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Abstract: Wastewater treatment plants receive sewage containing high concentrations of bacte-
ria and antibiotics. We assessed bacterial counts and their antibiotic resistance patterns in water
from (a) influents and effluents of the Legon sewage treatment plant (STP) in Accra, Ghana and
(b) upstream, outfall, and downstream in the recipient Onyasia stream. We conducted a cross-
sectional study of quality-controlled water testing (January–June 2018). In STP effluents, mean
bacterial counts (colony-forming units/100 mL) had reduced E. coli (99.9% reduction; 102,266,667 to
710), A. hydrophila (98.8%; 376,333 to 9603), and P. aeruginosa (99.5%; 5,666,667 to 1550). Antibiotic
resistance was significantly reduced for tetracycline, ciprofloxacin, cefuroxime, and ceftazidime
and increased for gentamicin, amoxicillin/clavulanate, and imipenem. The highest levels were
for amoxicillin/clavulanate (50–97%) and aztreonam (33%). Bacterial counts increased by 98.8%
downstream compared to the sewage outfall and were predominated by E. coli, implying intense
fecal contamination from other sources. There was a progressive increase in antibiotic resistance
from upstream, to outfall, to downstream. The highest resistance was for amoxicillin/clavulanate
(80–83%), cefuroxime (47–73%), aztreonam (53%), and ciprofloxacin (40%). The STP is efficient in
reducing bacterial counts and thus reducing environmental contamination. The recipient stream is
contaminated with antibiotic-resistant bacteria listed as critically important for human use, which
needs addressing.

Keywords: SORT IT; One Health; operational research; sustainable development goals; antimicrobial
resistance; antibiotic residues; wastewater treatment
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1. Introduction

The increased production and use of antibiotics have resulted in “antibiotic residues”
entering the environment through human, animal, and agricultural wastes [1]. Such
residues promote the development of antibiotic resistance in common bacteria present in
the environment such as Escherichia coli (E. coli), Aeromonas hydrophila (A. hydrophila), and
Pseudomonas aeruginosa (P. aeruginosa) [1–3]. Then, this resistance may be transferred to
other bacteria [4,5]. Human and animal waste deposited into the environment may also
contain antibiotic-resistant bacteria. Such bacteria can move from one human to another or
one animal to another via direct contact with water contaminated with resistant bacteria,
or through the consumption of contaminated food, so-called “farm-to-fork” transmission
in humans.

Wastewater treatment plants receive sewage containing high concentrations of bacteria
and antibiotics, particularly if they receive human and hospital effluents. Such treatment
plants serve as excellent hotspots for continued bacterial replication and the transfer of
antibiotic resistance between bacteria. The capacity of municipal sewage treatment plants
to remove bacteria and antibiotic residues is variable depending on the methods used. This
may result in high bacterial loads (counts) of resistant bacteria being discharged into water
streams even after treatment [6,7].

The World Health Organization’s (WHO) global action plan to tackle antimicrobial
resistance (AMR) emphasizes the “One Health” approach. This approach includes humans,
animals, the environment, the food chain, and the interconnections between them as one
entity [8]. In Ghana, most AMR surveillance activities have focused mainly on human and
animal health and less on the environment [9], with evidence of increasing levels of AMR
in both sectors [10,11].

The Legon sewage treatment plant in Accra, Ghana was constructed in 2012 as part of
the Accra Sewerage Improvement Project funded by the African Development Bank. This
plant operates on the concept of treatment of waste stabilization ponds and treats wastewa-
ter from various academic institutions and importantly from the Achimota Hospital.

Effluents from this plant are discharged directly into the Onyasia Stream [12]. The
stream runs through a suburb of Accra and is used to irrigate farms, including lettuce and
cabbage gardens (Figure 1) [13]. The water is also used for other purposes such as washing
cars. Thus, resistant bacteria, if present in the stream, would “connect” with humans and
animals resulting in the possible spread of any resistant pathogens [14,15].

Figure 1. Onyasia stream showing a lettuce farm along the banks of the Onyasia stream (A) water
being abstracted for irrigation (B,C), and domestic waste discharge into the stream (D,E).
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Multidrug-resistant E. coli and P. aeruginosa are common bacteria, which can cause
deadly human infections; thus, they are considered priority pathogens by the WHO
for global surveillance of AMR. They are also less fastidious to grow in the laboratory
and can serve as proxy organisms for measuring antibiotic resistance circulating in the
environment [16]. A. hydrophila is an aquatic bacterium that causes disease in fish and
amphibians such as frogs and is often abundant in wastewater. A. hydrophila may cause
gastroenteritis and cholera-like illness [17].

A PubMed search revealed no study from West Africa assessing the role of treatment
plants in reducing the loads of these three bacteria and their antibiotic resistance profiles.
Comparing bacterial counts and antibiotic resistance profiles in influent and effluent
wastewater from the Legon treatment plant will provide an understanding of the efficiency
of the sewage treatment process. Furthermore, the level of antibiotic resistance in sewage
effluents can serve as a “proxy” for levels of antibacterial resistance circulating in the
environment. We hypothesize that sewage outfall will be diluted in the Onyasia stream,
and hence, there will be a reduction in bacterial counts further downstream.

Our specific objectives were to assess the bacterial counts of E. coli, P. aeruginosa, and
A. hydrophila and their antibiotic resistance profiles in influent and effluent wastewater
from the Legon sewage treatment plant and at upstream, sewage outfall, and downstream
points in the Onyasia stream.

2. Materials and Methods
2.1. Study Design

This is a cross-sectional study using secondary laboratory data on water samples.

2.2. Study Setting

Ghana lies in West Africa, and the capital is Accra. The country has a population of
about 30 million, of which about 2.3 million live in Accra [18]. Currently, four (Legon, Mu-
dor, Lavender Hill Faecal Sludge Treatment Hill, and Adjen Kotoku) wastewater treatment
plants are functional in the Greater Accra Metropolitan Area [19,20]. Municipal sewage
management is under the supervision of the Metropolitan and Municipal Assemblies
in Ghana.

The Legon Sewage Treatment plant located in Accra. It can treat 6424 m3 of sewage
inflow per day and was designed to serve 33,000 residents but currently receives 3606 m3 of
wastewater per day [12]. In addition to the Achimota hospital, the treatment plant receives
sewage from educational institutions (the University of Ghana, Presbyterian Senior High
School, Achimota Basic School, University of Professional Studies, and Achimota Senior
High School). The treatment plant is made up of a series of waste stabilization ponds made
up of three anaerobic, three facultative, and six maturation ponds. The effluents from the
plant discharge directly and as a continuous flow into the Onyasia Stream. The Onyasia
Stream is one of the tributaries of the Odaw River and runs through five communities
in Accra.

2.3. Water Sample Collection and Laboratory Analysis and Biochemical Identification

Wastewater and surface water samples were collected (a total of 30 samples) monthly
over a six-month period (January–June 2018). Sample collection and analysis were done
by the membrane filtration technique according to procedures outlined in the Standard
Methods for the Examination of Water and Wastewater, 2012) [21]. Wastewater and stream
water samples were collected on a monthly basis from five sampling points (Figure 2): (I)
Influent (raw sewage) at the entry point to the sewage treatment plant, (II) Effluent at the
exit point of the treatment plant (treated sewage), (III) 500 m upstream from the effluent
outfall point into the Onyasia stream, (IV) Sewage outfall point, and (V) 500 m downstream
from the outfall point.
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Figure 2. Wastewater and Onyasia stream water sampling sites with reference to the Legon Sewage
Treatment plant, Accra, Ghana.

Composite samples for each sampling site were collected and analyzed. Three water
samples were systematically collected using an aseptic technique into 500 mL sterile
bottles during the morning from each of the five sampling points [21]. All the samples
were collected in triplicate and pooled together as one composite sample per sampling
location. All samples were immediately transported on ice (within the hour) to the Council
for Scientific and Industrial Research-Water Research Institute (CSIR-WRI) microbiology
laboratory and analyzed immediately. Water samples were serially diluted by ten-fold serial
dilutions in phosphate-buffered saline solution and analyzed using membrane filtration.
Bacterial counts were reported as colony-forming units (CFU)/100 mL. Each sample was
plated on Aeromonas agar base (OXOID, United Kingdom) supplemented with ampicillin
for the isolation of A. hydrophila, Cetrimide agar (OXOID, United Kingdom) for the isolation
of P. aeruginosa and Chromo cult coliform agar (MERCK, Germany) for E. coli. Inoculated
plates were incubated for 24 h at 37 ◦C for all bacteria. Five presumptive colonies were
randomly selected and subjected to Gram strain. This was followed by indole and triple
sugar iron agar testing for E. coli; oxidase and catalase testing for A. hydrophila and P.
aeruginosa; motility, citrate, and glucose fermentation tests for A. hydrophila [22].

Five confirmed isolates were used to perform antibiotic susceptibility testing using the
Kirby Bauer Disc Diffusion method, according to Clinical Laboratory Standards Institute
(CLSI) guidelines [23]. Zones of inhibition were measured in millimeters and recorded for
each antibiotic.

Antibiotics tested were amoxicillin/clavulanate 20/10 µg, aztreonam 30 µg, imipenem
10 µg, gentamicin 10 µg, tetracycline 30 µg, ciprofloxacin 5 µg, cefuroxime 30 µg, and
ceftazidime 30 µg.

2.4. Quality Control Procedures

Negative controls were done by plating sterile distilled water. Reference organisms P.
aeruginosa American Type Culture Collection (ATCC) ATCC 29213 and E. coli ATCC 25922
were used as a positive control following 2017 CLSI guidelines.

2.5. Study Inclusions and Period

Sewage and Onyasia stream samples were collected from January 2018 to June 2018.
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2.6. Data Collection, Source of Data, and Validation

Data variables included identifier and date variables, sewage sample source (influent;
effluent) and surface water samples (upstream; outfall; downstream), type of bacteria
isolated, bacterial counts, and antibiotic resistance profiles. Information on sample collec-
tion points, sample sources, bacterial loads, and resistant profiles were entered from data
collection sheets into a laboratory register and then transferred to a database (Microsoft
Excel®) kept in the laboratory. To ensure data validation, all data in the Microsoft Excel®

file were crosschecked with the raw data contained in the laboratory notebook.

2.7. Statistical Analysis

Bacterial counts were converted to log10 CFU/mL and plotted in graphs for each
bacteria every month and by sampling site. These counts and resistance profiles were
reported using descriptive statistics. For bacterial counts, the acceptable thresholds set
by Ghana Environmental Protection Agency Standards for effluent discharge were for
E. coli 10 CFU/100 mL and total coliform 400 CFU/100 mL [24]. The Kruskal–Wallis non-
parametric was applied to assess mean differences in bacterial counts and the chi-square
to assess linear trends. The level of significance was set at p ≤ 0.05 and 95% confidence
intervals were used where applicable.

3. Results

Of the 30 samples taken from each of the five sampling sites (150 in total), E. coli, A.
hydrophila and P. aeruginosa were isolated in all (100%).

3.1. Sewage: Bacterial Loads of E. coli, P. aeruginosa, and A. hydrophila

Figure 3 shows the monthly bacterial loads (in log10 CFU/100 mL) of E. coli, P. aerugi-
nosa, and A. hydrophila in influents and effluents from the Legon sewage treatment plant.
There is a considerable decline in bacterial loads in effluents.

Figure 3. Bacterial loads in influent (A) and effluent (B) wastewater from the Legon Sewage Treatment
Plant, Accra, Ghana (January to June 2018).

Table 1 compares the bacterial counts of E. coli, P. aeruginosa, and A. hydrophila in
influents and effluents from the sewage treatment plant. In effluents, there was a significant
99.9% reduction in mean bacterial load (all three bacteria combined) compared to influents.
Significant reductions in mean bacterial load were seen for all the three bacteria tested: E.
coli (99.9% reduction), A. hydrophila (98.8% reduction), and P. aeruginosa (99.5% reduction).
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Table 1. Bacterial counts in influent and effluent samples from the Legon Sewage Treatment plant, Accra, Ghana (January to
June 2018).

Sample
E. coli A. hydrophila P. aeruginosa

(Mean cfu/100 mL) p-Value 1 (Mean cfu/100 mL) p-Value 1 (Mean fu/100 mL) p-Value 1

Influent 102,266,667
<0.01

376,333
<0.001

5,666,667
0.01Effluent 710 9603 1550

1 Kruskal–Wallis test (comparing influent and effluent).

3.2. Sewage: Antibiotic Resistance in E. coli, A. hydrophila, and P. aeruginosa in Influent and
Effluent Samples

A total of 30 bacterial isolates each for E. coli, A. hydrophila, and P. aeruginosa were
tested for antibiotic resistance in both influent and effluent sewage (Tables 2 and 3). In
effluents, antibiotic resistance significantly reduced for tetracycline and ciprofloxacin
(E. coli and A. hydrophila), cefuroxime (A. hydrophila), and ceftazidime (P. aeruginosa). In
contrast, antibiotic resistance increased for gentamicin (E. coli), amoxicillin/clavulanate,
and imipenem (A. hydrophila).

Table 2. Antibiotic resistance of E. coli and A. hydrophila isolates in influent and effluent wastewater from the Legon Sewage
Treatment Plant, Accra, Ghana (January to June 2018).

Antibiotics

Isolates Resistant to Antibiotics

E. coli A. hydrophila

Influent
(N = 30)

Effluent
(N = 30) p-Value 1

Influent
(N = 30)

Effluent
(N = 30) p-Value 1

n (%) n (%) n (%) n (%)

Gentamicin 10 µg 2(7) 8 (27) 0.04 4(13) 5(17) 0.5
Amoxicillin/Clavulanate 20 µg 15(50) 15(50) 0.5 18(60) 29(97) <0.001

Tetracycline 30 µg 24(80) 11(37) <0.001 27(90) 7(23) <0.001
Ciprofloxacin 5 µg 19(63) 3(10) <0.001 20(67) 4(13) <0.001
Imipenem 10 µg 1(3) 5(17) 0.1 3(10) 10(33) 0.03

Cefuroxime- 30 µg 15(50) 14(47) 0.5 22 (73) 15(50) <0.001
Aztreonam 30 µg 9(30) 6(20) 0.3 12(40) 11(37) 0.5

1 Chi-square test.

Table 3. Antibiotic resistance of P. aeruginosa in influent and effluent wastewater from the Legon
Sewage Treatment Plant, Accra, Ghana (January to June 2018).

Antibiotics

Isolate Resistance to Antibiotics

P. aeruginosa

Influent (N = 30) Effluent (N = 30)
p-Value 1

n (%) n (%)

Gentamicin 10 µg 2(7) 5(17) 0.4
Ciprofloxacin 5 µg 9(30) 4(13) 0.2
Imipenem 10 µg 1(3) 2(7) 0.5
Aztreonam 30 µg 9(30) 10(33) 0.5
Ceftazidime 30 µg 6(20) 1(3) 0.02

1 Chi-square test.

The highest levels of antibiotic resistance in effluents were for amoxicillin/clavulanate
(50% in E. coli and 97% in A. hydrophila) and aztreonam (33% for P. aeruginosa).
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3.3. Onyasia Stream: Bacterial Counts of E. coli, P. aeruginosa, and A. hydrophila in
Water Samples

Figure 4 gives a graphical representation (in log 10 cfu/100 mL) of changes in bacterial
loads of E. coli, A. hydrophila, and P. aeruginosa in upstream water samples, at the sewage
outfall point and downstream water in the Onyasia recipient stream. Going from upstream
to downstream, there is a progressive increase in bacterial loads.

Figure 4. Bacterial loads in upstream (A) outfall (B) and downstream (C) water samples collected
from the Onyasia stream, Accra, Ghana (January to June 2018).

Table 4 shows the mean monthly bacterial counts for E. coli, A. hydrophila, and P. aerug-
inosa in water samples collected upstream, at the sewage outfall point, and downstream in
the Onyasia stream. Bacterial counts significantly increased from upstream to downstream.
There was a 99.5% overall increase in mean bacterial counts (all three bacteria combined)
between upstream and downstream water samples. Between the sewage outfall point and
downstream, a 98.8% significant increase was seen predominantly in E. coli followed by
P. aeruginosa.

Table 4. Bacterial loads in upstream, sewage outfall, and downstream water samples collected from the Onyasia stream,
Accra, Ghana (January to June 2018).

Sample ID
E. coli A. hydrophila P. aeruginosa

(Mean cfu/100 mL) p Value 1 (Mean cfu/100 mL) p Value 1 (Mean cfu/100 mL) p Value 1

Upstream 955
0.01

2350
0.03

24,433
0.05Outfall 11,900 8033 52,233

Downstream 3,043,333 64,100 2,536,667
1 Kruskal–Wallis test (comparing upstream and downstream).

3.4. Onyasia Stream: Antibiotic Resistance in E. coli, A. hydrophila, and P. aeruginosa in
Upstream, Outfall and Downstream Water Samples

Thirty bacterial isolates each for E. coli, A. hydrophila, and P. aeruginosa were tested for
antibiotic resistance in upstream, outfall, and downstream water samples (Tables 5 and 6).
There was a progressive increase in antibiotic resistance from upstream, to outfall, to down-
stream. This trend was significant for five of the seven antibiotics tested in E. coli, five of the
antibiotics tested for A. hydrophila, and three of the five antibiotics tested for resistance in P.
aeruginosa. In downstream water samples, the highest levels of antibiotic resistance were
for amoxicillin/clavulanate (73% in E. coli and 80% in A. hydrophila), cefuroxime (73% in E.
coli and 47% in A. hydrophila), and in P. aeruginosa, aztreonam (53%) and ciprofloxacin (40%).
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Table 5. Antibiotic resistance profiles of E. coli and A. hydrophila isolates in upstream, sewage outfall, and downstream of
the Onyasia stream, Accra, Ghana (January to June 2018).

Antibiotics

Isolates Resistant to Antibiotics

E. coli A. hydrophila

Upstream
(N = 30)

Outfall
(N = 30)

Downstream
(N = 30) p-Value 1 Upstream

(N = 30)
Outfall
(N = 30)

Downstream
(N = 30) p-Value 1

n (%) n (%) n (%) n (%) n (%) n (%)
Gentamicin 10 µg 1(3) 6(20) 8(27) 0.03 0(0) 2(7) 3(10) 0.2

Amoxicillin/Clavulanate 20 µg 14(47) 18(60) 22(73) 0.03 8(27) 23(77) 24(80) 0.2
Tetracycline 30 µg 10(30) 9(50) 17(40) 0.41 3(10) 4(13) 10(33) <0.001
Ciprofloxacin 5 µg 3(10) 9(30) 10(33) 0.05 0(0) 4(13) 5(17) 0.05
Imipenem 10 µg 0(0) 4(13) 7(23) 0.005 0(0) 5(16) 8(27) <0.001

Cefuroxime 30 µg 12(40) 15(50) 22(73) 0.01 2(7) 11(37) 14(47) <0.001
Aztreonam 30 µg 4(13) 8(27) 10(33) 0.06 0(0) 5(17) 12(40) <0.001

1 Chi-square for linear trend using upstream as a baseline.

Table 6. Antibiotic resistance profiles of P. aeruginosa isolates in upstream, outfall, and downstream of the Onyasia stream,
Accra, Ghana (January to June 2018).

Antibiotics

Isolates Resistant to Antibiotics

P. aeruginosa

Upstream (N = 30) Outfall (N = 30) Downstream (N = 30) p-Value

Gentamicin 10 µg 1(3) 6(20) 8(27) 0.02
Ciprofloxacin 5 µg 1(3) 7(22) 12(40) <0.01
Imipenem 10 µg 0(0) 1(3) 2(7) 0.2
Aztreonam 30 µg 6(20) 15(50) 16(53) 0.01
Ceftazidime 30 µg 1(3) 4(13) 4(13) 0.2

1 Chi-square for linear trend using upstream as a baseline.

4. Discussion

This is the first study from Ghana that assessed the efficiency of a sewage treatment
plant in reducing E. coli, A. hydrophila, and P. aeruginosa counts and their antibiotic re-
sistance patterns, as well as the impact on the recipient stream. The study showed that
the Legon sewage treatment plant significantly reduced bacterial counts of E. coli, A. hy-
drophila, and P. aeruginosa by over 99% in effluents. However, E. coli counts in effluent
from the treatment plant exceeded the Ghana Environmental Protection Agency’s limits
(E. coli 10 CFU/100 mL and total coliform 400 CFU/100 mL) for E. coli discharged into
the environment. In relation to the effluent outfall point in the recipient Onyasia stream,
both bacterial counts and antibiotic resistance progressively increased from upstream to
downstream and were most marked for E. coli, implying intense fecal contamination after
the sewage outfall. Depending on the type of bacteria, the highest resistance levels ranged
from 33% to 97% for antibiotics listed by WHO to be “highly or critically important for
human use” [16].

These research findings are of public health importance as they demonstrate the
vital role sewage treatment plants can play in protecting the health and livelihoods of
communities by reducing bacterial contamination of the environment. Both humans
and animals are likely to benefit through reduced incidence of water-borne diseases and
reduced acquisition of antibiotic resistance, which is of wider benefit to “One Health” [4].
The study also shows the potential importance of water bodies including urban streams
in the emergence and spread of AMR in Ghana. Agricultural produce contaminated by
bacteria may get to markets in other cities within Ghana and possibly foreign markets
through export.

The strengths of this study are that all water samples were collected at the same
time of day and transported within one hour of collection for laboratory analysis by the
same senior laboratory technician to prevent bacterial overgrowth during transit; antibiotic
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sensitivity testing was performed according to international standards with quality control
measures in place [21,23]; the antibiotics tested included those listed by the WHO as being
critically (or highly) important in human medicine [16]; and the subject matter addresses
an identified national operational research priority for tackling AMR. We also adhered to
STROBE (Strengthening the reporting of observational studies in epidemiology) guidelines
for the conduct and reporting of this study [25].

The study limitations are that we were unable to assess the effect of seasonal dif-
ferences due to the six-month study period, and this will become one of the important
variables to consider in future research. Antibiotic resistance testing was also limited to
three bacteria, but this was a deliberate choice, as the selected bacteria are known to be less
fastidious to grow on culture media, and at the same time, they serve as proxies for the
contamination of freshwater sources [26].

There are some important policy and practice implications. First, the sewage treat-
ment plant was highly efficient in reducing bacterial counts by over 99%—from millions
of bacteria to bare hundreds per mL in the effluent. Furthermore, antibiotic resistance
levels were lower for tetracycline, ciprofloxacin, cefuroxime, and ceftazidime, which is
encouraging, as these antibiotics are commonly used as first- and second-line treatments
in humans. However, compared to influents, antibiotic resistance in effluents was higher
for gentamicin, amoxicillin/clavulanate, and imipenem. This was not surprising, as it is
well established that sewage treatment plants serve as hotspots for the increased transfer
of antimicrobial resistance between bacteria [27–29]. That said, the 99.9% reduction in bac-
terial counts in the effluents could imply similar reductions in levels of antibiotic-resistant
bacteria, too. Thus, the upside is “less release of resistant bacteria, less contamination,
less spread". This finding justifies putting back in action all sewage treatment plants that
are currently non-functional in Accra. There have been suggestions to use effluents from
sewage plants for irrigation and fish farming in Ghana [30]. Considering that bacterial
loads were several million times lower than in the recipient stream water, it would seem
logical. A quantitative microbial risk assessment, as well as antibiotic sensitivity testing on
agricultural produce from such irrigation schemes, would seem useful to better assess any
potential risks associated with such an initiative.

Second, the progressive and substantial increase in bacterial counts in the Onyasia
stream going from the upstream sampling point to the sewage outfall, to the downstream
point, all of which were barely 500 meters apart, implies that intense contamination of the
stream water is going on. Of concern is that E. coli, a fecal pathogen, was most predominant.
The Onyasia stream is a very narrow stream with several houses situated along its banks.
This suggests other concentrated fecal contamination sources pouring into the Onyasia
stream, most likely from household sewage discharge. One would be inclined to think
that such contamination would increase exponentially going further downstream as the
community density increases.

The finding of high resistance levels among antibiotics classified by WHO as being
“critically important antimicrobials” is of dire concern. For example ciprofloxacin are
used for the treatment of urinary tract infections and essential second-line drug agents for
multidrug-resistant tuberculosis [31]. Carbapenems (e.g., imipenem) and monobactams
(e.g., aztreonam) are last-resort antibiotics for the treatment of multidrug-resistant Enter-
obacteriaceae and P. aeruginosa infections in humans, most of which occurs in intensive
care units. Severely ill COVID-19 patients with pneumonia depend on such life-saving
antibiotics [31].

The study findings call for immediate and medium-term measures that could be
summarized as “Inform, Educate, Protect, and Act”. The immediate measures would
include informing and engaging with communities to enhance their awareness of the
non-potable nature of the Onyasia stream water; educating communities that water must
be boiled before household use; educating consumers of vegetables and particularly salads
that are grown alongside the Onyasia stream that these products should be washed with
pipe-borne water and then disinfected with vinegar or mild chlorine to destroy Enterobacte-
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riaceae spp. [32]; and protecting farmers through the use of protective wear (e.g., gloves
and gumboots) to reduce direct contact with contaminated water. This is important as
farmers are prone to cuts and wounds that could be rapidly colonized by highly resistant P.
aeruginosa, resulting in chronic and debilitating disease particularly in those with reduced
immunity [33].

There are also medium-term measures upon which one could act. For example,
farmers could be assisted in adopting irrigation methods that reduce or eliminate con-
tact of irrigation water with the green vegetables i.e., through the use of drip or furrow
methods [34].

Reducing fecal contamination of the Onyasia stream is essential, as it would improve
and preserve the quality of downstream water used by communities. Since the Legon
sewage treatment plant is currently functioning at roughly 30% capacity, there is ample
space to explore the feasibility of linking up households in the area to the Legon sewage
influent pipe system.

Ensuring that each household has a septic tank might also be an interim and alterna-
tive measure to be considered. Other considerations would include increasing the numbers
of sewage treatment plants in Accra and establishing legislation to prevent anarchic dis-
charge of household sewage into the Onyasia stream and other such water bodies. We
suggest deliberations at the One Health AMR coordinating committee in Ghana, so that
material and political resources can be galvanized to consider these and other mutually
complementary actions. There is an urgent need to move any rhetoric to action.

5. Conclusions

In conclusion, this study has highlighted the important role that a sewage treatment
plant can play in reducing bacterial contamination of the environment. However, antibiotic-
resistant bacteria may remain in treated wastewater. In addition, high bacterial counts and
antibiotic-resistant bacteria in the Onyasia stream show the potential role water bodies
such as the Onyasia stream can play in the spread of water-borne diseases and the wider
transmission of antimicrobial resistance.
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