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Abstract 

Background and aim: Routine surveillance is increasingly recognised as central to multi-dimensional malaria 

control efforts, especially for programme planning and impact assessment. Whilst it is global strategy to transform 

surveillance into a core programmatic component, essential in-depth interpretation of routine surveillance data 

remains limited, especially in higher transmission settings. I therefore aimed to explore utility of indicators of 

uncomplicated malaria burden from routine health facility surveillance data in identifying and mapping high-risk 

areas for malaria in Uganda. 

Methods and data sources: To examine routine surveillance indicators of malaria burden, I first evaluated internal 

consistency between measures from three national reference health facilities, comparing incidence and test 

positivity rates over time and space. In addition, I examined impacts of control interventions on the age associated 

burden of malaria, stratified by endemicity and intervention. I then extended this to compare routine reporting 

data with concurrent community cohort incidence estimates across three sub-counties to evaluate potential 

sources of bias. Finally, using four years of national health management information system (HMIS)-reported 

confirmed malaria data in a Bayesian autoregressive analytical framework, I explored the space-time distribution 

of malaria, and estimated adjusted national and local HMIS-based incidence rates. 

Primary findings: At the health facility level, HMIS-based incidence and test positivity rates showed similar trends 

and predicable relationships, with reduced transmission associated with increasing age of test confirmed malaria 

cases. Comparison of HMIS and cohort data suggested that HMIS data could provide a relatively unbiased proxy 

for true incidence - especially in lower-transmission, better performing surveillance systems settings. Lastly, 

space-time modelling of national HMIS data revealed high-burden and high-risk areas within health facility 

catchments, districts, and regions, highlighting the utility of routine surveillance data in identifying 

programmatically relevant heterogeneities in malaria burden in Uganda. 

Conclusion: This thesis highlights the potential viability of routine data in evaluating endemic malaria risk with 

improved routine HMIS. This is shown by: similar trends of HMIS-based incidence with other measures; its 

unbiased relationship with community cohort incidence; and, its capacity to identify high case rate locations. To 

realize the potential of these data, coordinated efforts are needed towards high testing rates, complete and timely 

recording and reporting, and multilevel feedback within national malaria control programme systems. Further 

research opportunities include treatment or non-care seeking and non-reporting care alternatives impacts on 

surveillance-based indicators of malaria burden. 
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1 Background and Introduction 

1.1 Background 

Malaria remains a significant global public health challenge with sub-Saharan Africa and South East Asia as epi-

centres of the burden [1]. Global malaria control efforts are multi-dimensional and include: vector control, 

effective malaria case management, vaccine development, preventive therapies, and above all, stakeholder 

commitments [2, 3]. 

The WHO Global Technical Strategy for Malaria 2016-2030 aims to reduce incidence of malaria by at least 90%, 

particularly by urging affected countries to make the most of available control tools and strategies [4]. Further, in 

ǾƛŜǿ ƻŦ ¦ƴƛǘŜŘ bŀǘƛƻƴǎΩ ǘƘƛǊŘ ǎǳǎǘŀƛƴŀōƭŜ ŘŜǾŜƭƻǇƳŜƴǘ Ǝƻŀƭ ǘƘŀǘ ǎŜŜƪǎ ǘƻ ŜƴǎǳǊŜ ƘŜŀƭǘƘȅ ƭƛǾŜǎ ŀƴŘ ǇǊƻƳƻǘe well-

being for all at all ages, one key target is to end the malaria epidemic by 2030 [5]. These targets were heavily 

influenced by evidence of significant declines over the first 15 years of the 21st century and on this basis, 

milestones were set to reduce case incidence by 40% and 75% by 2020 and 2025, respectively [3, 4]. 

Unfortunately, however, malaria burden declines have stalled since 2016 due to global or context specific causes 

[6, 7]. Two of the identified possible causes that especially affect sub-Saharan Africa are: substandard performance 

of health systems and weak surveillance, monitoring and evaluation with which capacity to identify program 

coverage gaps or disease burden changes is diminished [4]. This thesis addresses the latter. 

With strong evidence of the effectiveness of available control tools [8], to meet global targets, interventions need 

to be prioritised to target areas of greatest need, aided by strategic transformation of surveillance into a core 

intervention [4]. Routine health management information systems (HMIS) data is uniquely placed for this, given: 

its central place in surveillance, its spatial scalability, and longitudinal dimension. Notably, however, several 

studies have suggested these data to be imperfect and of limited utility [9-11]. This ongoing perception unwittingly 

hinders the ability of malaria control programmes to use routine health systems data for effective resource 

allocation or timely intervention impact evaluations. Whilst efforts have been undertaken to improve the most 

notable drawbacks, especially accessibility, timeliness, and completeness [12-14], estimates of burden from these 

data are not fully understood [15] and as such, neither have the prevailing perceptions been improved nor its 

likely utility been widely investigated.  

This thesis, therefore, focuses on exploring the utility of indicators of uncomplicated malaria burden from 

routinely collected health facility data, using the high-burden example of Uganda. In this chapter, I provide an 

initial background literature review describing the epidemiological and public health situation of malaria in 

Uganda, as well as details on current diagnostics and control strategies for malaria. I then summarise the 

distribution of malaria in Uganda and provide a critique of contemporary mapping approaches applied at global, 

regional, and sub-national scales. Lastly, I provide an overview of how maps have historically been used in Uganda 

towards policy guidance and decision making for malaria control, in relation to other countries in the region. 
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1.2 Introduction to malaria 

1.2.1 Global burden of malaria 

Malaria is transmitted by female anopheline vectors carrying any of the four main Plasmodium parasite species 

known to infect humans - P. falciparum, P. vivax, P. malariae, and P. ovale [16]. Notably, however, two of these 

parasite species i.e. P. falciparum and P. vivax are responsible for the majority of global infections [3, 16]. While 

these main parasite species are largely territorial, with P. falciparum predominating Africa and P. vivax East Asia, 

mixed infections involving the two or one of these together with other less notable species are also common 

across all endemic settings [3]. In 2018, 228 million malaria cases were estimated globally, 93% of these from 

Africa alone [3]. Moreover, an estimated 405,000 fatalities from malaria were also reported globally, 94% of which 

were from Africa, and 67% of the global total being among children under 5 years of age [3]. 

1.2.2 Epidemiology of malaria 

Malaria transmission involves four vital contexts including: the host, which is primarily humans; the parasite of 

which there are several species; the vector, which is the mosquito and there are many species of these; as well as 

the environment within which all the first three exist. Factors that influence any of the four contexts may impact 

the rate of transmission of malaria either independently or collectively, both favourably and otherwise. Successful 

transmission involves all four contexts as follows. As illustrated in Figure 1, once a healthy vector, female 

anopheline, takes a blood meal from a human and picks up gametocytes in that meal, gametocytes undergo 

transformation within the vector from micro to macrogametes which in turn are transformed to the zygote and 

then ookinete that penetrate the midgut of the vector [17]. Within the vectorΩǎ midgut, the ookinete is 

transformed to oocysts which develop and burst into the salivary gland to produce sporozoites [18]. With a 

sporozoite ready vector, a blood meal from a host is potentially infective of the host, which marks the start of the 

parasite life cycle within the human host. Once sporozoites sufficiently circulate within the ƘƻǎǘΩǎ blood, they are 

transported to the liver where they develop into schizonts that later produce merozoites that are then introduced 

back into the blood from the liver [19]. Merozoites attack ǘƘŜ ƘƻǎǘΩǎ red blood cells (RBCs) in order to reproduce 

and then attack more RBCs though some merozoites develop into gametocytes that are known as the sexual stage 

of the parasite. Once gametocytes are ingested by a viable vector, the cycle starts all over again within the vector 

and continues the process of malaria transmission. 
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Figure 1. Malaria parasite life cycle  

Image obtained from the Johns Hopkins School of Public Health at http://ocw.jhsph.edu. Creative Commons BY-

NC-SA. 

Environmental factors play a significant role particularly in supporting vector abundance and capacity [20, 21]. For 

instance, rainfall in appropriate amounts and locations may enable the availability of vector breeding sites and 

thereby foster vector density. On the other hand, temperature when conducive facilitates vector development, 

adult survival and immunity, as well as parasite development within vector candidates (conducive within the range 

of 16 to 350C), thereby facilitating a competent vector for continued transmission [18]. Whilst rainfall, 

temperature and humidity tend to have a direct influence, other factors such as vegetation, urbanization, altitude, 

land use and cover may have secondary influence on vectors and vector capacity through their influence on direct 

factors and facilitating vector-host contact [22]. Given the variability of environmental factors across space and 

time, the unlimited interplay between multiple environmental factors facilitates and supports diversity in vector, 

vector habitat and behaviour, which may influence heterogeneity of malaria transmission and risk [23]. 

Together, these factors influence the distribution of malaria burden through a non-linear interaction between: 

environmental suitability for vector abundance and competence; host susceptibility to virulent parasites as well 

as host infectivity to vectors; population-level control activities and subsequent adherence to these control 

strategies; community population distribution; and, availability of, or accessibility to healthcare services and 

adequacy of case management commodities. These are augmented by the implementation of systems to collect 

timely, high quality and accessible routine data in synthesizable formats to support informed onward control 

decisions. 

http://ocw.jhsph.edu/


  Page 19 of 267 

1.2.3 Detection and Diagnosis of malaria 

Malaria diagnosis in endemic settings has undergone massive transformation over the years. For very long, 

diagnosis of malaria was performed presumptively especially among children [24]. However, this approach was 

increasingly associated with over-treatment of fever as malaria in many countries, including Uganda, due to the 

non-specific nature of malaria related symptoms (particularly fever) that are often caused by myriad other 

conditions [25]. Moreover, parasite resistance to antimalarials, particularly involving the fairly cheap and 

previously highly effective drug Chloroquine, globally [26] and in Uganda [27], showed that trends in over-

treatment of fevers as malaria with newer antimalarials ς ACTs, were a threat to the longevity of the high efficacy 

of these much more tolerable drugs [28]. To this effect, global recommendations were made for the use of 

diagnostic confirmation prior to treatment [29]. These facilitated the scale-up of research into diagnostic methods, 

aimed at overcoming shortcomings in the pre-existing testing method of microscopy. 

Whilst detection of malaria parasites had been possible for hundreds of years using blood slide microscopy, the 

method is demanding, particularly for low resource settings. This gold-standard method requires a microscope, 

electric power supply, slides, reagents, and importantly a skilled technician. With several of these requirements 

being in short supply across the highest endemicity regions, diagnostic confirmation of malaria to scale using this 

method was unattainable. Moreover, other molecular methods in existence such as polymerase chain reaction 

(PCR), loop mediated isothermal amplification (LAMP), flow cytometry, and mass spectrometry, though highly 

sensitive are far more expensive and therefore, not among feasible alternatives within clinical practice in these 

settings [25]. Newer approaches involving rapid diagnostic methods of detecting malaria antigens were developed 

and introduced. The four major categories of the rapid diagnostic tests for malaria (mRDTs) developed included: 

P. falciparum specific histidine-rich protein 2 (HRP2); parasite lactate dehydrogenase (pLDH) that could be 

produced for each of the four main parasite species, given that each has a distinct isomer of this enzyme; 

Plasmodium aldolase, another that covers all the parasite species; and, another antigen specific to P. vivax that 

has been used in combination tests for P. falciparum and P. vivax [30]. The ease of use of mRDTs even among 

remote facilities and community health workers [31] has facilitated largescale implementation of the test and 

treat global approach [29], that was later revised to the test, treat, and track policy for improved surveillance and 

care or case management [32]. 

Until 2007 when mRDTs were introduced in Uganda, diagnostic testing for malaria depended on microscopy, 

particularly among adults in hospitals and high-level health facilities, where laboratory services were functional 

[33]. Among children under 5 years of age when febrile, presumptive diagnosis was highly encouraged and 

functional laboratory services availability among lower level facilities was estimated at only 30% by 2009 [34]. 

National policy adoption of parasitological diagnosis using either microscopy or mRDT, was instituted in 2011 [35]. 

Consistent with policy, the national 2010-2015 malaria strategic plan set a target of 90% parasitological diagnostic 

performance by 2015, and the country had attained 59% in a 2013 assessment [36]. Notably, however, 
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performance reached 85% later on in 2018/2019 [37]Σ ǎǳƎƎŜǎǘƛƴƎ ǾŜǊȅ ǎƭƻǿ ŀŘƻǇǘƛƻƴ ƻŦ ǘƘŜ ƴŀǘƛƻƴŀƭ ΨǘŜǎǘ ŀƴŘ 

ǘǊŜŀǘΩ ǇƻƭƛŎȅ ŦƻǊ ƳŀƴŀƎŜƳŜƴǘ ƻŦ ǎǳǎǇŜŎǘŜŘ ŎŀǎŜǎΣ ǊŜƎŀǊŘƭŜǎǎ ƻŦ ŀƎŜ of patient or level and/or ownership of health 

facility [38]. Additionally, interrupted commodity (drugs and diagnostic testing materials) distribution, disregard 

of negative test results in the diagnosis of malaria, and insufficient support supervision still remain very concerning 

for progress [36, 37]. However, poor mRDT performance due to Pf-HRP2/Pf-HRP3 gene deletions has also been 

reported in the region, particularly given that Pf-HRP2-based mRDTs are the recommended test kits in Uganda 

and these deletions lead to true cases turning out as false negatives [39-41]. The increasing use of mRDTs 

therefore, may be associated with large-scale reduced sensitivity of diagnostic confirmation of malaria cases. 

The increased availability and accessibility of parasitological diagnostic testing has facilitated improved capacity 

to assess malaria burden from routine HMIS data with more reliable indicator accuracy. Whilst there are several 

derivate indicators of malaria burden in use, how they relate each with the other remains unclear. Moreover, very 

few studies have evaluated the effectiveness, utility, or relationships among HMIS-based indicators of malaria 

burden pairs or between these and indicators from other data sources. One study examined the relationship 

between current and lagged monthly HMIS-based incidence estimates to explore HMIS capacity for malaria 

burden forecasting in .ǳǊǳƴŘƛΩǎ regions with seasonal endemicity, using environmental covariates. Though it 

included seven years (1997-2003) of routine data and found a strong association between monthly incidence and 

ƳŀȄƛƳǳƳ ǘŜƳǇŜǊŀǘǳǊŜ ƛƴ ǘƘŜ ǇǊŜǾƛƻǳǎ ƳƻƴǘƘΩǎ ŜǎǘƛƳŀǘŜǎ, the study could only define incidence using 

predominantly presumptive malaria cases, limiting the reliability of incidence rate estimates used [42]. Another 

study compared health centre and community survey metrics including Plasmodium falciparum (P.f.) parasite and 

gametocytes prevalence as well as seroprevalence among others, between wet and dry seasons in The Gambia. 

They reported stronger correlation between facility and community parasite prevalence estimates in the wet than 

dry seasons and noted versatility of and greater ease in collecting health facility than community survey data. 

Importantly, study sites were spread across the Gambia from coast to hinterland and paired on opposite sides of 

the national main river, providing good coverage of spatial diversity [43]. Yet another study described a weak link 

between relative changes in slide positivity and incidence rates over time, from a four-year cohort of children in 

Kampala - central Uganda. Though conducted at one site, the study straddled a duration of drastic changes in 

malaria burden having reported significant declines in incidence of malaria from 0.93 to 0.39 episodes per person 

per year from 2005 to 2009, respectively (p<0.001), therefore providing a good setting to understand temporal 

changes in the metrics compared. Besides not being HMIS-based, however, this study reported an indeterminate 

relationship between slide positivity and incidence rates - ǎƛƳǇƭȅ ŘŜǎŎǊƛōƛƴƎ ƛǘ ŀǎ άƴŜƛǘƘŜǊ ƭƛƴŜŀǊ ƴƻǊ ǇǊƻǇƻǊǘƛƻƴŀƭέ 

[44]. However, another study conducted at one site in Western Uganda revealed a non-linear temporal 

relationship between test positivity rate (TPR) and HMIS-based incidence at a six-monthly temporal scale. 

Importantly, this was the first description of this non-linear relationship, best explained by an exponential function 

(compared to many other models fits) where correlation between the two indicators was stronger at higher 
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transmission levels [45]. These few studies available underscore the dearth of knowledge of the indicators of 

malaria burden derived from HMIS data though in wide use. 

1.2.4 Malaria control strategies 

Vector control has primarily involved the use of long-lasting insecticidal nets (LLINs), indoor residual spraying with 

insecticide (IRS), and larval stage management (including larvicide use or habitat modification) [46]. Owing to 

ŜȄŎŜǎǎƛǾŜ ǇŀǊŀǎƛǘŜ ǊŜǎƛǎǘŀƴŎŜ ǘƻ ŎƘƭƻǊƻǉǳƛƴŜ ǘƘŀǘ ǿŀǎ ǿƛŘŜƭȅ ǳǎŜŘ ǘƘǊƻǳƎƘ ǘƘŜ мффлΩǎΣ Ǝƭƻōŀƭ ǇƻƭƛŎȅ ƻƴ ƳŀƭŀǊƛŀ 

case management transitioned to other antimalarial monotherapies and then rapidly on to combination 

therapies, following quick failure of the monotherapies [29]. As regards chemoprevention, however, vaccine trials 

are in early stages in a few places like Ghana, Kenya and Malawi [46]; preventive therapies including mass drug 

administration (MDA) to reduce the parasite reservoir in the community [29, 47] and intermittent preventive 

treatment during pregnancy (IPTp) to address adverse birth outcomes due to malaria in both mother and new-

borns [48] are in use. Importantly also, stakeholder commitments and global initiatives have been instrumental in 

achieving these multi-dimensional control efforts so far. These initiatives have included first, the global eradication 

ƻŦ ƳŀƭŀǊƛŀ ƛƴƛǘƛŀǘƛǾŜ ƻŦ ǘƘŜ мфрлΩǎ ǿƘƻǎŜ ōƛƎƎŜǎǘ ǎǳŎŎŜǎǎ ƛƴ !ŦǊƛŎŀ Ƴŀȅ ƘŀǾŜ ōŜŜƴ ǘƘŜ ǿƛŘŜ-scale availability of 

chloroquine, an effective antimalarial that was associated with reduced malaria mortality in Africa [49]. Others 

have included the Garki project, Roll back malaria, millennium - and later sustainable - development goals with 

ƘŜŀƭǘƘ ŀǘ ǘƘŜ ŎŜƴǘǊŜΣ ŀƴŘ ǘƘŜ ²IhΩǎ άƘigh burden to high impactέ initiative [2, 50]. Each of these either have been 

or continue to be informed by available data, including surveillance data. 

In Uganda, malaria is perennial and endemic in over 95% of the country, given prevalence of a diverse and versatile 

composition of competent vectors [51]. The main vector species in the country are Anopheles gambiea and A. 

funestus with some A. arabiensis [52-54] and predominant vector control methods have included LLINs in 

universal distribution campaigns and IRS in selected districts [55]. These have been consolidated by effective case 

management using artemisinin-based combination therapy (ACT) as first line treatment since 2004 [56, 57], on 

top of IPTp using Sulphadoxine pyrimethamine (SP) since 2001 [58]. While malaria risk remains high and 

widespread across the country, Uganda has reported considerable declines in malaria burden over time due to 

these interventions. For instance, national prevalence estimates declined from 42% during the Malaria Indictor 

Survey (MIS) of 2009 [59] to 9.1% from the most recent survey of 2018 (Figure 2), consistent with global and 

regional reported downward trends. 
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Figure 2. Parasite prevalence by microscopy among children 0-59 months of age based on the 2009, 2014 and 

2018 Malaria indicator surveys.  

The 2009 MIS was the first national malaria indicator survey conducted in Uganda covering ten defined regions of 

the country. Results showed that prevalence of malaria parasitaemia by microscopy among children under five 

years of age ranged from 5 to 63% in Kampala and Mid-Northern regions, respectively [59]. The 2014 MIS 

suggested a reduction in the prevalence of malaria parasitaemia in the same age group ranging from <1 to 37% 

in Kampala and East Central regions, respectively [60]. 

The 2018 MIS (third and most recent survey) covered 15 regions and recorded further declines in the prevalence of 

malaria parasitaemia, ranging from <1 in Kampala and Kigezi to 34% in Karamoja [61]. There was a marked decline 

in national parasite prevalence by microscopy from 42 to 19% for 2009 to 2014-15, respectively and then down to 

9% during 2018-19. 

Overall, whilst regional boundaries changed over time, reduction was still evident across all regions. For instance, 

prevalence of malaria parasitaemia reduced in Kampala from 5 to <1% and in the mid-northern region from 63% 

to a regional average of 13% between 2009 and 2018, respectively. 

By WHO reports, Uganda ranked 3rd largest contributor of cases and 7th of malaria related deaths by 2018 [3], 

down from 4th in terms of number of malaria cases and 11th in terms of number of malaria related deaths by 2015 

and 2016 [62, 63]. Nevertheless, national HMIS-based reports have documented declines in incidence of 
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confirmed cases down to 14 cases per 1000 population per year, in 2018/19 compared to 478 cases per 1000 in 

2015/16 [37]. 

1.3 Understanding the distribution of malaria in Uganda 

Geographical representation of the distribution of disease burden and/or risk is critical in understanding and 

designing plans of action to minimise public health disease impact. Our understanding of the geographical 

distribution of malaria in Uganda has been informed by various sources of data. Historically, these included data 

from small available studies across the country coupled with expert opinion, which served a purpose in the 

absence of robust national datasets to generate more representative maps [64]. These could only provide a 

general overview of the distribution of malaria with very limited capacity to inform targeted control and therefore, 

hardly put to known extensive use. More recently, data from large malaria indicator surveys (such as the 2009, 

2014-15, and 2018-19 rounds) have been utilised for mapping the distribution of malaria, forming the primary 

basis for geographical burden reference. These, however, may only reliably inform the coverage of previously 

implemented interventions, treatment seeking practices among one high-risk group of children under five years 

of age, and provide some indication of general malaria endemicity strata by region [61]. This limitation is 

determined by the cluster-level sampling design (based on 10 to 15 regions of the country) of these infrequent 

surveys, implying that results are principally limited to regional summaries, less helpful for local onward planning. 

For on-going control activities within the Ministry of Health (MoH), HMIS was instituted with the objectives of 

supporting evidence-based decision making, setting performance targets, and assessing health sector 

performance [65, 66]. Data summaries in the form of trend plots and other dashboard summary outputs are 

assessed within the district health information system (DHIS-2) framework, that provides the necessary data [14]. 

These are supplemented by reports and information from development partners and stakeholders such as: the 

²ƻǊƭŘ IŜŀƭǘƘ hǊƎŀƴƛȊŀǘƛƻƴΣ ǘƘŜ ¦ƴƛǘŜŘ {ǘŀǘŜǎΩ /ŜƴǘǊŜǎ ŦƻǊ 5ƛǎŜŀǎŜ /ƻƴǘǊƻƭκtǊŜǎƛŘŜƴǘΩǎ aŀƭŀǊƛŀ LƴƛǘƛŀǘƛǾŜ 

(CDC/PMI) [67], the Uganda malaria surveillance project (UMSP) conducting sentinel surveillance and providing 

regular reports [68] and ǘƘŜ ¦{!L5Ωǎ ƳŀƭŀǊƛŀ ŀŎǘƛƻƴ ǇǊƻƎǊŀƳ ŦƻǊ ŘƛǎǘǊƛŎǘǎ όa!t5ύ ƻǇŜǊŀǘƛƻƴŀƭ ŀŎǊƻǎǎ ŀ ƴŜǘǿƻǊƪ ƻŦ 

districts through the convergence of a variety of expertise in Uganda to support MoH efforts in control and 

diagnosis of malaria [69], among others. 

The extensive focus on regional or district level assessments, coupled with reported disconnect between survey-

based and on-going HMIS reports [70, 71] indicates that presently, malaria control managers are without a reliable 

source of fine-scale information. Consequently, the potential for important timely assessment of the spatial 

distribution of malaria burden, using HMIS data, remains unappreciated, and opportunities for improved decision 

making are missed. 
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1.3.1 The use of maps in policy and decision-making 

Historical use of malaria risk maps in Uganda is limited. Figure 3 below, for instance, was used for nearly a decade 

in official malaria policy reports in Uganda, including multiple national malaria strategy documents [55, 72]. The 

map (Figure 3) would have been generated in the earƭȅ нлллΩǎ ŦǊƻƳ ŀǾŀƛƭŀōƭŜ Řŀǘŀ ŀǘ ǘƘŜ ǘƛƳŜΦ Lǘ ǿŀǎ ŦƛǊǎǘ ǳǎŜŘ ƛƴ 

the 2005-нллф aŀƭŀǊƛŀ {ǘǊŀǘŜƎƛŎ tƭŀƴ ōȅ aƛƴƛǎǘǊȅ ƻŦ IŜŀƭǘƘ ǊŜŦŜǊǊƛƴƎ ǘƻ ƛǘ ŀǎ άƳƻǎǘ ǊŜŎŜƴǘ ƻƴŜ ōŀǎŜŘ ƻƴ ŀǾŀƛƭŀōƭŜ 

Řŀǘŀέ [57, 72]. 

 

 

Figure 3. Risk map used between 2005 and 2014 ς adapted from Talisuna et al. [64] 

This malaria risk map was generated using data availed from small studies, two of which were: (1) A drug efficacy 

study under the East African Network for Monitoring Antimalarial Treatment (EANMAT) conducted in seven 

locations including: Arua, Apac, Tororo, Mubende, Kabarole, Rukungiri and Jinja [73]. This study involved surveys 

conducted between September and December 1999.  (2) An entomological study that included the same EANMAT 

sites, where 11 entomological surveys involving mosquito collections by human landing collection method, was 

conducted between June 2001 and May 2002 [53]Φ ¢ƻƎŜǘƘŜǊ ǿƛǘƘ ǘƘŜǎŜ ŘŀǘŀΣ ƻǘƘŜǊ ƘƛǎǘƻǊƛŎŀƭ Řŀǘŀ ŦǊƻƳ ǘƘŜ мфслΩǎ 

were also used to inform the final output [64].   

Subsequent risk maps used in MoH documents (Figure 4), however, were generated via geo-statistical models 

with mean population adjusted Plasmodium falciparum parasite rates, among children aged 2 to 10 years old from 
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surveys conducted between 2000 and 2010 across the country, together with a selection of climatic metrics as 

explanatory variables [72]. The role of age in malaria transmission is highlighted here as being strongly associated 

with parasite rates, attributable to acquired immunity [74, 75] due to manifold exposure. This approach of using 

an age standardizing algorithm to control the effect of varied age ranges on detectable infection rates in a 

particular age-range, is classical with risk mapping across the endemic world [74, 76], and is applied to both P. 

falciparum and P. vivax wherever they predominate [77, 78]. 

 

Figure 4. Malaria map in use by the Ministry of Health between 2014 and 2017, in multiple policy reports of 

malaria risk representation in Uganda 

While use and inclusion of malaria risk maps in official MoH documentation is increasing, maps in previous use 

were seldom updated with a single risk map used across multiple years [72]. Moreover, these recent malaria risk 

maps at these district spatial scales [79, 80] have been recognised as difficult to use for intervention 

implementation, potentially due to masking of important fine-scale heterogeneity and thus undermining effective 

response action [64]. 

IƻǿŜǾŜǊΣ ǇǊƻƎǊŜǎǎ ƛƴ ǳǎƛƴƎ ǊƻǳǘƛƴŜ Řŀǘŀ ŦƻǊ Ǌƛǎƪ ƳŀǇǎ ƛǎ ŜǾƛŘŜƴǘ ƛƴ ǘƘŜ aƻIΩǎ ƴŀǘƛƻƴŀƭ ŀƴƴǳŀƭ ǊŜǇƻǊǘ ƻŦ нлмтκму 

(Figure 5), which included HMIS-based incidence figures presented for comparative year-to-year progress [37]. 

Furthermore, the soon to be launched national Malaria strategic plan 2021 ς 2025 for Uganda has proposed a 

shift of focus from universal to targeted implementation of contǊƻƭ ƛƴǘŜǊǾŜƴǘƛƻƴǎ ǳƴŘŜǊ ǘƘŜ ΨIƛƎƘ .ǳǊŘŜƴ ǘƻ IƛƎƘ 

LƳǇŀŎǘΩ ƛƴƛǘƛŀǘƛǾŜΦ LƳǇƻǊǘŀƴǘƭȅΣ ǘƘŜ ƛƴŎƭǳŘŜŘ ƴŜǿ ƳŀǇ ƻŦ ŘƛǎǘǊƛŎǘ-level malaria incidence from 2019 routine 

reported data was cited as a key input in this decision process. Here, districts were stratified by specific 

combinations of control tools for intervention, in response to WHO advice in the national bid for malaria funding, 

άto use strategic information to drive impactέ (Figure 6) [81]. This provides an indication of recent utility of malaria 

burden maps for decision support in Uganda. 
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Figure 5. Map of malaria incidence rates in Uganda in use by 2017/18 from the first national annual malaria 

report. 

 

Figure 6. Malaria incidence rates by district as estimated from 2019 routine reported data.  

This map provided some evidence of the distribution of malaria burden by district across the country, which was 

reported as vital to the determination of district strata for targeted intervention approaches. These interventions 

are intended for implementation during the 2021-2025 national malaria control strategies for Uganda supported 

by Global Fund, among others. 

Though challenging to evaluate fully, particularly for day-to-day activities, the use of risk maps for decision support 

in Uganda may be otherwise demonstrated by the inclusion of these maps in national health reports and may also 

suggest an increasing appreciation of geo-spatial output for malaria control in Uganda. However, for their viability 

as an important tool for surveillance support, risk maps remain heavily underutilised. 
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1.4 Contemporary mapping approaches  
Population-based prevalence surveys: Maps of malaria risk support decision-making for control and intervention, 

especially concerning geographical scope and feasibility. Typically, these maps are developed using population-

based surveys due to their simple and rapid representation of disease prevalence [82, 83]. Whilst these survey-

based estimates of burden are only generalizable to regional scales, often among very large regions [84], geo-

spatial modelling approaches have been developed and used to improve inference at finer spatial scales. In this 

process, parasite rates are utilised together with environmental predictors (explanatory variables) in statistical 

models that predict disease burden estimates associated with geographical variability, known as geo-statistical 

models. From these models, parasite rates and other associated indicators are interpolated at un-sampled 

locations, and often output as map surfaces or images. Explanatory variables can include rainfall, vapour pressure 

or humidity, temperature, vegetation amounts, land use or land cover, land surface moisture, elevation, and their 

derivatives [85, 86]. 

Using a comprehensive collection of survey data spanning decades, through formal and grey literature databases 

and contacts with research scientists and officials globally, global malaria burden maps have been generated using 

multiple derivative indicators within the malaria atlas project (MAP) [83]. These maps have provided valuable 

information especially for global endemicity stratification overview and distribution of parasite specific burden, 

which have aided large-scale intervention planning. A notable milestone of this work, for instance, was the 

identification of regions where liver-stage infection clearing anti-malarial drugs like primaquine would be 

beneficial or harmful due to prevalence of the Duffy negative blood group phenotype [87]. Whilst this blood group 

variant largely confers protection against P. vivax infections where prevalence of the phenotype is high, individuals 

are not totally immune to vivax infections that are characterised by relapses of malaria due to uncleared infections 

in the liver [88, 89]. Ill-advised treatment of these infections with this effective drug for liver stage parasite 

clearance poses a risk among individuals with this blood group variant. The analyses showing spatial distribution 

of this blood group variant, therefore, have been important in the design and implementation of region- 

appropriate policies. These approaches have also been adopted in the Mapping Malaria Risk in Africa (MARA) 

project, which implemented geostatistical models to generate point prevalence-based risk maps for the sub-

Saharan African region and provided survey data from across the region for similar studies [86, 90]. However, 

limitations of geostatistical outputs, such as these, include: infrequency and sparsity of surveys ς for instance only 

eight countries provided 100 or more survey sites and a large majority of countries far fewer than 50; large 

differences in timing and seasonality of the surveys; varied age of participants; design, size and generalizability of 

surveys included; and, potential underrepresentation of specific parasite species surveys by region ς for instance, 

very few P. vivax-specific surveys in Africa or P. falciparum-specific surveys in South East Asia were included [82].  

Whilst geostatistical approaches were historically computationally intensive for high precision of modelled 

estimates, particularly with Markov Chain Monte Carlo simulations for Bayesian inference, increasingly, a more 
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summarized and computationally efficient approach in integrated nested Laplace approximation (INLA) for 

Bayesian inference has been adopted [91]. Besides lingering computational demands, however, the capacity to 

incorporate maximum likelihood, prior information [92], and the neighbourhood structure through conditional 

autoregression [93-95] for model estimates has not only facilitated identification of important environmental 

factors for malaria risk assessment such as rainfall, temperature, and vegetation, but also the credible 

presentation of geographical patterns of malaria risk from both survey data [92, 96, 97] and routine HMIS data 

[98-101] across endemic settings for varied ages. 

Additional robust  but less common methods used with routine data for risk prediction include: (a) Plotting annual 

parasite rates from routine reported data at as low spatial resolution as village-level in one district of Sri Lanka 

between 1991 to 1998 [102]. (b) Generalised linear models (GLM) to predict the effects of environmental 

predictors in Burundi using province-level monthly estimates of incidence from routinely reported malaria cases 

between 1996 and 2007 [103]. (c) generalised additive mixed models (GAMM) that provide improved model 

fitting, with similar results to, though more complex than GLM output, that is demanding to interpret [103]. 

Despite agreement between these two models, results also indicated that variables other than climate are also 

very important and should be accounted for. (d) Using the same routine data from Burundi, geo-additive mixed 

models suggested an improvement on GAMM owing to inclusion of more explicit spatial effects ς both correlated 

and un-correlated at provincial level [104]. (e) Seasonal autoregressive integrated moving average models were 

used to forecast incidence using key environmental factors, particularly rainfall in Eritrea using monthly incidence 

estimates from routine data between 2012 and 2016, with recommendations for small area assessments [105].  

1.4.1 Mapping malaria burden using routine data 

Despite the recent embrace of routine data for generating risk maps in Uganda, there is recent but rather sparse 

precedent of use of this approach in the region. For instance, a report from Rwanda showed maps of malaria 

positivity rates as well as incidence for 2010 and 2011 as shown in Figures 7 and 8, respectively [106], and one 

from Mozambique showed reported inpatient incidence of malaria over the 2010-2012 duration (Figure 9) [107]. 
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Figure 7. Map of Rwanda malaria burden using test positivity rates for 2010 from PMI evaluation report of 

2016 

 

Figure 8. Map of Rwanda malaria burden using incidence rates by district for 2010 and 2011 from the PMI 

evaluation report of 2016 
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Figure 9. Map of malaria inpatient incidence rates for Mozambique by district for 2010, 2011, and 2012 from 

the PMI evaluation report of 2016 

Unsurprising with minimal utility of HMIS for risk mapping, HMIS-based risk maps have only previously been 

compared with robust survey-based approaches in very few studies. One study from Malawi investigated the 

importance of climatic, geographic, and socio-economic determinants of malaria between July-2004 and June-

2011 and reported one such methodological comparison [108]. HMIS-ōŀǎŜŘ άǎǘŀƴŘŀǊŘƛsed morbidity Ǌŀǘƛƻ ό{awύέ 

of malaria and prevalence from the malaria atlas project (MAP) were compared by visual examination of a map 

from each. Whilst the spatial distribution of SMR from this study largely reflected the prevalence distribution from 

MAP for children under 5 years of age, the stark differences found between the two for those 5 years and older 

may be due to additional effects of age on malaria transmission. These effects potentially remain unexplained 

and/or unaccounted for in the current survey-based models of burden estimates heavily reliant on data collected 

primarily from children under 5 years of age [109]. Finding one study that evaluated use of routinely collected 

data for risk mapping, against more established mapping methods, points to a knowledge gap in fitness-of-

purpose of routine data, as a potential low-cost alternative for malaria risk assessment to support optimal 

resource use. 

Regardless of the data used, however, for any spatial temporal distribution of malaria identified to be beneficial, 

ƛǘ Ƴŀȅ ƴŜŜŘ ǘƻ ŀŘŘǊŜǎǎ ǎƻƳŜ ƛƳǇƻǊǘŀƴǘ ǉǳŜǎǘƛƻƴǎ ŀǎ ǇǊƻǇƻǎŜŘ ōȅ /ŀǊǘŜǊ Ŝǘ ŀƭΦ ¢ƘŜǎŜ ƛƴŎƭǳŘŜΥ άмύ Lǎ ƛǘ ƻǇŜǊŀǘƛƻƴŀƭƭȅ 

possible to reliably distinguish spatial clusters with markedly different malaria case incidence and to determine 

the locations and extents of all the foci of malaria transmission in a locality? 2) If achieved, can the information be 

exploited in order to conduct highly effective malaria control by the accurate targeting of an intervention? 3) What 
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tools for control could be more effective using the generated spatial information? 4) In which situations of 

ŜƴŘŜƳƛŎ ƳŀƭŀǊƛŀ ƛǎ ǘŀǊƎŜǘƛƴƎ ǇǊŀŎǘƛŎŀƭ ŀƴŘ ŜŦŦŜŎǘƛǾŜ ŀƴŘ ƛƴ ǿƘƛŎƘ ƛǎ ƛǘ ƴƻǘΚέ [110]. To aid disease burden monitoring 

and control intervention implementation and/or targeting, however, if well understood HMIS data may be a great 

choice to facilitate assessments that address most of these questions. In the following section therefore, I provide 

a detailed discussion of HMIS data available in Uganda including the indicators reported, strengths and 

weaknesses, and its use for impact assessment. 

1.5 Routine surveillance and HMIS 

1.5.1 Routine reporting of malaria indicators 

The WHO has defined routine surveillance as continuous, systematic collection, analysis and interpretation of 

health-related data for planning, implementation, and evaluation of public health practice [111]. Identified 

benefits of surveillance include: serving as an early warning system for impending public health emergencies; 

documentation of impact of intervention, or tracking progress towards specified goals; and, monitoring and 

clarifying the epidemiology of health problems, to allow priorities to be set and thereby inform public health policy 

and strategies [111].  

Regularly submitted reports to the Ministry of Health that contribute towards malaria routine surveillance 

emanate from sources such as: implementers of health-related activities like LLIN distribution campaigns; 

supervision activities conducted by national malaria control programme (NMCP) managers; and, disease 

surveillance reports from health facilities, all using standardised report formats [112]. Disease surveillance 

through health facilities in Uganda includes several key activities. First, integrated disease surveillance and 

response (IDSR), in which data on cases and deaths are reported on a weekly basis to facilitate epidemic detection 

and/or preparedness [36, 113]. Second, sentinel surveillance programme whose primary objective is to monitor 

trends using test positivity rates as a key indicator, along with increasing diagnostic testing [68]. Third, 

demographic surveillance sites (DSS) that include two selected communities for monitoring defined populations 

on demographic metrics such as births, deaths and migration [114]. Fourth, pharmacovigilance, although this has 

largely been out of operation [36]. Lastly, outpatient department (OPD) monthly reporting on malaria cases 

through HMIS form 105 that is central to this research, where malaria reporting primary includes: total monthly 

reported and confirmed cases, and number of suspected malaria cases tested either by microscopy or mRDT, all 

categorised into pre-determined age-groups [112]. 

Whilst there is evidence of use of HMIS data in spatial modelling to identify high burden locations [101, 115] and 

HMIS data forms the basis of national day-to-day decision making in Uganda, it has not been adopted for national 

risk mapping, particularly with small area approaches as described above. When considering its utility, it is 

important to understand both the opportunities and challenges this data source provides. 
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1.5.2 Contextual framework, Opportunities and Challenges of routine HMIS data 

Optimal utility of HMIS data not only requires the identification and harnessing of its strengths as well as 

identification and mitigation of its weaknesses but also full understanding of contextual factors influencing the 

records within the HMIS. 

Concerning the contextual factors, HMIS records may be assumed to be influenced at three main levels. These 

levels interact in a predominantly hierarchical flow, though upward influences may also exist. They include: the 

political system, health system, and community levels. Perceived relationships between these levels of influence, 

as identified for this study, are presented in a summarised conceptual framework below (Figure 10). 

 

Figure 10. Summary of proposed conceptual framework defining HMIS records.  

The major sources of influence that may affect or determine what gets recorded in the OPD or other HMIS registers 

are broadly categorised into three sources of important factors including: the political, governance, and health 

financing; health facility, health worker, or localised health system; community or catchment served by the 

immediate health facility; and, the patients visiting a given health facility. 

Additionally, the factors that may determine quality of records at the health facility, which are the basic building 

blocks of HMIS data, are briefly described below under each of the identified levels of the contextual framework. 
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The political system (highest level) is characterised by the political environment, healthcare policy, and health 

financing factors and has overarching influences defining the working environment of the health facilities within 

the health system. These determine the available services or resources at a given hospital and play a key role in 

its functionality. At community level, influential factors may be due to the transmission setting, occupational 

culture within the community, health seeking and community culture surrounding health care that may impact 

on individual decisions, geographical attributes, and general community context. Proximal to the records, from 

the community are individual patients that may also directly influence the data recorded, based either on their 

perceived importance to providing good information to the health workers or their state of illness when they 

visited. Also, proximal to the records is the health system level that may influence patient, health worker, and the 

health facility itself. Heywood and Boone classified three levels of influence on health records characterised by 

demand for and benefit from use of good health records [116]. These include: the beneficiary-level, involving 

clinicians that need data to follow up patients and monitor their improvement; facility-level, where managers 

need data for infrastructure and resource improvement; and system-level, where district and national leaders 

need data to monitor and plan for services delivery. However, these seem to downplay the role of the community 

which may influence records through community narratives on the available health system, among others. 

Collective understanding of (1) the contextual factors influencing HMIS records that need consideration, (2) 

available opportunities within HMIS data to be harnessed, and (3) prevailing challenges in HMIS to be mitigated, 

is central to both HMIS improvement efforts and accurate interpretation of indicators of burden derived. This is 

important for full implementation of the global strategy of transforming surveillance into a core intervention and 

the ultimate realization of global 2030 malaria targets. 

Below, I provide a more detailed breakdown of the opportunities and challenges of routine HMIS data, specifically 

for malaria surveillance. The opportunities include: 

¶ Scalable temporal and spatial resolution: Compared to many other sources of malaria case data, HMIS 

provides unmatched temporal coverage for multiple purposes. For instance, the Uganda NMCP conducts 

integrated disease surveillance and response (IDSR) using weekly reports to assesses disease epidemics and 

routine surveillance using monthly OPD HMIS reporting to monitor general trends [36]. However, for any 

practical purposes, temporal assessments are possible from daily to multi-year scales in HMIS unlike any other 

study design. Considering spatial scales, HMIS affords both national and regional scales as with indicator 

surveys. Moreover, given that routine interventions are currently conducted at district level making it the 

focus in Uganda and elsewhere thus far [36], HMIS has been widely used at this scale [11, 13, 80]. Importantly 

ǘƘƻǳƎƘΣ ƭƻǿŜǊ ǎǇŀǘƛŀƭ ǎŎŀƭŜǎΩ ŀǎǎŜǎǎƳŜƴǘǎ ƻŦ ŘƛǎŜŀǎŜ ōǳǊŘŜƴ ŀǊŜ ŀƭǎƻ ǇƻǎǎƛōƭŜ ǿƛǘƘ IaL{ [102] and I explore 

this further in Chapter 6 of the thesis. 

¶ Comprehensive coverage of age: The most common assessments of malaria burden that use small-scale, 

national cluster-level indicator, and demographic health survey data mainly focus on children under 5 years 
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of age and seldom on the 5-15 or over 15 years of age if at all. These age-restricted estimates are either largely 

assumed sufficiently indicative of the scope of malaria burden as seen from indicator surveys [61, 96] and 

often, population-level estimates are modelled from these [1, 3, 12, 71, 83, 117]. This paradigm seems to 

downplay any effects of age, particularly older age, in the epidemiology of malaria thereby under-estimating 

burden [118] or its effects on control efforts and I address this further in Chapter 4. HMIS data, however, 

covers the full community age distribution making it a richer source, likely to afford more balanced and/or 

accurate estimates of burden or risk. 

¶ Multiplicity of proxy burden measures: Whereas malaria incidence rate is primarily defined as number of new 

cases per duration, divided by total person-time of population observation [119] using cohort studies, these 

studies are costly. Several proxy measures from routine HMIS data are used for malaria mapping. These have 

included: (a) Case numbers, either taken as a proportion of estimated population at the time [94, 101, 103, 

104, 120-123], or a standardised morbidity ratio [108]; (b) malaria positive fraction (MPF), as a measure that 

controls for differences in access to care [115, 124, 125]; (c) malaria cases as a proportion of treatment events 

at a facility [125-128]; (d) case-control analysis of disease clustering defining confirmed malaria as cases, and 

negatives as controls [129, 130]. Test positivity rate (TPR), though commonly  reported in HMIS-based studies 

has not been widely used for mapping, except in one evaluation report from Rwanda [106]. It has however 

been used in combination with presumptive cases to generate malaria positive fraction [115, 124, 125] or to 

adjust for over-estimation when presumptive diagnosis is high [115], as was common practice across sub-

Saharan Africa [13]. As a proxy measure of incidence, however, TPR is: (i) inexpensive relative to measuring 

incidence, (ii) widely used to assess temporal trends, (iii) recommended by WHO [44], and (iv) easy to 

incorporate and monitor in routine HMIS processes even at peripheral health facilities [44, 45]. The same 

attributes, however, may hold for all the other commonly used metrics for measuring changes directly like 

case totals or indicators derived and considered as indirect assessments [131]. 

¶ Interoperability and systems strengthening: There are opportunities within HMIS to link multiple information 

systems, such as: the patient health records system with logistics information systems to manage stockouts 

and/or wastage; HMIS with regional or national demographics for health system strengthening; and, 

conducting multi-disease assessments for enhanced decision making. Importantly, introduction of DHIS-2 in 

2012 was associated with 49% increased report completeness and 55.2% increased submission timeliness 

over the first year, providing greater accessibility to multi-department HMIS data [14]. HMIS data, therefore, 

provides an evidence base to advance policy proposals from: management, expert opinion, task forces, 

stakeholder engagements, community dialogues, trainings, investigative research, and field experiences 

[132]. Evidence exists of triangulation of HMIS with pharmacy and other systems cited as pivotal to monitoring 

new programs like the anti-retroviral drugs program to inform national HIV response in Kenya [133]. 



  Page 35 of 267 

Notwithstanding the great opportunities, several limitations of routine HMIS surveillance data are noteworthy 

and may affect accuracy in estimates of malaria and/or disease burden derived. 

¶ Incompleteness in health facility reporting: Nationwide reporting, though improving, may not be absolutely 

prompt or complete and if completeness is low, assessments may underestimate the burden reported [134]. 

Contributing factors may include: shortage in staffing, infrequent data checking by in-charges, laborious HMIS 

documentation along with lack of training, difficulty submitting hard copy reports, and sudden transfer of staff 

without formal hand-over [135]. Whereas there have been improvements associated with the advent of 

electronic web-based reporting [14], it remains unclear how factors associated with health care human 

resources or health worker practices, impact on HMIS data completeness. 

¶ Exclusion of close-to-community health services: Data from community health services, such as village health 

teams (VHT) under integrated community case management (iCCM) programmes, are largely excluded from 

regular reporting. Whilst expected from the entire district health services sector, reporting progress has 

mostly impacted the formal health centre side. VHT reporting struggles with: inadequate supply of tools, 

inconsistent and unreliable supervision, shortage of basic required training, and competing demands from 

multiple implementing partners with a diversity of reporting tools in use [136]. Reports show that training has 

been poorly attended by a few VHT members and even fewer for any comprehensive course [136]. Deficiency 

in training, low education levels, and unclear supervision impacts on the quality of VHTs reports, if any. 

¶ Health seeking behaviours and the private sector: Patient records from the private sector (private-for-profit 

clinics, drug shops - major players, and pharmacies), said to cater for up to 53.2% of patients in Uganda [137], 

are dismally captured through HMIS reporting. Preference of the sector is well documented in sub-Saharan 

Africa citing good service as well as proximal and regular drug supply [138], relative to the public side. 

Extensive drug shops use may signal high levels of self-medication, since artemisinin combination-based 

therapy drugs (ACTs) are over the counter drugs [139]. One report indicated that 38% of caregivers first treat 

fevers at home in Uganda, possibly aided by this drug availability [140]. Moreover, 59% of the children under 

60 months of age sought advice or care from private facilities during their most recent fever episode in 2018 

[61], an increase from 49% in the 2014 by MIS survey reports [60]. Other reports have indicated 42% versus 

16.4% as seeking care from private versus public facilities, respectively, being their first of multiple care 

options for an illness episode [140]. Moreover, where a single option was used, 68% vs. 27% used private vs. 

public facilities, respectively [140]. Taken together, the majority [141] of the population seek care from the 

private sector in Uganda and for effective disease monitoring and control, HMIS-based surveillance needs to 

critically consider the private sector. Nonetheless, HMIS remains heavily biased to public health facilities to 

date. 

¶ Reliability of diagnosis: Testing practices are fairly differential due to health system-related challenges like: 

disruptive or non-functional facilities, human resource shortages, little or no supervision, and varied health 
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worker attitudes [142]. Diagnostic testing rates, if low, may reduce confirmed cases realised while 

encouraging presumptive diagnosis and therefore, compromised accuracy of burden estimate [108]. 

Moreover, increased use of mRDTs, while curbing the irrational use of antimalarials through reduced 

presumptive diagnoses, is also associated with: increase in false negative results due to low parasite densities 

or deletion of target-gene within the parasite; low health worker trust of results; and, antibiotic overuse 

especially with negative mRDT results [143, 144]. 

¶ Reliability of population denominators: Incidence rates rely on population estimates as the denominator. 

However, neither the population within an attributed/assumed catchment nor the appropriate catchment of 

a given health facility or group of facilities can be precisely defined. This may be compounded by: (i) non-

alignment of health facility catchments with administrative boundaries though often assumed, (ii) 

unpredictable trends in population movements, especially with unstable political situations such as areas with 

rampant refugee activity, or (iii) unreliable frequency of national population census updates and/or restrictive 

levels of detail of these census data, when available. These factors, individually or collectively, undermine the 

accuracy of estimates of disease incidence in these low resource settings. 

Consequently, the burden of disease reported through routine data is heavily affected by the quality of records 

generated at the health facilities [145]. As such, large areas of the malaria endemic world, especially sub-Saharan 

Africa with HMIS classified as poor, still fall short on reporting true measures of disease burden given underutilised 

routine systems, and alternative model-based sources being used instead [62, 146]. However, this is not the case 

particularly in the lower transmission settings or where HMIS is reliable [62]. Nevertheless, there are many studies 

within these high transmission areas that have exemplified the benefit of routine HMIS in mapping malaria, 

documented from across sub-Saharan Africa [13, 80, 93-95, 101, 103-105, 108, 115, 120-130, 134, 147-157], 

though minimal compared to other data sources. Therefore, the potential in improved routine reporting through 

HMIS is great, especially for spatial risk assessment. 

1.5.3 HMIS data for malaria impact evaluation 

Competing interests on funding that has previously facilitated large-scale declines in malaria burden [158, 159], 

necessitate renewed data-informed implementation and evaluation of the impact of available control 

interventions [4, 160], owing to recent stalling in burden declines. Current intervention tools including LLINs, IRS, 

artemisinin-based combination therapies, and low cost parasitological mRDTs have all long been proved effective. 

However, following their implementation in routine or real-world settings, assessment of their impacts using 

cluster randomised trail (CRT) study designs, have often found no impacts [161-163]. One study in Uganda, for 

instance, successfully implemented a CRT where the intervention trained health workers in fever case 

management using mRDTs (study introduced) and artemether lumefantrine (AL) but found no differences 

between arms, in the prevalence of parasitaemia, anaemia, or other outcome [164]. Such designs in routine 

settings are often overtaken by unexpected competing programs or uncontrolled implementation of other 
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interventions with diluting effects beyond the confines of CRT design assumptions [161, 162]. Nevertheless, 

IaL{Ωǎ ǎǇŀǘƛŀƭ ŀƴŘ ǘŜƳǇƻǊŀƭ ǎŎƻǇŜ Ƴŀȅ ǇǊƻǾƛŘŜ ǘƘŜ ōŜǎǘ ŎƻǾŜǊŀƎŜ ƻŦ ǊŜŀƭ-world contextual changes enabling 

assessments based on alternative quasi-experimental designs, such as interrupted time-series and dose-response 

methods, to identify intervention associated impacts [162, 165, 166]. Temporal assessments using HMIS data in 

Zanzibar ς Tanzania, for example, showed declines in malaria incidence following the roll out of ACTs and further 

declines during expanded vector control (LLIN and IRS), compared to pre-intervention periods [165]. These 

approaches are fit for purpose because of their capacity to incorporate real-world conditions when carefully 

applied to contextually comprehensive data such as routine HMIS data. Utilization of the spatial capacity of HMIS 

data in evaluating impacts of control interventions on malaria burden, however, remains very limited. One study 

that assessed the effect of case management and vector control on space-time patterns of malaria incidence using 

HMIS data in Uganda, reported protective effects of ITN coverage among all age-groups, though significant only 

among children under 5 years [80]. However, these were likely to be predominantly temporal effects, given that 

no geo-spatial outputs were provided to this effect. Instead, the geo-spatial results reported, only confirmed 

greater heterogeneity of malaria burden among children under 5 years of age than among those 5 years and older. 

Taken together, this further highlights the need for improved understanding of the utility of routine HMIS data, 

for identifying locations at high-risk of malaria in high transmission settings, and thereby its application in 

evaluating the impact of control interventions in those areas. 

1.6 Justification and Rationale  

As indicated in previous sections, there are important knowledge gaps surrounding reliability of HMIS as a viable 

data source, how indicators of malaria burden derived from HMIS relate to each other, their representativeness 

of burden relative to gold standard estimates, and the potential use of these indicators in identifying high-risk 

areas across spatial scales. Stalled reduction in malaria burden, coupled with recent strategies of targeted 

application of well-known effective control interventions informed by surveillance, emphasises an urgent need 

for improved understanding of routine surveillance systems and better interpretation of indicators of malaria 

burden from these systems. A stronger understanding of routine surveillance data would improve identification 

of weaknesses for surveillance system improvement, facilitate increased use of the data generated, foster 

stronger health systems in low resources settings, and improve the allocation of resources for health in these 

settings. Moreover, better interpretation of the data and/or indicators of burden from routine surveillance would 

enable production of stronger evidence or basis for: optimal resource channelling; timely implementation of 

control interventions; imǇǊƻǾŜŘ ŀǎǎŜǎǎƳŜƴǘ ƻŦ ŎƻƴǘǊƻƭ ƛƴǘŜǊǾŜƴǘƛƻƴǎΩ ƛƳǇŀŎǘǎΤ ŜŦŦƛŎƛŜƴǘ ŀƴŘκƻǊ ŜŦŦŜŎǘƛǾŜ ŘŜŎƛǎƛƻƴ 

making; and, sustainable, timely, accurate, and scalable monitoring of malaria burden in the low resource high-

burden areas, like Uganda. 

My thesis will focus on understanding the HMIS-based indicators of malaria burden. I will particularly focus on 

malaria incidence rates, both over time and space. As outlined in the previous sections, there are knowledge gaps 
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surrounding relative magnitudes of these metrics in high circulation and/or frequent use. Extremely few studies 

have examined the effectiveness, fitness, or utility of HMIS-based indicators, or relationships between and among 

these or other indicators and none with their gold standard counterparts. Studies of HMIS routine indicators of 

burden, exploring their inherent sources of bias, examining their representativeness of unbiased or true burden, 

and assessing their capacity for identification of high-risk locations are needed to address the identified gaps in 

knowledge on overall utility of routine data. Stronger understanding of relationships between these indicators, 

their change with age over time, representativeness of unbiased burden and likely sources of bias could provide 

valuable insights around impact and effectiveness of malaria control strategies. Moreover, increased 

understanding of the spatial distribution of malaria burden may also inform appropriate scales for optimal 

implementation and assessment of targeted interventions. Consequently, results will highlight the potential for 

robust timely map production using HMIS data for target decision making and optimal resource allocation and 

incentivise improved utility and uptake of risk maps across national malaria control fora. This work is highly timely 

for the call to transform surveillance into an intervention under the global technical strategy for malaria 2016-

2030, and ultimately for the third sustainable development goal to be met [4, 5]. 

1.7 Thesis aim and objectives 

The aim of my thesis is to investigate the utility of indicators of uncomplicated malaria burden from routinely 

collected health facility data in describing the changing temporal and spatial distribution of malaria in Uganda. 

Addressing this aim will provide evidence to guide strategic use of routine data for malaria control activities. This 

aim will be reached through the following specific objectives: 

1. To explore the relationship between alternative measures of uncomplicated malaria incidence generated 

from sentinel surveillance data. 

While several indicators of malaria burden have been derived from routine public health facility data and used 

widely to estimate incidence, how they each relate to the other is unclear. Better understanding of this 

relationship may help with interpretation of burden or risk derived and/or reported through their use. This study 

objective, therefore, explores the relationship between several indicators of malaria burden (incidence estimates), 

and will compare them across three transmission settings in Uganda. 

2. To examine the impact of malaria control interventions on the age distribution of malaria cases using 

routine sentinel surveillance data in four sites where LLIN and IRS campaigns have been conducted. 

Whereas surveillance has predominantly focused on children under five years of age, a pattern of high-risk of 

positivity among older children became apparent and raised concerns about the continuation of surveillance as 

usual. This objective, therefore, explores the possible driver of this changing pattern to provide evidence that 

supports this apparent trend or shift and highlight the vital role age plays in surveillance considerations.  
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3. To investigate the association between incidence of uncomplicated malaria from routine surveillance data 

and incidence from cohorts, across sites of different transmission intensities and identify and quantify 

sources of bias in surveillance incidence to assess its reliability for monitoring burden of malaria. 

Whilst routine HMIS data quality reports range from untimely, incomplete, and unreliable diagnoses to improved, 

in Uganda and elsewhere [37, 167-169], goodness-of-fit of derivate estimates of malaria incidence to represent 

unbiased burden, is unknown. This study objective, therefore, compared HMIS-based incidence with incidence 

from community cohorts in three settings in Uganda, accounting for other associated factors, that are influential 

on health facility data over time. It then evaluated the potential sources and quantities of bias in routine data to 

assess reliability of its estimates of malaria burden. 

4. To explore patterns and determinants of spatial variation of malaria from routine HMIS data at national 

spatial scales and identify areas at high-risk of malaria. 

Geostatistical analyses of malaria reliant on routine data have been limited to regions, district, and sub-district 

spatial scales with limited data access. With increasing accessibility given the advent of DHIS-2, more fine-scale 

assessments of malaria burden and risk may be possible. This study objective, therefore, explored multi-scale 

spatial temporal patterns of incidence and risk using national routine HMIS data from geolocated health facilities, 

accounting for known risk factors. 

1.8 Thesis outline 

To aid interpretation, Chapter 2 provides a detailed description of the multiple data sets pooled together to 

address the different components of this research. Chapter 3 describes the relationship between test positivity 

and incidence rates from enhanced HMIS surveillance across three sites of varied transmission intensity in Uganda. 

Chapter 4 outlines the impacts of effective large-scale community control interventions on the age-specific burden 

of confirmed malaria across four sites of varied transmission intensity in Uganda, stratified into ΨLLIN aloneΩ versus 

ΨLLIN plus IRSΩ intervention sites. Chapter 5 evaluates the relationship between HMIS- and cohorts-based 

incidence of malaria, across three sites of varied transmission intensity around Uganda, and assesses the level of 

bias from multiple factors of influence to HMIS recorded data. Chapter 6 presents a concurrent multi-scale 

assessment of the spatial temporal distribution of incidence of malaria from national routine HMIS reporting, 

accounting for environmental risk factors, identifying seasonality and high-risk clusters of malaria across the 

country. These chapters have all been published (Chapters 3 to 5) or submitted (Chapter 6) to peer review journals. 

Finally, Chapter 7 discusses the findings from this work and the conclusions drawn, limitations identified in this 

research, and recommendations for policy and/or future research. 

Other supportive information towards this work, including: (a) summary of the literature reviewed to assess the 

use of routine HMIS data in malaria risk or burden mapping has been provided in Appendix 1; (b) Response to 

ǊŜǾƛŜǿŜǊǎΩ ŎƻƳƳŜƴǘǎ ŦƻǊ the published paper in Chapter 3, contained in Appendix 6; (cύ wŜǎǇƻƴǎŜ ǘƻ ǊŜǾƛŜǿŜǊǎΩ 
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comments for the published paper in /ƘŀǇǘŜǊ пΣ ŎƻƴǘŀƛƴŜŘ ƛƴ !ǇǇŜƴŘƛȄ уΤ όŘύ wŜǎǇƻƴǎŜ ǘƻ ǊŜǾƛŜǿŜǊǎΩ ŎƻƳƳŜƴǘǎ 

for the published paper in Chapter 5, contained in Appendix 9. 
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2 Data Overview 

This thesis uses multiple complementary health management information system (HMIS) data sources that are 

disjointed by study or program design. Consistent across most of these, was that they largely conducted 

surveillance among the same populations but for independent and/or different study objectives. Together, these 

datasets provided a unique opportunity to study estimates of malaria burden and factors associated with them. 

This was possible through leveraging (1) patient-level details from health facilities including dedicated national 

reference centres and community-based passive cohorts, and (2) a nation-wide network of HMIS reporting health 

facilities. I thus provide a summary description of the various data sources and how they tie together. 

Overall, three separate surveillance projects plus the national routine HMIS data system, provided data for this 

workΦ Lƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǎŜŎǘƛƻƴΣ L ƛƴǘǊƻŘǳŎŜ ƳŀƭŀǊƛŀ ƛƴ ¦ƎŀƴŘŀΩǎ IaL{Σ ŀŦǘŜǊ ǿƘƛŎƘ, I provide a detailed description 

of all the data sets used to conduct this research. 

2.1 Study Data Sources 

2.1.1 MalaǊƛŀ ƛƴ ǘƘŜ ¦ƎŀƴŘŀΩǎ IaL{ 

Summary of the Uganda health system structure: The health system in Uganda, is a hierarchy comprising of: 

National referral hospitals, Regional and other referral hospitals, and district health services, that each report to 

the MinƛǎǘǊȅ ƻŦ IŜŀƭǘƘΩǎ 5ŜǇŀǊǘƳŜƴǘ ƻŦ IŜŀƭǘƘ LƴŦƻǊƳŀǘƛƻƴ, through HMIS. The district health services, headed by 

a district hospital, includes: health centre (HC) IV ς providing emergency surgery, in-patient care, maternity, and 

blood transfusion services; followed by mid-level HC III ς providing basic laboratory, maternity, and in-patient care 

services; then the HC II ς providing outpatient and outreach services as the lowest formal care level with premises 

[170]. 

Whereas public formal care stops at HC II, other facilities include privately owned and a few government-run 

special clinics. At the lowest level are community health workers or village health teams (VHT), comprising of 

volunteers often trained under the integrated community case management (iCCM) strategy to diagnose and treat 

malaria, pneumonia and diarrhoea in children under five years within communities [171]. Taking advantage of 

tools like rapid diagnostic test kits for malaria (mRDTs), VHT where operational, provide extended reach of care 

to communities though these do not consistently perform routine HMIS reporting [172]. 

Uganda has at least 7000 health facilities and counting to date [170]. Nationally, all public health facilities that 

include Government owned and private not-for-profit (PNFP) and increasingly private for profit (PFP) health 

facilities, provide regular (weekly/monthly) HMIS reports on burden of selected diseases and their management 

to regional authorities, primarily the district medical team [173]. Introduced in 1997 as a paper-based reporting 

system, HMIS reports are utilised by the Ministry of Health for national level health assessments [15, 173]. They 

are the primary source of malaria cases data, informing the different Ministry of Health bodies including National 

Malaria Control Program (NMCP), as an evidence base for decisions on control interventions and wider policy [43, 
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173]. Since 2012 however, a web-based District Health Information System ς version 2 (DHIS-2) was introduced 

to enable easier access to reports from across the entire national health system, starting with the public sector 

[14].  

Malaria surveillance in Uganda, using standard HMIS, may be considered as conducted at two major levels. The 

first, broader, and more general level is reporting through the district health services to the NMCP. As in many 

malaria endemic countries, health facilities provide regular aggregated reports to governments for disease burden 

assessment and these are entered into the DHIS-2 system, making them readily available to the NMCP(s) [14, 45, 

174]. The second and more focal level is through sentinel sites (later known as reference centres) embedded 

within the HMIS system in epidemiologically diverse settings, to strengthen the collection of high quality data 

[175]. From these, data are evaluated at patient-level, rather than in aggregates, aiding more robust inferences 

for control and early warning feedback, for possible epidemics and therefore, action. Reports from the sentinel 

surveillance are generated monthly by the Uganda malaria surveillance project and made available to the NMCP. 

Specific to this study were uncomplicated malaria cases, details of which are recorded in one of many HMIS 

registers, the outpatient department (OPD) registers ς per national policy. Uncomplicated malaria was defined as 

any episode of malaria where the patient was not hospitalised but treated within the outpatient clinic. OPD 

registers comprised the main source of data used in this study. In the next sections I describe the two categories 

of HMIS data used, including patient level or aggregate HMIS data, and two additional data sets including cohorts 

summarised in Table 1, and explanatory variables data. 
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Figure 11. Locations of study health facilities across Uganda, by study objective:  

A ς Sentinel health facilities included in the objective 1 study, three facilities in total - all being Level IV and 

Government owned. The sub-county boundary around each was used to define the study area with a varied number 

of villages per site; Nagongera had 45, Walukuba 21 and Kihihi 117 villages. The three sites were selected due to 

the concurrent cohorts conducted there, for which epidemiological diversity of the sites was a key consideration in 

the choice of sites for the cohorts. 

B ς Sentinel health facilities included in the objective 2 study, four facilities in total and all Government owned. 

A & C ς Sentinel and lower-level health facilities included in the objective 3 study, 15 facilities in total, with some 

Government owned and others private not for profit. The sub-county boundary around each was used to define 

the study area as in objective 1. 
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D ς Nation-wide HMIS reporting health facilities included in the objective 4 study, 3446 facilities, including national 

and other referral or district and general hospitals, health centres, and clinics both Government and privately 

owned. 

Table 1. Summary of data sources, the respective study populations, and indicators of malaria burden, by 

study objective. 

 

Data source(s) 
Study population 

age group 

Indicator of malaria 

burden 
Study period 

1. Exploring the relationship between alternative measures of uncomplicated malaria 

Patient-level HMIS: 3 HCIV's (Malaria 

reference centres) in 3 sub-Counties 

including Nagongera, Walukuba, & Kihihi 

Children <11 years 
Test positivity rate, 

Malaria incidence rate 

Oct-2011 

to 

Jun-2016 

2. Examining the impact of malaria control interventions on the case age distributions 

Patient-level HMIS: 3 HCIV's & 1 HCIII 

(Malaria reference centres) in 4 sub-

Counties including Nagongera, Walukuba, 

Aduku, & Kasambya 

3 categories: <5, 5-

15, 15-70 years 
Test positivity 

Jan-2009 

to 

Jul-2018 

3. Investigating associations between incidence of uncomplicated malaria from routine surveillance data 

and cohorts 

Patient-level HMIS: 3 HCIV's (Malaria 

reference centres), 2 I/LLLϥǎΣ ŀƴŘ т I/LLΩǎ 

in 3 sub-Counties including Nagongera, 

Walukuba, & Kihihi 

Children 0.5-<11 

years 
Malaria incidence rate 

Oct-2011 

to 

Sep-2014 

Additional data source - Community 

cohorts: 3 cohorts involving 100 

households from each of the 3 sub-

counties of Nagongera, Walukuba, & 

Kihihi 

Children 0.5-<11 

years 
Malaria incidence rate 

Oct-2011 

to 

Sep-2014 

4. Exploring patterns and determinants of spatial variation of malaria from routine HMIS data 

National DHIS-2 aggregate HMIS: 3446 

health facilities in the national HMIS 

ƛƴŎƭǳŘƛƴƎ όIƻǎǇƛǘŀƭǎΣ I/L±Σ I/LLLΣ I/LLΩǎΣ ϧ 

Clinics) 

All Malaria incidence rate 

Jul-2015 

to 

Sep-2019 

HC = Health centre 
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2.1.2 Patient-level HMIS data 

2.1.2.1 Sentinel surveillance data 

In Uganda, sentinel surveillance for malaria has been conducted since 2006, under the Uganda malaria 

surveillance project (UMSP) [68]. Against a backdrop of very low capacity for diagnostic testing in Uganda, six 

sentinel health facilities with operational laboratory facilities and thus, capability to conduct diagnostic testing for 

malaria using microscopy, were purposefully selected, considering geographical representativeness as 

determined under the East African Network for Monitoring Antimalarial Treatment (EANMAT) [27]. These sentinel 

sites were later upgraded to national malaria reference centres for the NMCP [64]. By the start of this PhD in 2017, 

there were at least 21 operational malaria reference centres in Uganda. Of these, three centres were included in 

objectives one and three, while four were included in objective two of this research with each centre located in 

an independent sub-county and district.  

At each outpatient (OPD) clinic of these health facilities, for every patient seen, presenting symptoms of illness 

are assessed by the attending clinician.  All suspected malaria cases are sent to the laboratory for a blood test for 

malaria, by microscopy or mRDT. Based on the test results from the laboratory, appropriate action is then taken 

by the clinician and all the details pertaining to this patient visit are recorded in the OPD register. These details 

include age, sex, fever or history of fever, diagnostic test done, test results, diagnosis given, and treatment 

prescribed, among others. Every month, these data are extracted by a UMSP supported staff at the clinic and 

entered in a MS Access database (Microsoft Corporation Inc., Redmond WA. USA). The complete monthly data 

are then sent to the UMSP data centre for cleaning and processing [68]. A detailed description of the data 

management and processing within this study is provided in section 2.2 below. 

2.1.2.2 Additional (non-sentinel) health facility data  

To supplement the above sentinel site data and ensure comprehensiveness of HMIS data for the included study 

sites, 12 non-sentinel health facilities, including level II and III facilities from three sub-counties (each hosting a 

malaria reference centre) also provided patient-level data in objective three of this study. In keeping with the 

sentinel facility data collection format, retrospective anonymised individual patient details were collected from 

OPD registers of each facility, covering a three-year duration. To collect these data, I recruited a team of at least 

seven research assistants (RA) at a time, per site, and evaluated them with a pre-training test on their basic data 

and mathematics abilities. I then trained them on the principles of research and the study procedures that were 

detailed in a standard operating procedure (SOP). Following several days of training, they were all tested using a 

post-ǘǊŀƛƴƛƴƎ ǉǳƛȊ ǘƻ ŜǾŀƭǳŀǘŜ ǘƘŜƛǊ ŎƻƳǇǊŜƘŜƴǎƛƻƴ ƻŦ ǘƘŜ ǇǊƻŎŜŘǳǊŀƭ ŀǎǇŜŎǘǎ ƻŦ ǘƘŜ ǎǘǳŘȅΦ ¢ƘŜ w!Ωǎ ǘƘŜƴ ŜƴǘŜǊŜŘ 

the data from OPD registers into MS access databases, loaded on tablet computers. I provided fulltime supervision 

of this activity in the field from site to site. On a daily basis, I backed up the data from each tablet and charged the 

tablets at a central place, making them ready for the next day of work, since our field office ς a rented primary 

school classroom had no power supply. 
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Also, some data from a cluster-randomised trial (CRT) conducted in several sub-counties of Tororo district 

including Nagongera, among government-owned lower level health facilities, was included in this study [164]. The 

CRT study aimed to evaluate the impact of enhanced health facility-based care for malaria and febrile illnesses in 

children within the study area. With facilities randomised in two arms, the intervention that involved, among 

others, training health workers on fever case management and use of mRDTs, as well as ensuring adequate 

supplies of mRDTs and artemether-lumefantrine (AL) was evaluated using HMIS data from OPD registers in both 

arms [164]. 3/20 facilities ƛƴŎƭǳŘƛƴƎ aŀǳƴŘƻΣ ²ŜǊŜΣ ŀƴŘ YŀǘŀƧǳƭŀ I/LLΩǎ ǿŜǊŜ ƛƴ bŀƎƻƴƎŜǊŀ ǎǳō-county and data 

covering the duration between October-2011 and March-2013 for these facilities was obtained from the CRT and 

included in this study. The primary data collection discussed above, collected the remaining 19 months of data to 

ensure coverage of the full three-year study duration. Together, these data sets were used to address objective 

three of this thesis. 

2.1.3 National DHIS-2 aggregate HMIS data  

From the Department of Health Information within the Uganda Ministry of Health, I obtained nation-wide HMIS 

data from the DHIS-2 per year for all 128 districts of Uganda (as they were known by 2018) as excel spreadsheet 

files, formatted as monthly health facility entries. These entries included totals of OPD malaria and OPD malaria 

confirmed (by microscopy or mRDT) for each health facility, over the duration of January-2014 through 

September-2019. 

Following data review, the study duration was defined to cover July-2015 through September-2019, and these 

data were compiled into a single database for all the 51 months of the study duration, to address objective 4 of 

this study. 

2.1.4 Additional data source - Community Cohorts 

In addition to routine HMIS data, this thesis incorporated data from three enhanced passive cohort studies 

conducted in Nagongera, Walukuba, and Kihihi sub-counties starting August-2011, under one of ten International 

Centres of Excellence in Malaria Research (U19AI089674) [176]. The focus for the original project was to describe 

malaria incidence and prevalence, providing a basis for further analyses on longitudinal trends and risk. For these 

cohorts, all children aged 0.5-<11years were recruited from a random selection of 100 households, drawn from 

full enumeration of all households in each sub-county. Being dynamic cohorts, any additional children in this age 

group within each participating household were all eligible. Clinical assessments happened at enrolment and at 3 

monthly scheduled visits using a standardised questionnaire, and a blood sample taken at each to assess for 

malaria infection by microscopy. However, participants received free medical attention between scheduled 

assessments throughout the study duration, at the study clinic that was open daily. 
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For a three-year duration, data was obtained from these three passive community cohorts. Incidence of malaria 

was estimated monthly, defined as the total number of incident cases of malaria divided by total person-time of 

follow-up estimated in years, per month, by site. 

Whereas the cohorts were used to provide a gold standard estimate of incidence of malaria per site, 

advantages/strengths, and weaknesses of the data in consideration were identified as detailed in Table 2 below. 

Table 2. Strengths and weaknesses of the Cohort data used to derive the 'gold standard' incidence rates 

against which to evaluate the routine HMIS incidence rates. 

Strength Weakness 

Provided standard testing for all suspected malaria: 

For ill participants at any visit, standard sick visit 

procedures including measuring temperature and/or 

recording history of fever in the previous 24 hours; 

taking a finger prick to obtain smear and filter paper 

samples and if thick smear positive, the patient was 

diagnosed with malaria and prescribed artemether-

lumefantrine (AL), the recommended first-line 

therapy per national guidelines [35]. Moreover, the 

study performed venepuncture on all nonill 

participants at each clinic visit for a thick blood smear 

to examine for asymptomatic parasitaemia, among 

others. 

Only 100 households included across each site: 

Though randomly selected, these 100 households 

accounted for very small proportions of the 9,881, 

12,774, and 6,992 households in Walukuba, Kihihi, & 

Nagongera respectively and therefore, only sufficient 

to provide a good site-level (sub-county) estimate of 

incidence but proportions too small for parish or 

village-level estimates. 

Captured cases every day of the week: Unlike 

standard of care at public health facilities where OPD 

clinics may sometimes be closed, the cohort clinics 

were open every day of the week to see participants. 

Excluded children < 6months: Whilst infants may be 

assumed to benefit from maternal immunity, sentinel 

HMIS data showed that high proportions of infants <6 

months of age had confirmed malaria including 

12.7%, 28.3%, and 23.2% in Walukuba, Kihihi, and 

Nagongera respectively, over the same study 

duration. Excluding this group from the cohorts may 

have limited the understanding of estimates of 

incidence. 

Consistent health worker practice: Given this 

controlled experiment environment with multiple 

levels of supervision of study activities, study 

clinicians followed well documented standard 

Differential loss to follow-up: Whilst the study 

purposed to follow-up 100 households, there was 

considerable loss to follow-up. For instance, by the 

end of the study-period 21 households had dropped 
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operating procedures as per ethically approved study 

procedures for every clinic visit and across all three 

sites [177]. 

out of the study in Nagongera due to; relocation, 

inability to comply, and withdrawn consent, among 

others [178]. 

Provided prompt treatment: With a clinic open on 

every day of the week, participants enjoyed the ideal 

care provision with the highest likelihood of care 

availability within 24 hours of symptoms onset unlike 

under non-study conditions. Under standard care, 

delay may be caused by multiple limiting factors, 

especially financial or known unavailability of drugs at 

facilities. 

Passive follow-up: Whereas participants were free to 

come to the clinic for all febrile illness needs and 

alternative care seeking was minimised, the passive 

nature of these cohorts could have caused some to 

choose quicker alternatives. For instance, 0.1% of 

participants were reported to have sought 

inappropriate care in the first 24 months of the study 

[177]. 

wŜƛƳōǳǊǎŜŘ ǇŀǊǘƛŎƛǇŀƴǘǎΩ ǘǊŀǾŜƭ Ŏƻǎǘǎ: Whilst cost or 

financial challenges have been indicated as inhibiting 

to appropriate care access, the reimbursement of 

travel cost for participants provided good motivation 

for clinic attendance and therefore, improved 

likelihood of registering incident clinical cases of 

malaria 

On the other hand, the financial motivation through 

travel cost reimbursements could have inflated case 

detection rates, to levels unlikely under standard care 

or routine surveillance. This is especially so in the 

very high transmissions settings, where minor fevers 

from other causes that would not have resulted in 

standard care clinic visits, may be coupled with highly 

likely asymptomatic parasitaemia leading to 

confirmed malaria in this incentivised setting [32]. 

To assess the relationship between HMIS-based and cohort incidence, monthly estimates of cohort incidence were 

included as an independent variable in the regression models used in the objective three study of this research, 

results of which are presented in chapter 5 of this thesis.  In the following section, I describe the data preparation 

process by first, explaining the broad data preparation processes undertaken, followed by objective-specific data 

assessment, with particular focus on the outcomes of interest.  
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2.2 Outcome Data Management and Processing 

2.2.1 Data preparation 

2.2.1.1 Data cleaning process 

I converted all data sets from the various projects to STATA. The majority of these data sets were already cleaned 

from the primary analysis projects especially regarding the malaria outcome, diagnostic testing performed, 

diagnostic test results, and age. This was not the case, however, for villages of residence, especially for the UMSP. 

To merge these datasets into a single database, several variables, value definitions and value labels needed cross-

checking and alignment, which I conducted in STATA. For villages of residence, I used both my personal experience 

gained through being involved in the household enumeration exercises, where I led the teams as a research 

assistant and data officer with the projects during 2009-2011, and also referred to local knowledge. For the three 

sites, therefore, I created a standard fully coded village names master list against which, to evaluate all incoming 

data. The remaining list of unresolved named villages (without a match in the master list), I defined as unknown 

within catchment areas (sub-county), while those with a missing record, I placed in the category of missing. 

2.2.1.2 Population at risk of malaria (denominator) 

At multiple levels in this research, I needed to generate or define the population at risk, which in turn defined the 

denominator in estimating village or other defined resolution-level incidence rates per month. As such, the 

intended resolution-level population estimates were derived using national population gridded surfaces, freely 

provided by the Worldpop project (http://www.worldpop.org.uk). The main determinant for this choice was the 

inaccessibility of national housing and population census data for 2014 from UBOS, as well as the unavailability of 

these estimates at the spatial resolutions of interest in this study, particularly villages and health facility catchment 

areas, as further discussed in chapters 3, 5, and 6 of this thesis. From the national gridded population surfaces, 

estimates at the respective spatial resolution, particularly sub-Counties (described fully in Chapter 3) and health 

facility catchment areas (described fully in chapter 6), were extracted using the ESRI ArcGIS 10.3 Zonal statistics 

tool (ESRI 1995-2014l Redlands, CA. USA) for the objective respective study durations. 

From the annual population counts, monthly population estimates were determined using a monthly growth rate 

generated from national bureau of statisticsΩ (UBOS) 2002-2014 published census reports [179] for each 

subcounty (in Chapter 3). Moreover, I used linear regression predictions for monthly population estimates within 

health facility catchment areas, as discussed in Chapter 6. 

2.2.1.3 Suspected malaria definition 

 As no explicit record was made in the HMIS OPD registers of patients with suspected malaria, these were defined 

as all patients sent to the laboratory for a blood test for malaria, by microscopy or mRDT. Among those not sent 

to the laboratory, however, suspected malaria cases were identified as those with a clinical diagnosis of malaria. 

Whilst fever or history of fever in the last 48 hours is a key identifier of cases suspected to be malaria, the recording 

http://www.worldpop.org.uk/
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of this data or even the temperature taken at the clinic in all the HMIS studies involved was very low. For instance, 

data from the three sentinel facilities of Walukuba, Kihihi, and Nagongera, between Oct-2011 through June-2016, 

showed that fever recording among children <11 years of age ranged from 28.4 to 51.9%. Also, whilst a 

temperature of >=37.5 0C was considered determinant of fever, this information was predominantly missing in 

the HMIS databases. For example, in the three sentinel sites discussed above, a maximum of 34 participants had 

a recorded temperature, as such, these data were not utilised as primary determinants of suspected malaria. 

2.2.1.4 Attendance status 

For each patient visit recorded in the OPD registers, it is expected that indication is made of whether that patient 

visit was a new attendance (that is a new episode of illness) or re-attendance (implying a follow-up visit for an 

illness episode that was previously recorded at the clinic). This was done to avoid possible counting of the same 

episode of illness more than once as an incident case of malaria and would be applicable for any other illness 

presented and/or recorded in OPD registers. All re-attendance cases were excluded from any analyses in this 

study. For instance, though between 44.6 and 51.2% of participants had a missing record of attendance status 

among the three sentinel facilities during Oct-2011 and June-2016 and were assumed new illness episodes, 

between 0 and 4.2% of patients <11 years had visits classified as re-attendance, making them ineligible for 

inclusion. Exclusion of re-attendance visits was not expected to impact on analyses in anyway, given that they had 

been recorded in the data during their initial clinic visit, for the same illness episode. 

In the following section, I provide a detailed description of the data included in addressing each individual study 

objective, with an emphasis on evaluating those excluded from analysis. 

2.2.2 Data description and summary by objective 

2.2.2.1 Objective 1: To explore the relationship between alternative measures of uncomplicated malaria 

incidence generated from sentinel surveillance data 

Here, I examined data for the duration between October 2011 to June 2016, from three sites with a sentinel or 

reference health facility, including Nagongera Health centre IV (HCIV) in Tororo, Walukuba HCIV in Jinja, and Kihihi 

HCIV in Kanungu districts, as shown in Figure 11 above. 

For study participant data preparation, attention was paid to villages of residence, age, test positivity and 

diagnosis, and attendance status, each contributing to the inclusion criteria. 

a) Exclusion from study based on village of residence: 

Exclusively village of residence: Among suspected malaria cases under 11 years of age that were new attendance 

visits, 44,875 (40.6%) were excluded based on a missing (61.9%) or unknown village of residence within the study 

sites. Interestingly overall, all the excluded patients were suspected to be malaria cases. The majority of these, 

had a malaria diagnostic test performed (94.9%) with 34.9% confirmed positive for malaria parasites, compared 
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to 37.5% among those with known villages and therefore, included (Chi sq.=71.5, p<0.001). By site, however, two 

sites showed significant differences including first, Nagongera where 32.0% of those excluded were confirmed 

positive for malaria parasites compared to 38.2% among those included (Chi sq.=179.2, p<0.001). Second, 

Walukuba where 33.0% of the excluded were confirmed positive cases compared to 24.2% among those included 

(Chi sq.=260.2, p<0.001), but no significant differences in Kihihi (Chi sq.=1.8, p=0.185). With a similar distribution 

of cases among the included and excluded participants in Kihihi, as well as a significantly higher proportion of 

confirmed malaria cases among the included than the excluded in Nagongera, exclusions due to missing villages 

of residence may not have impacted findings in this study, for these two sites. For Walukuba, however, the 

significantly higher proportion of confirmed cases among those excluded may have led to underestimation of 

indicators generated in this study for this site. 

Age by villages of residence status: The majority of patients with recorded age <11 years, were under 5 years of 

age in all sites, with: Walukuba (66.0%) among those included compared to (70.8%) among those excluded 

(p<0.001); Kihihi (59.2%) among those included compared to 57.7% among those excluded (p<0.001); and, 

Nagongera (79.1%) among those included compared to 81.2% among the excluded (p<0.001). Within the highest 

transmission setting of Nagongera, 50% of the included participants were under 2 years of age compared to 54.9% 

among those excluded (Table 3). 

Table 3. Age distribution of study participants comparing included and excluded patients <11 years, by site. 

Site Age category Patients Included (%) Patients Excluded (%) P-value 

Walukuba 

<2 years 7,543 (35.9) 4,057 (37.3%) 

<0.001 

2-<4 years 4,580 (21.8) 2,679 (24.6%) 

4-<6 years 3,081 (14.7) 1,671 (15.4%) 

6-<8 years 2,349 (11.2) 1,102 (10.1%) 

8-<11 years 3,436 (16.4) 1,363 (12.5%) 

Kihihi 

<2 years 7,496 (29.5) 2,135 (29.3%) 

<0.001 

2-<4 years 5,207 (20.5) 1,467 (20.1%) 

4-<6 years 4,425 (17.4) 1,122 (15.4%) 

6-<8 years 3,597 (14.2) 1,057 (14.5%) 

8-<11 years 4,652 (18.3) 1,517 (20.8%) 

Nagongera 

<2 years 9,671 (50.0) 14,654 (54.9%) 

<0.001 

2-<4 years 4,354 (22.5) 5,567 (20.9%) 

4-<6 years 2,254 (11.7) 2,593 (9.7%) 

6-<8 years 1,399 (7.2) 1,666 (6.2%) 

8-<11 years 1,666 (8.6) 2,225 (8.3%) 
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The data here showed that in Walukuba and Kihihi, a significantly smaller proportion of participants were excluded 

due to missing villages by age across these age categories than were included in the study. As such, in these two 

sites exclusion due to missing villages, may not have significantly impacted the effects of age within the indicators 

derived. For Nagongera, however, the data showed that a significantly larger proportion of participants were 

excluded due to missing village by age than were included, implying that participant exclusion due to missing 

villages may have had a larger impact on age-related effects in the indicators of malaria burden derived for the 

site. 

b) Exclusion based on age 

Very few patients (1,203), had a missing record of age from the data collected, and these were excluded from the 

study. The distribution of these was 72.3, 18.6, and 9.1% in Walukuba, Kihihi, and Nagongera, respectively 

indicating that Walukuba had the highest occurrence of missing age recording, though all together negligible. 

c) Exclusion based on test positivity and diagnosis 

Malaria cases were defined as participants that were diagnostically confirmed positive for malaria parasites. 

Participants with a negative diagnostic test for malaria, but having a diagnosis for malaria given, did not qualify as 

cases but as suspected malaria cases, and these were very few in the sentinel facilities data - a total of 716 

participants with 12.2, 17.3, and 70.5% of them in Walukuba, Kihihi, and Nagongera, respectively. Moreover, 445 

participants (37.1, 14.2, and 48.8% of these in Walukuba, Kihihi, and Nagongera) were presumptively diagnosed 

with malaria and therefore, not considered as cases of malaria but as suspected malaria cases instead. However, 

252 participants were registered having a positive diagnostic test for malaria, but without a diagnosis for malaria, 

and were considered confirmed malaria cases in this study. Among study participants, a large majority of 

diagnostic testing for malaria was performed using microscopy ranging from 90.9 to 98.7% in Walukuba and Kihihi, 

respectively. A small proportion of diagnostic tests included rapid diagnostic tests, highest in Nagongera with 954 

tests. 

2.2.2.2 Objective 2: To examine the impact of malaria control interventions on the age distribution of malaria 

cases using routine sentinel surveillance data in four sites where LLIN and IRS campaigns have been 

conducted. 

In this study objective, I included data from four sites  with a sentinel or reference health facility each (two from 

objective one above and an additional two), including Walukuba health centre IV (HCIV) in Jinja district of the 

central Uganda, Kasambya HCIII in Mubende district of mid-western Uganda, Aduku HCIV in Apac district of 

northern Uganda, and Nagongera HCIV in Tororo district of eastern Uganda, with site locations shown in Figure 

11 above, for the duration between January 2009 to July 2018. 

The data from these health facilities was prepared and cleaned with particular focus on age, diagnostic tests and 

test positivity, suspected malaria status, sex, and attendance status. 
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Exclusion from the study 

Age: Given a smaller number of much older patients seeking care, those over the age of 70 years were excluded 

from the analyses, a total of 1,975 (0.6%), 1,442 (0.9%), 3,673 (1.9%), and 3,833 (1.7%) in Walukuba, Kasambya, 

Aduku, and Nagongera, respectively. These were not expected to impact on our results in any significant way. 

Sex: A very small number of eligible participants (at most 0.03% in a single site) had a missing record of sex in the 

data and were excluded, given that sex was an important factor included in the analysis for this study objective. 

However, these were not expected to impact on our findings in any way.  

Diagnostic tests and test positivity: All cases confirmed by microscopy or mRDT were considered positive cases 

and presumptive cases not counted. The exclusion of presumptive cases regardless of being few, is not expected 

to have a definite effect on our analyses or results, given that the presumptive diagnosis process is highly 

subjective and therefore indeterminate. Whilst majority of diagnostic testing was performed using microscopy 

across all the four sites, a slightly larger majority of negative than positive test results were generated using 

microscopy in Walukuba, Kasambya and Aduku, but not in Nagongera (Table 4). Notably, however, the highest 

ǇǊƻǇƻǊǘƛƻƴ ƻŦ ǇƻǎƛǘƛǾŜ ǘŜǎǘ ǊŜǎǳƭǘǎ ƎŜƴŜǊŀǘŜŘ ǳǎƛƴƎ Ƴw5¢Ωǎ ǿŜǊŜ ƻōǎŜǊǾŜŘ ƛƴ !Řǳƪǳ ŀǘ нуΦм҈Φ 

Table 4. Proportions of test results, by diagnostic testing method per site. 

Test result 
Diagnostic 

method 
Walukuba Kasambya Aduku Nagongera 

Positive  
Microscopy 40,548 (96.7%) 35,273 (84.3%) 26,648 (71.9%) 31,725 (90.2%) 

mRDT 1,403 (3.3%) 6,583 (15.7%) 10,407 (28.1%) 3,438 (9.8%) 

Negative 
Microscopy 81,295 (97.5%) 55,464 (86.4%) 49,049 (85.4%) 73,175 (87.9%) 

mRDT 2,112 (2.5%) 8,767 (13.7%) 8,393 (14.6%) 10,053 (12.1%) 

Assessing potential impacts of diagnostic testing method showed no identifiable pattern, suggesting that the 

diagnostic method used had very limited influence on the pattern of test results, as further discussed in Chapter 

4. 
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2.2.2.3 Objective 3: To investigate the association between incidence of uncomplicated malaria from routine 

surveillance data and incidence from cohorts, across sites of different transmission intensities and, 

identify and quantify sources of bias in surveillance incidence, to assess its reliability for monitoring 

burden of malaria. 

This study objective included HMIS data from which incidence of malaria was estimated, as well as community 

cohort data that provided the comparative incidence estimates in the three study sites. 

HMIS data: This was obtained from all 15 public health facilities located within the geographic administrative 

boundaries of Nagongera sub-County in Tororo district (5 facilities); Walukuba sub-County in Jinja district (3 

facilities); and, Kihihi sub-County in Kanungu district (7 facilities) as shown in Figure 11. The enrolled health 

facilities included: NŀƎƻƴƎŜǊŀΣ ²ŀƭǳƪǳōŀ ŀƴŘ YƛƘƛƘƛ I/L±Ωǎ, in the respective sub-Counties; Matanda and 

bȅŀƳǿŜƎŀōƛǊŀ I/LLLΩǎΣ ŀƴŘ .ƛƘƻƳōƻǊǿŀΣ .ǳǎƘŜǊŜΣ YƛōƛƳōƛǊƛ ŀƴŘ bȅŀƪŀǎƘǳǊŜκ{ŀƳŀǊƛŀ I/LLΩǎ, in Kihihi sub-County; 

Were, Katajula, Maundo, and tƻƪƻƴƎƻ I/LLΩǎ, in Nagongera sub-CouƴǘȅΤ ŀƴŘΣ aŀǎŜǎŜ tƻǊǘ ŀƴŘ aŀǎŜǎŜ о I/LLΩǎ, in 

Walukuba sub-County. Whereas 16 health facilities were screened for inclusion in this study, one was excluded 

based on its geo-location falling outside of the study site boundaries, besides the very few residents of the sub-

county (study site) who visited this facility for care. These HMIS data were obtained for the three-year duration 

spanning October-2011 through September-2014. 

After extraction from OPD registers, the data was cleaned with particular focus on village of residence, age, 

diagnostic testing and diagnosis, and attendance status. 

Exclusion from the study: 

Village of residence: In this study objective, missingness of record of village of residence was corrected for in 

computing confirmed cases, as later explained in Chapter 5. However, all patient records with villages that were 

either unknown within the study site or unclear, were excluded. Nevertheless, these were not expected to impact 

on our estimates of incidence, given that residence within the site boundaries was central to estimating site-

specific analysis outcomes. Notably though, there was a higher proportion of patients with unknown villages in 

the lower-level facilities of Kihihi, which may be attributed to being at the border between Uganda and Democratic 

republic of Congo (DRC), where sporadic influxes of refugees from DRC have been reported [180]. For instance, 

Matanda health centre III that is located within a designated refugee transit camp, contributed 41.2% of the 

patient records with unknown village of residence in Kihihi. Nevertheless, at the time of data collection from this 

health facility, the camp was unoccupied though the clinic was fully operational, possibly serving the more regular 

resident users of the facility from nearby villages. Based on this, it can be assumed that the exclusion of 

participants whose villages of residence were unknown within the site facilitated a more accurate estimate of 

burden attributable to the site resident population. 
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Age: To generate HMIS-based incidence estimates that would be comparable to estimates from community 

cohorts, all patients aged 11 years and older were excluded from this analysis. These were unexpected to impact 

on our results by virtue of being outside of age-groups of interest. Moreover, all patients with a missing record of 

age were also excluded and assuming an equal distribution as those with known age and therefore included, 

exclusion due to missing age was not expected to have considerable impact on incidence estimates. 

2.2.2.4 Objective 4: To explore patters and determinants of spatial variation of malaria from routine HMIS 

data at sub-/national spatial scales and identify areas at high-risk of malaria. 

To address this objective, HMIS data was obtained from the national repository for routine HMIS via the DHIS-2 

web-based system. Data from all health facilities expected to report through standard surveillance procedures, 

including total attendance, re-attendance, OPD malaria cases, and confirmed cases (by Microscopy and mRDT) 

were obtained for at least four years (51 months long). 

A total of 3446 health facilities with associated geo-location coordinates, were included in this study (Figure 11). 

These data were summarised on a monthly time scale for all age-groups combined, for each of the study health 

facilities. 

Exclusion from the study: 

HMIS data from January-2014 through September-2019 were extracted and assessed for use in this study. 

Notably, from January-2014 through June-2015 these data were inconsistent from month to month, with many 

months of data missing. However, starting July-2015 the format of the data sets was markedly different from the 

previous duration. The differences included the introduction of additional patient age categories that may have 

been a consequence of undocumented but evident system revisions or improvements. Given this considerably 

more complete and consistent data set, the duration of interest in this study was defined as spanning July-2015 

through September-2019. Consequently, data from January-2014 through June-2015 was excluded. 

For the geo-coding of health facilities, I obtained a database of public health facility geo-coordinates across Africa 

that was published by the KEMRI-Wellcome Trust Research Programme [181]. Of the 3792 health facilities in the 

database, 3448 (91.0%) were matched with the health facilities in the HMIS malaria cases database of 2015, 

excluding all facilities with duplicate geo-coordinates. However, one was geo-located in the lake and another 

outside the country boundaries, and therefore, both were excluded. A total of 3446 geolocated health facilities 

that matched with the HMIS malaria cases database consisted the facilities that we defined as study health 

facilities. Estimated impacts of the exclusion of data reported from health facilities that were not geo-coded per 

district, are further discussed in Chapter 6 of this thesis. 
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2.3 Ethical considerations 

Two of the programmes that provided data, including Uganda Malaria Surveillance Project (UMSP) and the 

National HMIS, were not required to have ethical approval as national surveillance programmes. However, the 

two research projects that provided additional data had independent ethical approvals from the Makerere 

University School of Medicine Research Ethics Committee (SOM-REC #2010-108 and #2011-167). This was the 

local Institutional review board at the base of their research activities in Uganda, hosted by the Infectious Diseases 

Research Collaboration (IDRC). In addition, they each received approval from the Uganda National Council for 

Science & Technology (UNCST #HS 794 and #HS 1019), which is the national body that oversees research on the 

DƻǾŜǊƴƳŜƴǘΩǎ ōŜƘŀƭŦΦ  aƻǊŜƻǾŜǊΣ ŜǘƘƛŎŀƭ ŀǇǇǊƻǾŀƭ ŦƻǊ ŜŀŎƘ ǿŀǎ ŀƭǎƻ ƻōǘŀƛƴŜŘ ŦǊƻƳ ǘƘŜ ƻǘƘŜǊ ŎƻƭƭŀōƻǊŀǘƛƴƎ 

institutions involved in these studies, mainly including the London School of Hygiene & Tropical Medicine (LSHTM 

#5943 and #5779) and the University of California San Francisco (UCSF). 

Specific to the proposed work in this thesis with independent research objectives, separate ethical approval was 

sought, obtained, and later renewed from SOM-REC, being the local IRB for this study in Uganda (Appendix 2a & 

2b). Next, approval was sought and obtained from the UNCST for government approval (Appendix 3). With these 

in place, ethical approval was sought, obtained, and later renewed from LSHTM research ethics committee 

(Appendix 4a & 4b). 

Also, an amendment was sought and obtained to use publicly available national HMIS data from the national 

malaria control program to address the fourth objective of this research. For this, permission was sought and 

obtained from the Ministry of Health (Appendix 5) and based on this, ethical approval was sought and obtained 

for the proposed amendment from SOM-REC (Appendix 2c), and ultimately, approval was also obtained from 

LSHTM research ethics committee (Appendix 4c). 

Concerning the primary data collection directly from health facilities, other necessary levels of permission were 

also required, and these included obtaining support letters from the district health officers (DHO) of each of the 

three districts of Tororo, Jinja, and Kanunugu. With these on hand, permission was then sought and obtained from 

health facility in-charges to access their stored registers within the respective facility HMIS offices. In two facilities 

of one district, the in-charges expressed overwhelming reservations to providing access to their registers. These 

necessitated lengthy explanations as well as additional written permission from other district officials (besides the 

DHO) before they would permit access to their registers. However, even with these permissions on hand, these 

two facilities also had both the most disorganised storage and poorest state of registers.  
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3.1 Additional information for Paper 1 

3.1.1 Concordance analysis 

Concordance analysis results are presented by month in Figure 1 and by village in Figure 2 below. The included 

ǘǿƻ όbŀƎƻƴƎŜǊŀ ŀƴŘ YƛƘƛƘƛύ ƻŦ ǘƘǊŜŜ ǎƛǘŜǎ ŀǊŜ ǘƘŜȅ ǘƘŀǘ ƳŜǘ ǘƘŜ ΨƴƻǊƳŀƭ ŘƛǎǘǊƛōǳǘƛƻƴ ƻŦ ŘƛŦŦŜǊŜƴŎŜǎΩ ŎǊƛǘŜǊƛŀ 

required in Bland-!ƭǘƳŀƴΩǎ ƳŜǘƘƻŘΣ ǿƘŜǊŜŀǎ ²ŀƭǳƪǳōŀ ŘƛŘ ƴƻǘ ǉǳŀƭƛŦȅ ŀƴŘ ǿŀǎ ǘƘŜǊŜŦƻǊŜΣ ŜȄŎƭǳŘŜŘΦ 

Figure 1. Bland-Altman diagram for Nagongera and Kihihi, assessing incidence estimates of TPR and IR at the 

level of time (month).  
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Each red dot represents a month of study year within each site, the dashed blue lines ς the mean of 

differences, and the dashed red lines ς the 95% agreement limits at approximately two standard deviations 

away from the mean. 

The mean of differences for these monthly assessments (Figure 1) was much lower in Nagongera than Kihihi, 

being 0.148 and 0.338 respectively, a higher than two-fold and significant difference (p<0.001) with the means 

represented by the blue dashed line. However, the spread of limits of agreement was nearly the same for both 

sites i.e. 0.154 and 0.158 respectively, indicated by the dark-red dashed lines. Thus, difference between TPR and 

IR per month was less than 0.08 at both sites within 95% confidence bounds. 
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Figure 2. Bland-Altman diagram for Nagongera and Kihihi, assessing TPR against IR at by village, stratified by 

year of study. 

 

 

The mean of differences by village is represented by the red dashed line for both sites. Also, spread of the 

limits of agreement by village is indicated by the area between green dashed lines, which mark the 95% 

confidence interval limits, at approximately two standard deviations from the mean. Each circle represents 

a four-year village average for each indicator for the respective site. 

Concordance results (shown in Figures 1 and 2) revealed higher mean of differences between TPR and IR in Kihihi, 

0.33 than Nagongera, 0.17 within 95% CI, suggesting a similarly large average difference between the sites. 

Furthermore, differences between TPR and IR by village were limited to 0.16 in either site and greater than 
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differences by month that were limited to 0.08 within 95% CI, pointing to greater heterogeneity between villages 

than months. Consistency in the differences between TPR and IR for either site on the two dimensions of month 

and village, provides further evidence in support of agreement between these indicators [182] regardless of 

transmission setting. By village, TPR was on average 30% higher than IR for both sites and there was an apparent 

relationship between variability in the two indicators and the quantity of each, with smaller differences observed 

at lower quantities in each of the indicators and greater differences as well as uncertainty when these are larger, 

that implies that there is greater agreement at lower transmission levels. 

3.1.2 Relationship between TPR and IR 

The relationship between the two indicators of TPR and IR by village, was explored using the mean annual value 

of each indicator, for each village. Here, unlike the case of the same examination by month presented in Figure 4 

in the paper, the relationship is unclear as seen in Figure 3 below.
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Figure 3. Scatter plot of village-level four-year average test positivity rate against annual test-confirmed malaria case rate, by site. Point sizes account for 

number tested for malaria by village 

 

 

  

 

 

 

 

 

 

Each red point or circle corresponds to a village within the site 

presenting the annual averages of the indicators TPR and IR. The size of 

points is relative to number of suspected malaria cases tested for 

independent episodes of illness from the respective villages over the 

duration. 
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3.1.3 Univariable analysis 

For each of the sites, explanatory variables including: sex or gender as 10% increments in the proportion of males 

among the study participants; distance to the health facility first determined in kilometres and then transformed 

to site specific quartiles; and, season determined using the predominant annual patterns of rain (March-May and 

September-November) and dry (rest of the year) seasons in the southern parts of Uganda, [183] were evaluated. 

For each site, age as 5% increments in the proportion of children 5 to under 11 years of age, was considered a 

default variable for inclusion, given that the existence of significant association between age with risk of infection 

is well known. [118, 184] Results from the univariate analysis are presented in Tables 1, 2, and 3 for Nagongera, 

Kihihi, and Walukuba, respectively.  

Table 1. Mixed effects Poisson model results (crude) assessing associations in Nagongera between IR and TPR, 

age, gender, distance to health facility, and season as fixed effects; and, including random effects of village of 

residence and month of study year. 

Exposure 

Un-adjusted 

Fixed effects Random effects 

IRR (95% CI) p-value Village (Std. Err.) Month (Std. Err.) 

Case positivity TPR 1.14 (1.13-1.15) <0.001 0.759 (0.175) 0.172 (0.016) 

Age 

Increasing 

proportion of 

>=5yrs 

0.97 (0.94-1.00) 0.042 0.748 (0.173) 0.398 (0.030) 

Gender 

Increasing 

proportion of 

Males 

1.01 (0.98-1.03) 0.595 0.721 (0.167) 0.395 (0.030) 

Distance to 

health facility 

1st Quartile 1 Reference 

0.548 (0.128) 0.398 (0.030) 
2nd Quartile 0.45 (0.23-0.86) 0.016 

3rd Quartile 0.34 (0.17-0.65) 0.001 

4th Quartile 0.33 (0.17-0.62) 0.001 

Season 
Dry / Sunny 1 Reference 

0.743 (0.172) 0.387 (0.029) 
Wet / Rain 0.83 (0.75-0.91) <0.001 
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Table 2. Mixed effects Poisson model results (crude) assessing associations in Kihihi between IR and TPR, age, 

and distance to health facility as fixed effects; and, including random effects of village of residence and month of 

study year. 

Exposure 

Un-adjusted 

Fixed effects Random effects 

IRR (95% CI) p-value Village (Std. Err.) Month (Std. Err.) 

Case positivity TPR 1.12 (1.11-1.13) <0.001 0.545 (0.079) 0.225 (0.013) 

Age 

Increasing 

proportion of 

>=5yrs 

1.06 (1.04-1.07) <0.001 0.534 (0.079) 0.428 (0.021) 

Gender 

Increasing 

proportion of 

Males 

1.01 (0.99-1.02) 0.298 0.565 (0.082) 0.442 (0.022) 

Distance to 

health facility 

1st Quartile 1 Reference 

0.459 (0.067) 0.442 (0.022) 
2nd Quartile 1.16 (0.78-1.74) 0.467 

3rd Quartile 0.66 (0.45-0.98) 0.041 

4th Quartile 0.49 (0.33-0.72) <0.001 

Season 
Dry / Sunny 1 Reference 

0.565 (0.082) 0.442 (0.022) 
Wet / Rain 0.93 (0.88-0.99) 0.034 
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Table 3. Mixed effects Poisson model results (crude) assessing associations in Walukuba between IR and TPR, 

age, and distance to health facility as fixed effects; and, including random effects of village of residence and 

month of study year. 

Exposure 

Un-adjusted 

Fixed effects Random effects 

IRR (95% CI) p-value Village (Std. Err.) Month (Std. Err.) 

Case positivity TPR 1.14 (1.12-1.15) <0.001 0.671 (0.230) 0.285 (0.027) 

Age 

Increasing 

proportion of 

>=5yrs 

1.09 (1.05-1.13) <0.001 0.594 (0.205) 0.481 (0.041) 

Gender 

Increasing 

proportion of 

Males 

1.03 (0.99-1.08) 0.088 0.645 (0.222) 0.494 (0.042) 

Distance to 

health facility 

1st Quartile 1 Reference 

0.320 (0.115) 0.495 (0.042) 
2nd Quartile 0.72 (0.32-1.62) 0.423 

3rd Quartile 0.84 (0.45-0.98) 0.623 

4th Quartile 0.25 (0.33-0.72) <0.001 

Season 
Dry / Sunny 1 Reference 

0.646 (0.222) 0.494 (0.042) 
Wet / Rain 0.92 (0.81-1.04) 0.202 

3.1.4 Model selection 

The best model fit was ǎŜƭŜŎǘŜŘ ǳǎƛƴƎ ǘƘŜ !ƪŀƛƪŜΩǎ ƛƴŦƻǊƳŀǘƛƻƴ ŎǊƛǘŜǊƛŀ ǿƘŜǊŜ ǘƘŜ ƳƻŘŜƭ ǿƛǘƘ ǘƘŜ ƭƻǿŜǎǘ ǾŀƭǳŜ ƛǎ 

considered better than others with higher values. This model can be considered as the model with maximum 

precision using all the important covariates accounted for. In this study, four models were considered including 

the linear, the quadratic, the exponential and the cubic. Results for each of these models considered are presented 

in Table 4 below, indicating that the cubic was preferable. 

Table 4. Akaike's information criteria values for the models each compared to the linear model to determine 

significant improvement of the linear model to fit the relationship between TPR and IR 

Site 
Model 

Linear Quadratic Exponential * Cubic 

Nagongera 5847.68 5363.82 5650.67 5317.82 

Kihihi 13298.93 11878.39 12399.11 11857.46 

Walukuba 3828.50 3510.93 3710.12 3452.89 

*The exponential model considered here was one that included a linear term of TPR given it was better than model that was 

purely exponential and excluded a linear term  
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3.1.5 Multi -variable analysis 

The cubic fit of the model, as compared to the linear, quadratic, and exponential models was selected as best 

based on AIC (Table 4). This fitted relationship from the multi-variable model was presented as a predicted plot 

using values of all covariates in the model, fixed at their mean values in each of the three sites (Figure 4). 

This relationship takes on the form of 

ώ ὥὼ ὦὼ ὧὼ‍ 

Where y = village IR per month, x = village TPR per month, and a, b, & c are ŎƻŜŦŦƛŎƛŜƴǘǎΣ ǿƘƛƭŜ ʲ ƛǎ ŀƴ ŜǊǊƻǊ ǘŜǊƳΦ 

The same relationship between TPR and IR was sustained at all three settings with one exception in Walukuba 

where the linear term does not hold a significant effect. In all three settings, the fitted relationships between TPR 

and IR suggested that observed IR were highest when TPR was above the site mean, although the nature of the 

relationship had slight variations by site: in Nagongera, fitted IR peaked at 25% above the mean of TPR, whilst in 

Walukuba this was at 10% above and in Kihihi at 50% above mean of TPR (Figure 4).  
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Figure 4. Prediction plots for the relationship (cubic) between TPR and IR from the multi-variable mixed effects model for the sites of Nagongera, 

Walukuba, and Kihihi. 

 

 

  

 

Predicted relationship between TPR and IR, with TPR centered around 

the mean of its 5% increments as fitted in the multi-variable model, and 

IR centered around its mean incidence rate ratio (IRR), by site. All three 

settings maintained a cubic relationship with slightly varied slopes, as 

well as peaks of IR.  
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4 Paper 2 
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4.1 Additional information for Paper 2 

4.1.1 Consideration of trends in attendance 

Figure S1. Trends in mean monthly overall patient attendance per year, stratified by site. 

 

The years on the x-axes in Figures S1 to S4 are represented as 1 to 10 corresponding to the years 2009 to 2018 

while the number of patients and/or cases on the y-axis represent monthly average number per year in the 

study duration. 
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Figure S2. Trends in mean monthly attendance of patients not suspected of malaria per year, by site 

 

Figure S3. Trends in mean monthly suspected malaria patients per year, stratified by site 
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Table S1. Changes in attendance of patients suspected versus not suspected of malaria over-time, comparing 

mean monthly attendance between first and last calendar years of study duration. 

Site Patient category 

Mean monthly attendance per 

year (SD) 

Wilcoxon rank-

sum test 

2009 2018 P value 

Walukuba 
Not suspected of malaria 1418 (178) 1525 (257) 0.353 

Suspected malaria 1452 (372) 427 (84) <0.001 

Kasambya 
Not suspected of malaria 268 (73) 360 (73) 0.023 

Suspected malaria 722 (186) 692 (280) 0.866 

Aduku 
Not suspected of malaria 761 (175) 1222 (156) <0.001 

Suspected malaria 915 (286) 512 (99) 0.003 

Nagongera 
Not suspected of malaria 846 (140) 965 (134) 0.108 

Suspected malaria 1139 (157) 496 (183) <0.001 

 

Figure S4. Trends in the annual proportion of RDT use among tested participants, stratified by site. 

 

There was little to no RDT use in the first five years of this study duration and most sites did not get to 20% use of 

RDTs till after 2015 (year number 7 in Figure S4). The predominant diagnostic test used in this study therefore, 

was microscopy. 
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Figure S5. Scatter plot of age with test positivity for LLINs only sites, stratified by intervention period. 

 

In Figure S5, the x-axis represents the age of the participants (70 years and younger) and the y-axis, the test result 

from malaria diagnostic tests performed. From these tests, 0 corresponds to a negative result while 1 represents 

a positive result. The grey points are the (age, test result) coordinates of the scatter plot and the dashed curves 

the relationship fitted using the Lowess smoother function. The red dashed curve represents the relationship of 

the baseline period, the orange dashed curve ς the first intervention period, and the blue dashed curve ς the last 

intervention period of the study duration. By the last intervention period, positivity among the youngest 

participants was lower than during baseline and the largest shift was observed in Walukuba where in the last 
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intervention period the peak age of malaria positivity was over 40 years compared to among under 5 years at 

baseline. 
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Figure S6. Scatter plot of age with test positivity for (LLIN plus IRS) sites, by intervention period. 

 

In this case (Figure S6), the x-axis represents the age of participants and the y-axis, the test result from malaria 

diagnostic test performed. From these tests, 0 on the x-axis corresponds to a negative result while 1 represents a 

positive result. The gray points are the (age, test result) coordinates of the scatter plot and the dashed curves the 

relationship fitted using the Lowess smoother function. The red dashed curve represents the relationship for the 

baseline period, the orange dashed curve ς the first intervention period, and the blue dashed curve ς the last 

intervention period in Nagongera, but the second intervention period in Aduku. For Aduku, the green dashed 

curve represents the last intervention period of the study duration. 














































































































































































































































































































































