m2 (Fig 1), 32 blocks were randomly selected

for sampling [21]. Within each block, the domicile with the highest predicted risk was chosen

using worst-scenario sampling (critical site criteria being presence of thick vegetation, high

humidity, shadow, high proportion of organic matter on the soil from fruit trees and/or animal

faeces, and bloodmeal sources from chickens and dogs) [21,24]. Up to five dogs living in or

near the selected domicile were sampled; this resulted in a total sample size of 160 dogs from

77 households.

The dog owners were asked about the dog’s characteristics (age, sex and breed). Each dog

was examined for clinical signs of CVL–lymphadenopathy, onychogryphosis, chancre, derma-

titis, weight loss, conjunctivitis, and localised or generalised alopecia–and categorised as

asymptomatic, oligosymptomatic (one or two symptoms), or polysymptomatic (three or more

symptoms).

A blood sample, fine needle aspiration of the popliteal lymph node, saliva sample, and skin

scrape were taken from each dog as follows. Two millilitres of peripheral blood were collected

from the cephalic vein into non-anticoagulant tubes and EDTA tubes. Serum was separated

from the blood in non-anticoagulant tubes after centrifugation. Buffy coat was isolated from

the EDTA whole blood by centrifugation with Ficoll-Paque PLUS density gradient medium

(GE Healthcare, Sweden). Lymph node aspiration (LNA) samples were used to prepare smears

and were also suspended in 0.2 ml of phosphate buffered saline (PBS) and stored. Skin

Fig 1. Study setting. A) Puerto Iguazú, Misiones province, Argentina, in the border region with Brazil and Paraguay, B) Puerto Iguazú city; blocks in orange show the 32

selected study sites. Map sources: for Fig 1A, https://www.simplemappr.net/; for Fig 1B, https://www.openstreetmap.org/.

https://doi.org/10.1371/journal.pntd.0009552.g001
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scrapings were obtained from healthy skin or lesions of the medial pinna using sterile needles

or surgical blades, and then stored in 0.2 ml of PBS. Saliva samples were collected using a ster-

ile swab and stored in 0.5 ml of saline solution, then centrifuged at 10,000 rpm for 10 minutes

and the supernatant retained, and stored at -20˚C; however, pilot saliva IgA ELISA yielded no

results and sampling was discontinued.

In June and July 2019, 30 additional dogs were sampled in areas of Puerto Iguazú, also

selected by worst-scenario sampling. The owners were interviewed, and the dogs examined for

clinical signs, as above. For these 30 dogs, dental broach, dental brush, and LNA samples were

taken from each animal. A barbed 25 mm dental broach (Billericay Dental Supply, UK) was

used to take a biopsy from the skin of the ear pinna, using the method employed in diagnosis

of HCL [25]. Two broach samples were taken from each dog, one placed into 2 ml of culture

medium (αMEM, M0644, Sigma-Aldrich, UK), and the other into cell lysis buffer (10 mM

TrisCl, 1 mM EDTA, 100 mM NaCl and 1% SDS). Dental brushes (DenTek, UK) were brushed

onto skin and stored in cell lysis buffer. Fine needle aspirate of the popliteal lymph node was

performed, and the samples stored in cell lysis buffer at room temperature.

Microscopy, serological and molecular tests

The diagnostic tests performed are shown in Fig 2. These included: LNA light microscopy;

three rapid immunochromatographic tests (ICTs) on serum, enzyme-linked immunosorbent

assay (ELISAs) for total IgG and IgG subclass on serum, using antigens rK39, rK28 and soluble

cell lysate antigen (CLA); loop-mediated isothermal amplification (LAMP) of DNA on buffy

coat, skin scrape and LNA; polymerase chain reaction (PCR) on LNA; PCR-restriction frag-

ment length polymorphism (PCR-RFLP) on skin broach and LNA samples. Due to availability

of reagents and kits, and sample quality, each test was not performed on every dog.

LNA light microscopy. Smears were examined from LNA samples fixed with methanol

and stained with Giemsa at 1000x magnification for the presence of Leishmania amastigotes.

Fig 2. Summary of microscopy, serology and molecular tests applied to the 2018 cohort of 160 dogs (number of

dogs to which each test was applied shown in square brackets). Samples were selected for LNA-PCR and

LNA-LAMP based on ICT results. Serology and PCR-RFLP with skin broach and LNA samples were also applied to

the additional 30 dogs sampled in 2019, and those seropositive for rK28 ICT but negative with rK39 ICT were tested

serologically for exposure to six other pathogens (Methods). Bc, buffy coat; CLA, crude lysate antigen; ICT

immunochromatographic test.

https://doi.org/10.1371/journal.pntd.0009552.g002
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Antigen sources for use in prototype ICTs and ELISAs. Recombinant proteins rK28

(CTK Biotech, USA) and rK39 (RAG0061, Rekom Biotech, Spain) were obtained commer-

cially. Leishmania donovani whole-cell promastigote lysate was derived from the culture-

adapted strain MHOM/IN/80/DD8, grown in αMEM with supplements as described previ-

ously [26]; cell lysate was prepared as described previously [27].

ICT. Three lateral flow ICTs were applied with the serum samples: the Kalazar Detect

Canine Rapid Test (Inbios Inc., USA, with protein A detection of IgG) employing rK39, used

as per manufacturer’s instructions, and two prototypes (both with protein G detection of IgG)

with rK39 (VL Sero K-SeT rK39) or with rK28 (VL Sero K-SeT rK28) from Coris BioConcept,

Belgium. rK39 is comprised of several repeat regions of the L. infantum kinesin protein; in

contrast the synthetic fusion protein rK28 has two kinesin repeat regions flanked by repeat

regions of the HASPB protein, all derived from L. donovani [28]. These two novel RDTs were

composed of a nitrocellulose strip sensitized with recombinant antigen (rK28 or rK39, sourced

as above) and with the Protein G conjugated to colloidal gold, housed within a plastic cassette

with a buffer application well and a test/reading window. Serum/plasma at volumes of 3.5 μl

was pipetted onto the sample application zone in the test/reading window, and then 120 μl of

buffer solution was dispensed into the buffer application well. After 15 minutes, a test was

deemed valid if a red control band was present in line with the “C” on the cassette and was

deemed positive if a second band was present in line with the “T”. If no band was visible at the

“T”, then the test was deemed negative.

ELISA. ELISAs were optimised by checkerboard dilution of serum and secondary conju-

gates. ELISAs were then performed using a CLA of L. donovani promastigote strain MHOM/

IN/80/DD8, and rK39 and rK28 antigens as described above and in Fig 2. Flat-bottom 96-well

ELISA plates (735–0465, VWR, UK) were coated separately with 2 μg/ml of CLA or 0.3 μg/ml

of rK28 or rK39, diluted in coating buffer (15 mM Na2CO3, 34 mM NaHCO3, pH 9.6) at

100 μl/well and incubated with an adhesive cover at 4˚C overnight. Following three washes

with PBS/0.05% Tween 20 (PBST), 200 μl/well of blocking buffer (PBS/2% skimmed milk pow-

der, Premier Foods, UK) was applied and incubated for 2 hours at 37˚C. Following three PBST

washes, 100 μl/well of canine serum diluted 1:200 in PBST/2% milk (PBSTM) was added. After

incubation at 37˚C for 1 hour and six washes in PBST, 100 μl/well of one of the following

HRP-conjugated secondary antibodies diluted at 1:2,000 in PBSTM was added: goat anti-dog

IgG1 (A40-120P, Bethyl Laboratories, USA); sheep anti-dog IgG2 (A40-121P, Bethyl Laborato-

ries); rabbit anti-dog IgG (304-035-003; Jackson Immunoresearch, USA). Following incuba-

tion at 37˚C for 1 hour and six PBST washes, reactions were developed using 100 μl/well of

ABTS substrate (50-62-00, SeraCare, USA) and stopped with 50 μl of 2M H2SO4; absorbance

values were determined at a wavelength of 405 nm. Samples were assayed on duplicate plates

simultaneously. Positive controls were obtained from local archived positive sera. Negative

controls were from non-endemic dogs without Leishmania or Trypanosoma cruzi infection.

Cut-off values were set by defining the mean value from serum of uninfected dogs plus three

standard deviations.

PCR. DNA extraction from the LNA samples (Fig 2) was first carried out using the DNA

Puriprep-S Kit (Inbio Highway, Argentina) as per the manufacturer’s instructions with minor

modification. Leishmania spp. heat shock protein 70 gene (HSP-70) DNA was amplified using

PCR-N primers as described previously [29]. The reactions were carried out in a final volume

of 25 μl containing 5 μl of DNA template, 0.5 μM of primers F25 (ggacgccggcacgattkct) and

R617 (cgaagaagtccgatacgaggga) and 1x GoTaq Green Master Mix, (Promega, USA). Amplifica-

tion conditions were: 95˚C for 5 min; 40 cycles at 95˚C for 40 sec, 65˚C for 1 min, 72˚C for 1

min; 72˚C for 10 minutes. Reaction products were electrophoresed on 2% agarose gel stained

with Sybr Green (Invitrogen, USA).
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PCR-RFLP. For the 30 dogs sampled in 2019, PCR-RFLP was carried out with broach and

LNA samples; RFLP could not be applied to brush samples, because they did not yield PCR

products. Samples were placed in 2 ml of cell lysis buffer solution prior to DNA extraction

using the QIAamp DNA Mini Kit (51304: Qiagen, UK). Briefly, 1/10th volume of Proteinase K

and an equal volume of buffer AL were added to either 400 μl or 1 ml of lysis buffer containing

the samples. After incubation at 56˚C for 10 minutes, absolute ethanol equal to the sample vol-

ume was added, and thereafter the protocol continued according to manufacturer’s instruc-

tions. DNA was eluted in 200 μl buffer AE.

Extracted DNA were used in PCR for species identification using either the ITS1 region

[30], or HSP-70/PCR-N [29]. Reactions consisted of 1 U BioTaq polymerase and supplied

NH4 reaction buffer (Bioline, UK), 1.5 mM (for ITS1) or 2.5 mM (for HSP-70) MgCl2, 200 μM

dNTPs, 0.5 μM of ITS1 primers LITSR (ctggatcattttccgatg) and L5.8s (tgataccacttatcgcactt), or

HSP-70/PCR-N primers described above. In addition, PCR-N reactions contained 1 x High

GC Enhancer (New England Biolabs, UK). Amplification conditions for ITS1 were: 1 cycle of

94˚C for 2 mins; 33 cycles of 94˚C for 30 secs, 53˚C for 30 secs, 72˚C for 1 min; and 1 cycle of

72˚C for 10 mins. Amplification conditions for HSP70/PCR-N were: 1 cycle of 95˚C for 5

mins; 35 cycles of 94˚C for 40 secs, 61˚C for 1 min, 72˚C for 1 min, and 1 cycle of 72˚C for 10

mins.

Following the ITS1 PCR, half of the reaction was digested withHaeIII (R0108S, New

England Biolabs) in supplied 1x buffer, and then electrophoresed on 3% or 3.5% agarose gel.

Additionally, ITS1 amplicons from two of the skin samples were subcloned into pGEM-T easy

vector (A1360: Promega, UK), and DNA sequences from each of 12 resultant clones were ana-

lysed. For PCR-N, the amplicon was electrophoresed directly on 1% gel.

LAMP. LAMP was performed on skin scrapes (skin LAMP), buffy coat (bc LAMP) and

LNA (LNA LAMP), for the 2018 cohort of dogs (Fig 2). First, DNA was extracted from LNA

samples as described above, and using DNeasy Blood & Tissue Kit (Qiagen, Germany) for skin

scrapes and buffy coat suspensions. The Loopamp LeishmaniaDetection kit (Eiken Chemical,

Tokyo, Japan), which amplifies 18S rDNA (nuclear) and kinetoplastid DNA sequences, was

used according to manufacturer’s instructions. Briefly, 30 μl of a 1:5 dilution of DNA in water

was added to the reaction tube containing the lyophilised reagents, which was then inverted to

reconstitute the dried reagent in the cap. Samples were incubated at 65˚C for 40 minutes, and

then the reaction was terminated by heating at 95˚C for 2 mins. Positive samples generate a

turbid green colour under UV light at 350–370 nm using LE Ultra Violet LED Flashlight/

Blacklight Torch (Lighting Ever, Birmingham, UK) or UVGL-58 Lamp (UVP, California,

USA).

Tests for other pathogens. Serum samples from the 2019 group of 30 dogs that were posi-

tive with the prototype rK28 ICT but negative with the rK39 ICT were tested for other vector-

borne pathogens, to investigate the possibility that higher positive results with the rK28 ICT

were due to cross-reaction with other infections. The samples were subjected to a serology-

based RDT (SNAP 4Dx Plus Test, Idexx, UK) which screens for Dirofilaria immitis, Ehrlichia
canis, Ehrlichia ewingii, Anaplasma phagocytophilum, Anaplasma platys and Borrelia burgdo-
feri sensu lato. The tests were used as per the manufacturer’s instructions.

Statistical analysis

Agreement between tests for the 160 dogs (Fig 2) was calculated using Fisher’s exact test, and

Cohen’s kappa coefficient (for which values of 1.00–0.81 were interpreted as excellent agree-

ment, 0.80–0.61 good, 0.60–0.41 moderate, 0.40–0.21 weak, and 0.20–0.00 negligible). To mea-

sure association between IgG1 and IgG2, and disease severity, Pearson’s correlation coefficient
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and one-way analysis of variance (ANOVA) were performed. P values < 0.05 were considered

statistically significant.

Results

Population characteristics and clinical signs

Demographic data available for the 160 dogs enrolled in 2018 and for the additional 30 dogs in

2019 are summarised in Table 1. Frequency of each clinical sign for the 160 dogs is also shown.

Overall, 52/160 (32.5%) of the dogs were asymptomatic, 78/160 (48.75%) oligosymptomatic,

and 30/160 (18.75%) polysymptomatic. Fig 3 shows examples of some of the clinical features

observed.

Lymph node microscopy

Twenty one of 136 (15.4%) dogs enrolled in 2018 examined by LNA microscopy were positive

for the presence of Leishmania amastigotes.

Serology

ICTs and ELISA. Of dogs enrolled in 2018, 30/160 (18.8%) of serum samples were posi-

tive with the commercial rK39 test (InBios) and 27/86 (31.4%) with the rK39 prototype

(Coris). The rK28 prototype (Coris) had a significantly greater apparent sensitivity with 61/

100 (61%) positive. Table 2 shows the agreement between the serological tests and LNA

microscopy by Cohen’s kappa coefficient. The commercial rK39 test had good concordance

with the prototype rK39 test (κ = 0.739), moderate concordance with microscopy (0.463), and

only weak concordance with the prototype rK28 test (0.352), explicable by the substantially

higher seropositivity of the prototype rK28 test.

Total IgG and IgG2 levels were assessed further, by anti-rK39 and anti-CLA ELISAs with

133 dogs. The number of dogs positive on each ELISA were: rK39-IgG 31/133 (23.3%);

CLA-IgG 58/133 (43.6%), rK39-IgG2 64/133 (48.1%), CLA-IgG2 41/133 (30.8%). Thus, IgG2

was more sensitive than IgG with rK39, and less sensitive than IgG with CLA. However, in all

Table 1. Demographic and clinical data for 2018 (160 dogs), and where available additionally for 2019 (30 dogs).

Frequency %

Sex, male 96/190 50.5

Age (years)

0.5–1 10/190 5.3

1–10 153/190 80.6

>10 16/160 10.0

Unknown 6/160 3.8

Mixed breed 173/190 91.1

Clinical signs

Alopecia 60/160 39.4

Dermatitis 17/160 11.4

Chancre 27/160 16.9

Conjunctivitis 5/160 3.1

Onychogryphosis 12/160 7.5

Lymphadenopathy 69/160 43.1

Weight loss 10/160 6.3

https://doi.org/10.1371/journal.pntd.0009552.t001
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clinical groups IgG2 levels were correlated with total IgG in both rK39 ELISA (r = 0.912, 95%

CI: 0.878, 0.937, p<0.001) and in CLA ELISA (r = 0.943, 95% CI: 0.920, 0.959, p<0.001).

For 34 dogs with a positive PCR and/or LAMP result (see below), the average positivity rate

was 49.3% across all four ELISAs, highest with rK39-IgG ELISA (58.8%) and lowest on

rK39-IgG2 ELISA (38.2%). Eighteen canine sera from Argentina plus four healthy control sera

from non-endemic dogs were tested with anti-rK28 IgG and anti-rK28 IgG2 ELISAs. There

was 100% agreement between both ELISAs, with 16/18 dogs (88.9%) positive on both.

Molecular tests: PCR and LAMP

LNA, skin and buffy coat. 30 dogs of the 2018 cohort were selected for LNA PCR, and for

LNA, skin and buffy coat LAMP. By LNA-PCR using PCR-N primers, 3/30 (10%) were posi-

tive and by LNA LAMP 22/30 (73%) positive when visualised with UV light.

To assess the validity of skin scrape samples for use in LAMP, samples from a group of 31

dogs with variable clinical signs were tested. 11/31 (35.5%) were LAMP positive under UV

Fig 3. Examples of observed clinical signs of canine visceral leishmaniasis: A. localised alopecia, B. ear chancre, C. chancre in

the gluteal region, D. onychogryphosis.

https://doi.org/10.1371/journal.pntd.0009552.g003
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light. A higher proportion with skin lesions (7/9, 77.8%) were positive than those without

lesions (7/22, 31.8%; p<0.05). Seven dogs with negative results on skin LAMP, and 7 with posi-

tive results, were subjected to a reference test of buffy coat LAMP, and all were positive, indi-

cating that sensitivity of skin LAMP was lower than that of buffy coat LAMP (Fig 4).

Assessing cross-reactivity

The high seropositivity rate among rK28 RDTs suggested that this was the most sensitive of

the serological tests. Twenty four of 28 dogs that were positive with the rK28 ICT were negative

with the commercial rK39 ICT. To assess whether the high seropositivity of rK28 might be due

to cross reactivity with other pathogens, the 24 dogs with inconsistent results were tested by

Table 2. Estimated concordance between diagnostic tests by Cohen’s kappa coefficient (95% confidence intervals). �p<0.01, ��p<0.05 by t-test.

rK39-ICT (Coris)

n = 86

rK28-ICT (Coris)

n = 100

ELISA (n = 133) LNA-microscopy

n = 136rK39-IgG CLA-IgG rK39-IgG2 CLA-IgG2

rK39-ICT (InBios)

N = 160

0.739� (0.578,

0.901)

0.352� (0.182, 0.521) 0.780� (0.649,

0.912)

0.398� (0.234,

0.563)

0.339� (0.176,

0.502)

0.611� (0.454,

0.768)

0.463� (0.252, 0.675)

rK39-ICT (Coris) – 0.443� (0.259, 0.627) 0.681� (0.505,

0.857)

0.481� (0.287,

0.674)

0.393� (0.192,

0.593)

0.639� (0.457,

0.820)

0.437�� (0.174, 0.699)

rK28-ICT (Coris) – – 0.310� (0.138,

0.483)

0.302� (0.119,

0.485)

0.217� (0.029

0.405)

0.320� (0.146,

0.494)

0.253� (0.067, 0.440)

rK39-IgG – – – 0.500� (0.346,

0.654)

0.433� (0.277,

0.588)

0.698� (0.559,

0.837)

0.402�� (0.172, 0.633)

CLA-IgG – – – – 0.426� (0.272,

0.581)

0.668� (0.538,

0.799)

0.132 (-0.065,0.328,)

rK39-IgG2 – – – – – 0.497� (0.348,

0.646)

0.094 (-0.105, 0.291)

CLA-IgG2 – – – – – – 0.238�� (0.01, 0.467)

https://doi.org/10.1371/journal.pntd.0009552.t002

Fig 4. Skin-LAMP and buffy coat LAMP under UV light show higher sensitivity of buffy coat LAMP (samples 1–8); 9, distilled water (no

template); 10, positive control.

https://doi.org/10.1371/journal.pntd.0009552.g004
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LNA PCR and LNA LAMP. Of the 24 negatives with the rK39 ICT, with corresponding DNA

samples eighteen were positive by LAMP, of which 2 were positive by PCR, and thus the rK28

results were not explicable by false positivity.

We also tested 10 positives by rK28 that were negative with one or both rK39 ICTs using

the SNAP 4DX test to detect serological cross reactions with other canine infections. A single

sample was serologically positive for A. phagocytophilum/A. platys suggesting prior exposure/

infection but without confirmation of current co-infection. Thus, rK28 seropositives indicated

presence of Leishmania infection, and, with the possible exception of this one sample, no cross

reactions with any of the six other canine infectious diseases tested.

Disease severity: correlation of diagnostic profile and clinical signs

A higher level of total IgG by anti-rK39 ELISA was observed with dogs recorded (Table 1) as

having increasing number of clinical signs (p = 0.045), analysed according to asymptomatic,

oligosymptomatic or polysymptomatic status. However, there was no statistically significant

association between this limited classification of clinical signs and antibody level with anti-

rK39 IgG2, anti-CLA IgG, anti-CLA IgG2, anti-rK28 IgG or anti-rK28 IgG2 ELISAs (Fig 5).

Co-endemicity of canine L. infantum and L. braziliensis infections

Identification of Leishmania species was performed via ITS1/HaeIII PCR-RFLP. This analysis

identified L. infantum as the agent of visceral leishmaniasis in the dogs. However, an ITS1/

HaeIII PCR-RFLP pattern consistent with L. (Viannia) braziliensis was identified with samples

from the ear lesions of two dogs (Fig 6). Amplicons from the two dogs were cloned into plas-

mids, and, for each of the two dogs, 12 plasmid colonies were sequenced; GenBank accession

numbers MW683339 and MW683340 are the derived representative sequences. Consistent

with the skin lesion clinical presentations, BLAST comparisons of the ITS-1 sequences indi-

cated L. braziliensis, with percentage identity score of 99.35% and Max score of 551. Percentage

identity and Max scores against L. guyanensis were 99.01% and 542, respectively. PCR-N prim-

ers did not produce amplicons from these two dogs, hence HSP70 sequences could not be

used as a means of species identification.

S1 Table consolidates the results of the 2018 and 2019 dogs in this study.

Discussion

Serological and parasitological profiling of asymptomatic, oligosymptomatic and polysympto-

matic dogs revealed notable differences in sensitivities of the diagnostic tests.

The low sensitivity of reference tests may underestimate detection of true positives/sensitiv-

ity of comparator tests [22]. Many publications have also described the need for the use of

more than one test to diagnose CVL, as serological tests cannot differentiate between immune

and infectious dogs [22]. There is evidence that the performance of various RDTs for leish-

maniasis diagnosis, including Kalazar-Detect (Inbios) and other rK39 and rK28 RDTs may

vary according to severity of disease [11,31,32].

As far as we are aware, this is the first report of LAMP for diagnosis of CVL in Latin Amer-

ica. The Eiken LAMP kit, first reported by Adams et al. [33] and used subsequently for HCL

and HVL [34–37], has been shown to be effective for diagnosis of leishmaniasis. The higher

positivity rate with LAMP than PCR may be explicable by the Eiken LAMP method targeting

highly repetitive sequences. However, two in-house, non-commercial LAMP techniques

described for diagnosis of CVL [38,39] were not used. More research on existing and new sam-

pling methods is needed. In our diagnostic comparisons the dental broaches were inserted

into tissue to obtain biopsies. Broaches have been used successfully for HCL diagnosis [40].
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Detection of LeishmaniaDNA by LAMP and PCR supported the fidelity of the rK28 ICT

tests. Nor did cross-reactivity with the pathogens tested on the SNAP 4DX explain the higher

number of positives for the rK28 ICT versus both rK39 ICTs; with the exception of a single

sample positive for Anaplasma spp., all SNAP 4DX tests were negative. It is possible that there

may be cross-reactions with other infections that we have not tested, such as Babesia canis,
which has been reported to cross-react with another rK28-based RDT [41].

It is known that a cell-mediated immune response is associated with protection against

symptomatic leishmaniasis [42] whilst high antibody titres are associated with more severe dis-

ease in both dogs and humans [11,43,44]. This is reflected in our finding that total IgG was

higher in anti-rK39 ELISA amongst dogs with more clinical signs, although with our cohort of

dogs this association was not demonstrable for the anti-CLA or anti-rK28 ELISAs. Whilst we

did not find a correlation between IgG or IgG2 level and disease severity, more research is

Fig 5. Anti-rK39 and anti-CLA antibody levels in serum suggest elevation of rK39 antibody titres (p = 0.045) in polysymptomatic

disease. (A) rK39-IgG, (B) CLA-IgG, (C) rK39-IgG2 and (D) CLA-IgG2 in 133 domestic dogs and four dogs from a non-endemic area. The

133 dogs were classified by clinical signs: BD, dogs from a non-endemic area; AD, asymptomatic; OD, oligosymptomatic; PD,

polysymptomatic. Black dots show dogs detected as Leishmania-positive by molecular assays.

https://doi.org/10.1371/journal.pntd.0009552.g005
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needed to identify reliably deployable biomarkers of clinical status. There is conflicting evi-

dence regarding the link between canine anti-Leishmania IgG subclass profile and disease

state, particularly whether IgG1 or IgG2 is associated with symptomatic disease [45–50]. This

may be due to lack of specificity of the commercially available polyclonal antisera used in such

studies, including in this research [51]. In humans IgG1 has been shown to be an important

marker of relapse [52], and it has been shown canine IgG2 may be analogous to human IgG1

[53]. Furthermore, to explore biomarkers a more comprehensive classification of clinical status

is required, not only asymptomatic, oligosymptomatic and polysymptomatic, because the

characteristics of the lesions may be associated with parasite loads and influence the immune

response.

A key area for development of improved diagnostics for CVL is the field of differential diag-

nosis of varying infection states. It is well established that infectiousness varies between dogs

[54]; this is analogous to the heterogeneous spread of human visceral leishmaniasis (HVL)

from HVL and post-kala azar dermal leishmaniasis cases due to high variation in infectious-

ness between cases [55]. If ‘super-spreader’ dogs that are particularly infectious to sand flies

could be identified by a highly specific test, this could be used to inform selective culling,

which is likely to be more effective at reducing human infection rates than blanket culling of

dogs, as well as more humane [56]. Another pressing issue, given the increasing availability of

CVL vaccines [57], is rapid differentiation of vaccinated from naturally exposed dogs. This is

reported to be feasible via ELISA, with rK28 having lower cross-reactivity than other antigens

with the Leish-tec vaccine specifically [17], but rapid point of care tests are needed for use in

the field.

Using the HSP70 PCR-N PCR primers, Fernández et al. [58] reported the presence of L.

(V.) braziliensis in one individual each of Akodon sp. and Euryoryzomys russatus rodents

Fig 6. PCR-RFLP using ITS1/HaeIII reveals the presence of canine leishmaniasis compatible with Viannia infection (see Discussion) (Lane 1, broach sample) in

Puerto Iguazú, as well as CVL due to L. infantum (Lane 2, lymph node aspirate); -ve, negative control; M, size markers.

https://doi.org/10.1371/journal.pntd.0009552.g006
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surveyed from south of Puerto Iguazú city. Here, using ITS1 PCR primers, in addition to L.

infantum we identified Leishmania (Viannia) spp. from skin lesions of two dogs. The HSP70

PCR-N primers with the two L. (Viannia) samples did not produce amplicons to enable

unequivocal identification of the species. However, the ITS1/HaeIII PCR-RFLP profile and the

Blast comparisons of ITS DNA sequences identified L. braziliensis. This identification is sup-

ported by the local epidemiology: L. braziliensis is a cause of HCL in Argentina [3], isolated

previously from dogs [59]. A survey of vector distribution in Puerto Iguazú found the most

abundant sand fly species to be Lutzomyia whitmani, a primary vector of L. braziliensis, fol-

lowed by Lu.migonei, a secondary vector [60]. The known susceptibility and widespread emer-

gence of suburban L. braziliensis in dogs [61–63] supports our discovery of L. braziliensis. This

result encourages further research on the identification of animal reservoirs, both sylvatic and

domestic, of L. braziliensis [64], and highlights the need to consider measures to prevent its

spread in canine and human populations.

Limitations

A limitation of this study is the lack of a gold standard test for definitive diagnosis of CVL;

LNA microscopy is considered a gold standard but sensitivity is low. Due to limited availability

of tests, not all tests could be applied to every dog. LAMP was only performed on the LNA,

skin and buffy coat samples of 30 dogs of 2018. As discussed, IgG subclass ELISA is limited by

the lack of certain subclass specificity of commercially available antisera, so relationship

between disease status and IgG1 or IgG2 may require precision monoclonal antisera. LAMP

tests require visual judgement and observer blinding. This work focused on owned dogs, whilst

stray dog populations are also an important reservoir of L. infantum [8].

Conclusions

Comparisons of methods of diagnosis for CVL have shown that, for the range of asymp-

tomatic, oligosymptomatic and polysymptomatic dogs, serology is far more sensitive than

parasitological methods. Of the serological methods, the rK28 prototype was significantly

more sensitive and has great promise as a point-of care RDT. PCR and LAMP detection of

DNA, and serology to eliminate presence of multiple other pathogens, indicated that the

efficacy of the rK28 RDTs was probably not attributable to false positives, although this

requires follow up with a wider range of canine infections. As far as we are aware, we have

described the first application of LAMP to CVL in Latin America, with encouraging results;

however, cost and accessibility to the one proven commercial LAMP assay prohibits its

wide deployment for surveillance and control of CVL. In applying molecular methods for

diagnosis, we detected evidence of local presence of canine leishmaniasis due to L. brazi-
liensis, requiring further research and vigilance, although impact of dogs on transmission

of infection is uncertain. Clearly, more research is required to enhance understanding of

CVL, optimise rapid diagnosis, produce a canine surveillance algorithm, and to foresee and

control the widening spread of this potentially devastating neglected veterinary and public

health problem.

Supporting information

S1 Table. Consolidated results of dogs in the 2018 and 2019 studies.

(XLSX)
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