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What this study adds

The minimum mortality temperature (MMT) is an important 
indicator of the relationship between temperature and mortality. 
It indicates the adaptability to climate, but little is known about 
its geographical changes in the global distribution. This article 
investigates the geographic differences of the MMT on a global 
scale and studies the influence of geographical, climatic, and 
socioeconomic factors. The results indicate that although there 
is still more room for adaptation, populations have adapted to 
the average temperature.
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Background
Studies on the temperature-mortality association have focused 
on quantifying the increase in risk due to heat and cold1,2 and 
its determinants.3 The temperature-mortality relationship has 
been described as a J- or U-shaped curve, where the minimum 
is the temperature at which the risk of mortality is lowest.1,2,4 
Consequently, the minimum mortality temperature (MMT) is 
an important indicator to characterize associations between 
temperature and health, in particular regarding long-term 

Background: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indi-
cating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale.
Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associ-
ations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation 
in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators.
Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 ºC decreasing by latitude. 
For climatic zones, the MMTs increased from alpine (13.0 ºC) to continental (19.3 ºC), temperate (21.7 ºC), arid (24.5 ºC), and tropical 
(26.5 ºC). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid 
(68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 ºC for a 1 ºC rise in a community’s annual mean tempera-
ture, and by 1 ºC for a 1 ºC rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 ºC rise in a community’s annual 
mean temperature and by 1.3 for a 1 ºC rise in its SD.
Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which 
seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the 
average temperature, although there is still more room for adaptation.
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adaptation to climate. The MMT and how it varies across cities 
with different climates has been investigated only at the local 
level in some countries,4–6 but a comprehensive evaluation has 
not been performed so far.

Adaptation could offset some of the mortality from higher 
temperatures by shifting the MMT to higher values. Although 
MMT is essential to estimate the future health impact of glob-
al-heating, little is known about the geographical variation 
of the MMT distribution at a global scale and the underlying 
factors that could explain the variation of MMTs. Identifying 
correctly these factors that play a key role on MMTs would 
help developing and implementing population-based effective 
adaptation strategies.

In this context, the Multi-City Multi-Country (MCC) 
Collaborative Research Network (http://mccstudy.lshtm.ac.uk/) 
provides the opportunity to investigate geographical variations 
in MMTs at a global scale. We aimed to estimate MMTs using 
data from hundreds of communities across various countries 
under different climates and to study the geographical, climatic, 
and socioeconomic determinants of the MMT. To our knowl-
edge, this is the most extensive study ever conducted using daily 
mortality and temperature data to determine geographical vari-
ations in MMTs.

Methods

Data collection

Data collection has been described in previous studies using 
the MCC Collaborative Research Network dataset.1–3,7–9 In this 
study, we used daily time-series data from 658 communities in 43 

countries worldwide (eFigure 1; http://links.lww.com/EE/A152). 
The study periods largely overlapped, ranging from 1 January 
1984 to 31 December 2016. The data included observed daily 
mortality for all causes or nonexternal causes (International 
Classification of Diseases 9th Revision, ICD-9: 0-799, and 10th 
Revision, ICD-10: A00-R99) and daily mean temperature, for 
each community. Additional details on data collection are pro-
vided in eTable 1; http://links.lww.com/EE/A152.

We also collected data on community-specific geographical 
(latitude and geographical region), climatic (annual mean tem-
perature and its SD, and climate zone using Köppen’s climate 
classification10), and socioeconomic (gross domestic product per 
capita [GDP]) indicators. In particular, GDP was collected from 
the OECD Regional Database at the smallest geographical level 
available using the value averaged across multiple years com-
patible with our dataset.3

Statistical analysis

We first performed a community-specific time-series analysis 
using generalized linear models with quasi-Poisson family. The 
model includes a natural cubic spline of time with 8 degrees of 
freedom per year to control for seasonal and long-term trends 
and indicator variables for the day of the week. We modeled the 
temperature-mortality association with distributed-lag nonlin-
ear models. Specifically, we used a natural cubic spline with three 
internal knots placed at the 10th, 75th, and 90th percentiles of 
location-specific temperature distributions and the lag-response 
curve with a natural cubic spline with three internal knots placed 
at equally spaced values in the log scale. The lag period extended 
to 21 days. The modeling choices were based in previous MCC 
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studies addressing the temperature-mortality association.2,3,11 
These studies already conducted the corresponding sensitivity 
analyses to assure the robustness of results. We identified the 
MMT from each estimated spline curve representing the over-
all cumulative exposure-response (the net effect summed across 
lags), together with an approximate parametric bootstrap esti-
mator of its confidence interval and standard error.6 In previ-
ous studies, we had noted that in locations with low mortality 
counts and/or short time-series, the MMT could be one of the 
imprecisely estimated tails of the exposure-response curve.6 To 
avoid this situation, we constrained the identification of the 
MMT to the 1st–99th percentile range. We also calculated the 
MMT percentile (MMTP), defined as the percentile of the tem-
perature distribution corresponding to the MMT.

In a second stage, we pooled the city-specific MMTs and 
MMTPs by country, geographical region and climatic zone 
using an extended random-effects meta-analysis,12 and quanti-
fied the heterogeneity using the I2 statistic.13 We explored the 
association between MMT, and MMTP, and the communities’ 
geographical, climatic, and socioeconomic characteristics by 
including the absolute value of latitude, annual mean tempera-
ture, its SD, and GDP simultaneously as fixed-effects predictors 
in the meta-analytical models. We also evaluated the linearity 
of the associations comparing the log-likelihood between the 
linear and nonlinear fit. The models were specified as a two-level 
hierarchical random-effects meta-regression, with communities 
and countries as two nested levels of random-effects12; thus, 
accounting for heterogeneity across both. The temperature-mor-
tality association and MMTs have been suggested different by 
climatic zones implying population adaptation to the local cli-
mate.4,14 Therefore, we ran stratified models to get specific esti-
mates by climatic zone and tested for effect modification using 
a likelihood ratio test between nested models estimated by max-
imum likelihood with and without interaction terms. Statistical 
analyses were performed in R software (version 3.6.2).

Results
In 21 of the 658 communities analyzed, the MMT corresponded 
to the minimum value of the exposure-response curve, whereas 
in 34, the MMT corresponded to the maximum. After con-
straining to the 1st–99th percentile range, only six commu-
nities remained with an MMT at the minimum value of the 
exposure-response curve and eight communities at the max-
imum. These few communities showed a monotonic increase 

or decrease of the exposure-response curve, so the 1st–99th 
percentile constraint merely increases the MMT estimate from 
the minimum value of the temperature distribution to the 1st 
percentile or decreases from the maximum to the 99th percen-
tile. eFigure 2; http://links.lww.com/EE/A152 shows the overall 
cumulative exposure-response curves in 43 communities, as the 
capital city or the largest city/area for each country, illustrating 
the wide range of relationships in estimating the MMT and its 
confidence interval.

The geographical distribution of the MMTs varied consider-
ably worldwide (Figure 1). Country pooled MMTs ranged from 
14.2 to 31.1 °C (eFigure 3; http://links.lww.com/EE/A152), and 
the MMT distribution showed an increasing north-to-south 
pattern in all the geographical regions (Figure 2). The MMT and 
MMTP distributions by country are reported in the eTables 2 
and 3; http://links.lww.com/EE/A152, respectively. Similarly, for 
the climatic zones, the MMTs increased from alpine (13.0 °C) to 
continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and 
tropical (26.5 °C). The MMTP distribution also showed large 
variation (Figure  3), and the country pooled MMTPs ranged 
from 5.3th to 98.7th (eFigure 4; http://links.lww.com/EE/
A152). Conversely, for the climatic zones, the MMTPs tended to 
decrease from temperate (79.5th) to continental (75.4th), arid 
(68.0th), tropical (58.5th), and alpine (41.4th) (Figure 4).

We observed very large geographical heterogeneity in the 
MMT distribution (I2 = 96.1%), which was substantially 
reduced after adjusting for the geographical, climatic and socio-
economic indicators in the meta-regression model (I2 = 44.6%) 
(Table 1). Annual mean temperature and its SD were found to be 
associated independently with MMT but not latitude and GDP 
(eFigure 5; http://links.lww.com/EE/A152). MMTs increased by 
0.8 °C for a mean annual temperature increase of 1 °C, and by 
almost 1 °C for an SD rise of 1 °C (Table 1). MMTPs also had 
large heterogeneity (I2 = 90.2%) that was reduced after adjust-
ing for predictors (I2 = 68.7%). MMTPs were reduced when the 
mean annual temperature and its SD increased. Latitude and 
GDP were not found either to be associated with MMTP. We 
evaluated the linearity of the associations without observing evi-
dence of departure from linearity.

We further explored these associations by climatic zones 
(Table 1). An average increase in annual mean temperature of 
1 °C was associated with MMT increases of 0.8 °C in temper-
ate, 0.9 °C in tropical, 1.1 °C in continental, and 1.7 °C in arid 
climates (P value for effect modification = 0.190). Estimates 
for Alpine climate were not possible to derive because there 

Figure 1. Geographical distribution of the MMT (°C) in the 658 communities analyzed.

http://links.lww.com/EE/A152
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were only four cities included. For the temperature’s SD, an 
average increase of 1 °C was associated with an increase in 
MMT of 0.3 °C in arid climate, 0.6 °C in tropical, 0.8 °C 
in temperate, and 1.1 °C in continental climates (P value for 
effect modification = 0.288).

Discussion
In this study, we investigated variations in MMT at a global scale 
and its geographical, climatic, and socioeconomic determinants. 

Overall, we found that increases in local annual mean tempera-
ture and its SD were associated with higher MMTs and lower 
MMTPs.

Extreme high temperatures have increased in frequency and 
intensity, which in turn is increasing heat-related mortality.15 It 
is reasonable to assume that, to some extent, people and soci-
eties can adapt to gradual increases in average temperatures. 
MMT is often regarded as an indicator of climate adaptation. If 
the absolute value of the MMT was fixed and all other factors 
were held constant, higher temperatures would shift the relative 

Figure 2. Pooled MMT (°C) by geographical region and Köppen’s climate classification.

Figure 3. Geographical distribution of the MMTP (%) in the 658 communities analyzed.
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MMT (MMTP) to a lower percentile of the temperature distri-
bution.16 Similarly, if the MMTP was fixed at a specific percen-
tile of temperature distribution, warmer climates would tend to 
increase the absolute value of the MMT.17 Complete adaptation 
can be determined by a unitary MMT-mean temperature asso-
ciation (i.e., when MMT increases on average 1 °C for a mean 
rise of 1 °C of the mean annual temperature) and no variation 
in MMTP dependent on the mean temperature. Our results 
of increased local annual mean temperature associated with 
higher MMT indicates that populations have adapted to the 
average temperature to a certain degree, but the negative asso-
ciation of MMTP with mean annual temperature suggests that 
this adaptation is incomplete. The exceedance over the MMT-
temperature unitary association observed in continental (1.1 °C) 
and arid (1.7 °C) climates may be explained by contributions of 
factors other than adaptation processes such as demographic, 
infrastructural characteristics, and socioeconomic development 
or people’s behavior that are unrelated to the responses to aver-
age temperature. Some of the overadaptation processes such as 
an overuse of air conditioning could be also an explanation.18 
Although the unitary increase in MMT with mean temperature 
observed cross-sectionally indicates long-term adaptation, it 
does not imply that the same result will be observed over time 
in the future. Moreover, the positive association between MMT 
and the temperature SD in temperate and continental climates 
suggests that populations living in areas with larger tempera-
ture variations and distinct seasonal temperature changes may 
be more resilient to higher temperatures and, therefore, have 
higher MMTs than other populations.

These findings may help in understanding the mechanism 
of long-term adaptation to climate at the population level. 
Keatinge et al.19 stated that populations in Europe had adjusted 
successfully to mean summer temperatures and heat-related 

risk of mortality was reported to be declining over time20,21 sug-
gesting adaptation to elevated temperatures. Since a warming 
trend has been observed, it may be possible to determine how 
fast populations and societies adapt to the changing climate, by 
evaluating changes in MMT.5 Curriero et al.4 reported that the 
MMT was associated with latitude in a multicity study con-
ducted in 11 cities of the Eastern United States, and similarly, 
Baccini et al.22 in 15 European cities. However, the latitude may 
not be a useful climatic index, because, for example, altitude 
can also affect climate, and areas with same latitude and alti-
tude can have different climates.5 In fact, we did not find evi-
dence of an association between MMT and latitude once the 
other meta-predictors, in particular mean temperature, were 
accounted for. More recently, Yin et al.23 reported that the most 
frequent temperature was a better indicator for fitting MMT. 
However, the authors collected data from previously published 
studies which provided MMT estimates and derived the most 
frequent temperature in the same period, but did not use tem-
perature data from the weather stations used to estimate the 
MMT in the original studies, which could cause uncertainties. 
Similarly, the authors also acknowledged the different param-
eter specifications from the published studies was a limitation, 
especially when empirical MMTs derived from the observed 
exposure-response curves were combined with those from using 
best linear unbiased curves.2

The MMT for all-cause mortality is a function of cause-spe-
cific MMTs and cause composition. For example, the shape of 
the association between temperature and cardiovascular dis-
ease mortality is in general J- or U-shaped,24–26 whereas that 
for infectious disease mortality shows various patterns such 
as inverse U-shaped or reverse-J-shaped.27,28 This suggests that 
cause-composition should be an important driver of variation 
in the MMTs.

Figure 4. Pooled MMTP (%) by geographical region and Köppen’s climate classification.
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Our study has several methodological strengths. To our 
knowledge, this is the largest study ever conducted using daily 
mortality and temperature data to determine geographical vari-
ations in the MMT at a global scale. This has allowed us to 
consider the full range of the temperature-mortality association 
to estimate the MMT distribution, and its determinants, by cli-
mate region. Likewise, the availability of estimating the stan-
dard errors for the MMTs enabled us to allow for precision and 
so make the meta-analysis of MMT more powerful and robust. 
The major difficulty was handling MMTs that were apparently 
at minimum or maximum temperatures, where exposure-re-
sponse curves are imprecise, mainly in small cities.6 Unlike pre-
vious studies,2,7,9 we did use empirical estimates, instead of best 
linear unbiased prediction, to obtain independent estimates for 
each community that might reflect the geographical variabil-
ity properly in the MMTs distribution. However, our ad-hoc 
procedure of constraining the identification of the MMT 
to the 1st–99th percentile range worked well in our dataset. 
Only a small number of communities reported the MMT at 
the extreme tails of the mean daily temperature distribution, 
0.9% at the minimum and 1.2% at the maximum. Most of 
the communities with an MMT at the minimum temperature 
show a wide thermal variation during the year, ranging from 
40 to 60 °C between the warmer and colder months. On the 
other hand, those with an MMT at the maximum temperature 
showed two differentiated patterns; communities with humid 
climates, either temperate or continental, with a broad thermal 
variation during the year, or communities in a tropical climate 
with a slight thermal variation, of less than 8 °C between the 
warmer and colder months.

We also acknowledge limitations in our study. As quoted 
in preceding MCC studies, we could not rule out the poten-
tial influence of changes in humidity, influenza epidemics or 
public holidays due to the lack of data.1,8 However, a previous 
study including a subset of the current MCC dataset showed an 

absence of a positive association of humidity with daily mortal-
ity.29 Others also showed no changes in the temperature-mortal-
ity association when fitting humidity1 and influenza epidemics30 
in sensitivity analyses. Although public holidays should be con-
trolled for in studies on air pollution and health outcomes,31 
as both are related to holidays, the temperature does not seem 
to be affected by public holidays, therefore not affecting the 
temperature-mortality association. However, the current model 
fit including the adjustment by day of the week could partly 
address the impact of public holidays. We were not able to dif-
ferentiate between the different types of adjustments, that is, 
physiological, behavioral, cultural, society-based, and technolo-
gy-driven adjustments. This is a common limitation in epidemi-
ological studies of long-term adaptation to climate and weather. 
Although caution is needed to avoid oversimplification in inter-
preting the results, these findings are nevertheless valuable in that 
they allow assessment of the overall adaptation across different 
populations. We did not address how the temperature-mortal-
ity association might change by sex and age, which could pro-
vide further insight into the different levels of adaptation in the 
population.32 Our dataset is also limited in covering commu-
nities in low-income countries that might be the most affected 
by climate change.33,34 Several studies have reported that MMT 
could continue to rise with increasing temperatures at the local 
level, in Stockholm,17 and nationwide, in France35 and Japan,36 
suggesting partial adaptation to increasing temperatures as one 
potential explanation for their findings. However, in our study, 
we did not explore the time-varying distribution of MMTs, only 
focusing on the geographical variations. This limited view could 
be masking the impact of changes in socioeconomic factors, 
such as GDP, that could directly influence long-term adaptation 
to climate, especially in some of rapidly developing countries 
included in this analysis. Therefore, this important issue will be 
part of future research at a global scale using the dataset col-
lected within the MCC Collaborative Research Network.

Table 1.

Associations between the MMT (°C) and MMTP (%) with geographical, climatic, and socioeconomic indicators, from random-effects 
meta-regression analysis

 MMT (ºC) MMTP (%)

 b (95% CI) I2b b (95% CI) I2b

Overall 44.6  68.7
 Latitude (×10°) −0.30  (−0.76, 0.16) 4.28  (0.26, 8.30)
 Annual mean temperature (°C) 0.81 (0.73, 0.88) −0.21  (−0.92, 0.50)
 SD temperature (°C) 1.06 (0.90, 1.22) −1.26  (−2.45, −0.07)
 GDP (×10,000 US$) −0.05  (−0.48, 0.39) 1.17  (−1.74, 4.07)
Climatic zonesa

(A) Tropical (n = 99) 26.3  42.3
 Latitude (×10°) −0.59  (−2.17, 1.00) −8.49  (−28.02, 1.10)
 Annual mean temperature (°C) 0.91 (0.43, 1.39) −0.32  (−5.89, 5.24)
 SD temperature (°C) 0.58  (−0.58, 1.76) 6.56  (−5.98, 19.11)
 GDP (×10,000 US$) 0.24  (−1.00, 1.48) 0.93  (−11.84, 13.70)
(B) Arid (n = 64) 55.3 83.4
 Latitude (×10°) −2.39  (−0.86, 5.64) 15.11  (−2.02, 32.24)  
 Annual mean temperature (°C) 1.67 (1.01, 2.32) 2.73  (0.02, 5.45)
 SD temperature (°C) 0.27  (−0.95, 1.48) −5.39  (−11.04, 0.26)
 GDP (×10,000 US$) −1.34  (−4.19, 1.41) 2.48  (−10.21, 15.16)
(C) Temperate (n = 379) 45.5 63.6
 Latitude (×10º) −0.15  (−0.70, 0.41)  2.96  (−0.94, 6.85)  
 Annual mean temperature (°C) 0.83 (0.73, 0.93) −0.41  (−1.18, 0.36)
 SD temperature (°C) 1.06 (0.88, 1.25) −0.74  (−1.90, 0.42)
 GDP (×10,000 US$) −0.26  (−0.78, 0.25) −0.48  (−3.09, 2.13)
(D) Continental (n= 112) 33.4  53.1
 Latitude (×10°) −0.58  (−1.95, 0.78) 1.57  (−5.01, 8.17)
 Annual mean temperature (°C) 1.13 (0.70, 1.57) 1.44  (−1.24, 3.00)
 SD temperature (°C) 0.65 (0.18, 1.12) −1.61  (−3.67, 4.48)
 GDP (×10,000 US$) 0.62 (0.11, 1.12) 3.18  (0.41, 5.96)

aKöppen climate classification. Estimates for (E) Alpine climate were not possible to derive because there were only four cities included.
bI2 indicates the residual heterogeneity.
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In conclusion, our results suggest that the geographical dis-
tribution of MMTs and MMTPs is mainly driven by the mean 
annual temperature. Although adaptation is a complex phenom-
enon, mean annual temperature seems to be a useful measure in 
its overall assessment across different populations. Our results 
also suggest that populations have adapted to the average tem-
perature to some extent, although there is more room for fur-
ther adaptation. This indicates that extreme and relatively fast 
changes in climate can result in additional environmental stress 
and related health effects.
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