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Abstract

Mathematical models have played a key role in understanding the spread of directly-trans-

missible infectious diseases such as Coronavirus Disease 2019 (COVID-19), as well as the

effectiveness of public health responses. As the risk of contracting directly-transmitted infec-

tions depends on who interacts with whom, mathematical models often use contact matrices

to characterise the spread of infectious pathogens. These contact matrices are usually gen-

erated from diary-based contact surveys. However, the majority of places in the world do

not have representative empirical contact studies, so synthetic contact matrices have been

constructed using more widely available setting-specific survey data on household, school,

classroom, and workplace composition combined with empirical data on contact patterns in

Europe. In 2017, the largest set of synthetic contact matrices to date were published for 152

geographical locations. In this study, we update these matrices with the most recent data

and extend our analysis to 177 geographical locations. Due to the observed geographic dif-

ferences within countries, we also quantify contact patterns in rural and urban settings

where data is available. Further, we compare both the 2017 and 2020 synthetic matrices to

out-of-sample empirically-constructed contact matrices, and explore the effects of using

both the empirical and synthetic contact matrices when modelling physical distancing inter-

ventions for the COVID-19 pandemic. We found that the synthetic contact matrices show

qualitative similarities to the contact patterns in the empirically-constructed contact matrices.

Models parameterised with the empirical and synthetic matrices generated similar findings

with few differences observed in age groups where the empirical matrices have missing or

aggregated age groups. This finding means that synthetic contact matrices may be used in

modelling outbreaks in settings for which empirical studies have yet to be conducted.
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Author summary

The risk of contracting a directly transmitted infectious disease such as the Coronavirus

Disease 2019 (COVID-19) depends on who interacts with whom. Such person-to-person

interactions vary by age and locations—e.g., at home, at work, at school, or in the commu-

nity—due to the different social structures. These social structures, and thus contact pat-

terns, vary across and within countries. Although social contact patterns can be measured

using contact surveys, the majority of countries around the world, particularly low- and

middle-income countries, lack nationally representative contact surveys. A simple way to

present contact data is to use matrices where the elements represent the rate of contact

between subgroups such as age groups represented by the columns and rows. In 2017, we

generated age- and location-specific synthetic contact matrices for 152 geographical

regions by adapting contact pattern data from eight European countries using country-

specific data on household size, school and workplace composition. We have now updated

these matrices with the most recent data (Demographic Household Surveys, World Bank,

UN Population Division) extending the coverage to 177 geographical locations, covering

97.2% of the world’s population. We also quantified contact patterns in rural and urban

settings. When compared to out-of-sample empirically-measured contact patterns, we

found that the synthetic matrices reproduce the main features of these contact patterns.

Introduction

The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

responsible for causing Coronavirus Disease 2019 (COVID-19) has affected the lives of billions

worldwide [1]. SARS-CoV-2 is predominantly transmitted between people via respiratory

droplets and, as such, the transmission dynamics are strongly influenced by the number and

type of close contacts between infectious and susceptible individuals [2–7].

Mathematical models have played a key role in understanding both the spread of directly-

transmissible infectious diseases such as COVID-19 [8–10] and the effectiveness of public

health responses [11–16]. Since transmission events can rarely be directly observed and mea-

sured, most transmission models are based on the social contact hypothesis [17] which implies

the risk of transmission between a susceptible and an infected individual be proportional to

the rate of contact between them [18]. Rates of contact are known to differ according to char-

acteristics such as the age, of both individuals, and the setting in which the contact takes place,

such as the home, school or workplace; they are also commonly assortative, and infection may

be concentrated in demographic segments as a result [17,19,20].

Age-structured models often define the rate of mixing between age groups through a mixing
matrix where the elements represent the frequency of contact between two individuals from

subgroups (such as age groups) represented by the columns and rows. Mixing matrices can be

generated from surveys that record the number and type of contacts between people, such as

the respondent-completed diaries used in the landmark POLYMOD contact pattern study,

which measured social contact patterns in eight European countries [20]. However, the major-

ity of countries around the world lack data from contact surveys that can be used to inform the

mixing matrix. This problem is particularly acute in low- and lower-middle-income countries

(LMICs), where only 4 studies are available, compared to 54 in high-income countries [21].

Our previous work [22] used country-specific data on household size, school, and workplace

composition plus empirical contact data from the POLYMOD survey to generate age- and
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location-specific contact matrices (synthetic contact matrices) to use in settings where social

contact patterns had not yet been directly measured.

These synthetic contact matrices have been widely used in models of SARS-CoV-2 spread

and the impact of interventions such as physical distancing which alter the pattern of contacts

(e.g. [13]). Following the publication of our previous work, new empirical contact surveys

have been conducted in LMICs (reviewed in [21]), full demographic data are now available for

more countries for older age groups, which is particularly salient given the age-gradient in the

severity of COVID-19 [23,24], and more recent household composition data are now available

for more countries than before. Updating the matrices is particularly important since public

health interventions during the pandemic, such as shielding, are often age-structured [25].

Geographic differences within countries have also been observed, with large early outbreaks

in urban population centres such as Wuhan, New York, London and Madrid [26,27] spreading

into more rural areas, which in many countries may lack the healthcare infrastructure to han-

dle surges in severe cases. Tailored public health response in rural and urban settings may thus

be called for to minimise unnecessary economic and social impacts. Assessing such policies

requires differences between contact patterns in rural and urban environments to be quanti-

fied, which has previously been done only for a few countries [28–30]. In these studies, indi-

viduals in rural settings documented more contacts at home than their urban counterparts

[28,29]. However, individuals in rural settings in Zimbabwe [30] reported a lower total num-

ber of contacts than those in peri-urban settings. The study in Southern China observed no

qualitative difference in overall contact patterns between rural and urban populations [28].

In this paper, we update the synthetic contact matrices with the most recent data, compar-

ing them to measured contact matrices, and develop customised contact matrices for rural and

urban settings. We use these to explore the effects of physical distancing interventions for the

COVID-19 pandemic in a transmission model.

Materials and methods

Updating country-specific demography and setting parameters

As in Prem et al. [22], we employed a Bayesian hierarchical modelling framework to estimate

the age- and location-specific contact rates in each of the POLYMOD countries (Belgium, Ger-

many, Finland, United Kingdom, Italy, Luxembourg, the Netherlands, Poland), accounting for

repeat measurements of contacts made in different locations by the same individual. We

model the number of contacts documented by individual i at a particular location L with an

individual in age group α, as XL
i;a � PoðmL

ai ;a
Þ where the mean parameter varies for each indi-

vidual i, by i’s age, ai, and by location, i.e: mL
ai;a
¼ sil

L
ai ;a

. The σi parameter characterises differ-

ences in social activity levels between individuals i.e., the random effect belonging to

individual i. The l
L
ai ;a

parameter denotes the frequency of contact between individuals (or con-

tact rate per day) from two age groups, a and α, at location L and it is the key estimand.

Because the number of contacts should be comparable for individuals of similar ages, we

imposed smoothness between successive age groups for the l
L
ai ;a

parameter as described in sec-

tion A.8 in S1 Text. Noninformative prior distributions were assumed for all parameters in the

model, as detailed in [22].

We updated the synthetic contact matrices [22] with more recent data on population

age structure, household age structure of 43 countries with recent Demographic Household

Surveys (DHS) [31] and socio-demographic factors for 177 geographical regions, including

countries and some subnational regions such as the Hong Kong and Macau Special Admin-

istrative Regions (SARs) of the People’s Republic of China. We include 14 country
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characteristics from the World Bank and United Nations Educational, Scientific and Cul-

tural Organization Institute for Statistics (UIS) databases: gross domestic product per cap-

ita, total fertility rate and adolescent fertility rate, population density, population growth

rate, internet penetration rate, secondary school education attainment levels, as proxies of

development, and under-five mortality rate, the life expectancy of males and females, mor-

tality rates of males, risk of maternal death, mortality from road traffic injury, and the inci-

dence of tuberculosis, as proxies for overall health in the country. The DHS provides

nationally-representative household surveys with the largest dataset, from India, contain-

ing information on ~ 3 million individuals from about 600 000 households (see Table A in

S1 Text). To project the household age structure for a geographical location with no avail-

able household data, we use a weighted mean of the population-adjusted household age

structures of the POLYMOD and DHS countries as described in the S1 Text. Because the

household age structures vary across countries in different stages of development and with

different demographics, we use the updated 14 indicators, all standardized by z-scoring, to

quantify the similarities between countries with and without household data to derive these

weights. We internally validated the household age matrices using leave-one-out validation

to verify these matrices describing household structure could be reverse-engineered for

countries (POLYMOD and DHS) for which empirical household age matrices were avail-

able, as described in Prem et al. [22] and in S1 Text.

By accounting for the demographic structure, household structure (where known), and a

variety of metrics including workforce participation and school enrolment, we then estimated

contact patterns at home, work, school and other locations for non-POLYMOD countries.

Specifically, the population age compositions for 177 geographical regions were obtained from

the United Nations Population Division [32]. To derive the working population matrices for

each geographical location c, we use the labour force participation rate by sex and 5-year age

groups, wc
a, for the 177 geographical regions from the International Labour Organization

(ILO) [33]. We derive the working population matrix of a country Wc
a;a from the cross product

of wc
a and wc

a
, and the elements describe the probability of encounter between individuals from

two age groups, a and α, in the workplace.

When constructing the school-going population matrices, we use the country-specific

pupil-to-teacher ratio in schools at various level of education (i.e., pre-primary, primary,

secondary and tertiary), enrolment rates of students at various level of education, starting

ages and number of years of schooling at various level of education from UIS [34] and the

distribution of teachers by age from the Organisation for Economic Co-operation and

Development (OECD) [35]. Using the country-specific data, we first estimate the number

of students in each age group by education level. Together with the country-specific pupil-

to-teacher ratio at each education level, distribution of teachers and workforce by age, we

then project the number of teachers in each age group. Both students and teachers form the

school-going population. Similar to the formulation of the working population matrix, the

school-going population matrix estimates the probability of an encounter between two ages.

The steps to construct both the working and school-going populations are detailed in S1

Text.

After projecting populations at home, work and school for the 177 geographical regions, we

infer the synthetic age- and location-specific contact matrices (S1 Text). For contacts in other

locations (not home, work or school), we adjusted the POLYMOD contact matrices with the

country-specific population. We also compare the proportion of contacts at other locations

measured from the empirical contact studies.
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Stratifying contacts by rural and urban areas

We stratified the age- and location-specific contact matrices according to rural and urban

areas by the rural and urban population age compositions for all geographical regions of the

world from the United Nations Population Division [36] (see [37] for urban and rural classifi-

cation). The nationally-representative DHS household surveys additionally provide data for

rural and urban areas [31], allowing us to derive rural-urban household age matrices. We com-

pare the population age compositions and household age matrices in rural and urban settings

of countries with stratified household data (S1 Text).

We assessed the age-specific labour force participation rates by rural and urban regions

from ILO [38]. Using the differences in rural and urban schools’ pupil-to-teacher ratio from

OECD [39], we construct rural and urban school population matrices. These differences were

available for 36 countries, and we assumed the OECD average for the regions without data.

We also compare the mean total number of contacts among children (0–9-year-olds) and

older adults (60–69-year-olds), as well as the basic reproduction number in rural and urban

settings.

Comparing synthetic matrices to empirical contact matrices

We extracted data from all contact surveys listed in the Zenodo social contact database [40]

and directly from the published studies [41], and used them to construct empirical contact

matrices using the socialmixr R package [42]. Data were available for 11 geographical loca-

tions: Shanghai and Hong Kong SAR, China [43,44], France [45], Kenya [46], Peru [47], the

Russian Federation [48], South Africa [29,49], Vietnam [50], Zambia [29] and Zimbabwe [30].

Table 1. Summary of the changes between the 2017 and 2020 synthetic matrices.

2020 synthetic matrices 2017 synthetic matrices

Overall coverage 177 geographical locations covering 97.2% of the world’s

population, including rural and urban settings

152 geographical locations covering 95.9% of the world’s

population

Population age composition data 2020 UN Population Division population demographic data

for 177 geographical regions

2015 UN Population Division population demographic data

for 152 geographical regions

Urban and rural population age

composition data

Stratified population demographic data by urban and rural

settings for 177 geographical regions

Not considered

Country-specific household data 51 countries: 34 additional low- and lower-middle-income

countries

17 countries

Country-specific urban and rural

household data

Stratified household data by urban and rural settings (for 43

DHS countries)

Not considered

Country-specific labour force

participation rate data by age

177 geographical locations and stratified by urban and rural

settings

152 geographical locations

Country-specific school data School data were curated at various levels of education: pre-

primary, primary, secondary and tertiary.

The updated school data included enrolment rates, average

starting ages of schooling, number of years of schooling,

pupil-to-teacher ratio at each education level from UNESCO

Institute for Statistics for 177 geographical regions.

School data were curated at various levels of education: pre-

primary, primary, secondary and tertiary.

The country-specific school data included enrolment rates,

pupil-to-teacher ratio at each education level from UNESCO

Institute for Statistics for 152 geographical regions.

Country-specific urban and rural school

data

Rural and urban differences in schools’ pupil-to-teacher ratio

for 36 countries from OECD

Not considered

Comparison between the synthetic

matrices and out-of-sample empirically-

constructed contact matrices

Comparison of mean contacts by age, full contact matrices,

the proportion of contacts at other locations, and reduction

in cases and age-specific infection attack rate using an age-

stratified compartmental model of COVID-19

Social contact data from contact surveys were extracted from

the Zenodo social contact database and directly from the

published studies for 10 geographical locations.

Comparison of mean contacts by age

Contact matrices were assessed directly from the published

studies in 5 geographical locations: Kenya (digitised image),

Peru (digitised image), Russia, South Africa, and Vietnam.

https://doi.org/10.1371/journal.pcbi.1009098.t001
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We then compared each element of the empirical matrices with our synthetic matrices. We

also compared the proportion of contacts in “Other” locations, since this was the only setting

not directly informed by local data (other than population age structure) in the synthetic

matrices. To understand potential sources of differences between the empirical and synthetic

matrices as well as between empirical matrices between different regions, we extracted details

of how each survey was conducted from the original publications.

Table 1 summarises the changes between the construction of the 2017 and 2020 synthetic

matrices. Analyses were done in R version 3.6.2 [51], and the codes are deposited in https://

zenodo.org/record/4889500 [52].

Impact on modelling of interventions

We compare the difference in reduction of COVID-19 cases between using the empirical and

synthetic matrices in models of COVID-19 epidemics in ten geographical regions—China,

France, Hong Kong SAR, Kenya, Peru, the Russian Federation, South Africa, Uganda, Viet-

nam and Zimbabwe—using an age-stratified compartmental model [13,25]. We model an

unmitigated epidemic and three intervention scenarios: 20% physical distancing, 50% physical

distancing, and national lockdown. In all intervention scenarios, we assume a 50% reduction

Table 2. Description of empirical contact survey studies used to construct contact matrices.

Region, Country Authors (year) Study design Study

population

Sampling methods Data collection

method (mode)

Rural /

Urban

Casual contacts (i.e., short-

term)

Shanghai, China Zhang et al. (2019)

[43]

Prospective General

population

(n = 965)

Convenience

sample

Paper-diary (self-

report and interview-

based)

Urban Participants were allowed to

include group contacts

France Béraud et al.

(2015) [45]

Prospective General

population

(n = 2033)

Quota sampling Paper-diary (self-

report)

Rural and

urban

Participants were allowed to

provide open-ended notes

Hong Kong SAR,

China

Leung et al. (2017)

[44]

Retrospective General

population

(n = 1149)

Quota sampling Paper-diary and

online survey (self-

report)

Urban Participants were allowed to

include group contacts

Kilifi, Kenya Kiti et al. (2014)

[46]

Prospective General

population

(n = 568)

Stratified random

sample

Paper-diary (self-

report)

Rural and

semi-

urban

Undocumented

Highlands San

Marcos, Cajamarca-

Peru

Grijalva et al.

(2015) [47]

Retrospective General

population

(n = 588)

Convenience

sample

Paper-diary

(interview-based)

Rural Participants were allowed to

report unregistered contacts

Tomsk, Russia Ajelli et al. (2017)

[48]

Prospective General

population

(n = 559)

Random and

convenience

samples

Paper-diary (self-

report)

Urban Participants were allowed to

report unregistered

contacts.

South Africa Johnstone et al.

(2011) [49]

Prospective General

population

(n = 571)

Random sample Paper-diary (self-

report)

Rural Undocumented

Sheema North Sub-

District, Uganda

le Polain de

Waroux et al.

(2018) [41]

Retrospective General

population

(n = 566)

Random sample Paper-diary

(interview-based)

Rural Participants were allowed to

report unregistered contacts

Red River Delta,

North Vietnam

Horby et al. (2011)

[50]

Retrospective General

population

(n = 865)

Random sample Paper-diary

(interview-based)

Semi-rural Participants were allowed to

report unregistered

contacts.

Zambia and South

Africa

Dodd et al. (2016)

[29]

Retrospective Adults (>18

years) (n = 3582)

Random sample Paper-diary

(interview-based)

Rural and

urban

Participants were asked by

the interviewer

Manicaland,

Zimbabwe

Melegaro et al.

(2017) [30]

Prospective General

population

(n = 2490)

Stratified random

sample

Paper-diary (self-

report)

Rural and

peri-urban

Participants were asked by

the interviewer

https://doi.org/10.1371/journal.pcbi.1009098.t002
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in transmission from individuals with clinical symptoms through self-isolation. In addition,

we assume the following: (i) 20% physical distancing: 20% reduction in transmission outside

of the household, (ii) 50% physical distancing: 50% reduction in transmission outside of the

household, (iii) national lockdown: where we applied the pooled mean reduction in setting-

specific contacts (i.e. at home, school, work, and other places) as observed in lockdowns imple-

mented in several countries during the COVID-19 pandemic [53–57]. We considered six con-

tact matrices when modelling the interventions to the COVID-19 pandemic: the empirically-

constructed contact matrices at the study-year and adjusted for the 2020 population, the 2017

synthetic matrices, and the updated synthetic matrices at the national, rural, or urban settings.

More details of the model can be found in sections A.7 and B.5 of S1 Text.

Results

Twenty-five geographical regions were added to this study compared to the 2017 study. We

also updated the population demographic data used for all countries including Namibia, Syr-

ian Arab Republic, Republic of South Sudan, Kuwait, and Vanuatu where the proportion of

individuals aged> 70 years was previously not recorded.

There were varied methods adopted in 11 contact surveys conducted to generate the empir-

ical contact matrices covering 11 geographical locations (Table 2). The surveys differed sub-

stantially from each other and the original POLYMOD survey in sampling frames and survey

methodology. Dodd et al. [29] measured social contacts among adults in South Africa and

Zambia. Three surveys were conducted in exclusively rural regions [41,47,49], (including one

in a remote highlands region [47]), three other surveys were conducted only in urban regions

[43,44,48], and the remaining five surveys were conducted in a variety of urban and rural set-

tings [29,30,45,46,50]. Although most studies adopted random or stratified sampling to recruit

their respondents, a handful included convenience [43,47,48] and quota [44,45] sampling

methods in their recruitment. In most contact diary approaches, contacts are categorised as

physical contacts (e.g., skin-to-skin contacts) and nonphysical contacts (e.g. two-way conver-

sations with three or more words in the physical presence of another person) [20]. They were

equally split between studies that asked respondents to fill in surveys retrospectively

[29,41,44,47,50] and prospectively [30,43,45,46,48,49].

The estimated proportions of contacts in other locations from POLYMOD contact survey

largely match analogous figures in empirical contact studies from five geographical locations

which report this—Shanghai and Hong Kong SAR, China; the Russian Federation; Peru; and

Zimbabwe—but are higher than those from France for most ages (Fig 1). It is slightly higher in

the synthetic matrices in adults (i.e., 20–40-year-olds) in Shanghai, Hong Kong and the Rus-

sian Federation, and slightly lower in older individuals (i.e.,>60-year-olds) in Peru, but all

other ages match closely.

The pronounced diagonals observed in all contact matrices are matched in the synthetic

matrices (Figs 2 and 3), as are the secondary diagonals indicating the occurrence of intergen-

erational mixing. The updated synthetic contact matrices show close similarities to empirical

matrices (median correlation between normalised synthetic and empirical matrices 0.82, inter-

quartile range 0.66–0.84). In most geographical regions, both matrices are similar in terms of

symmetry. However, there are a few places such as Zimbabwe and China (Shanghai) where the

synthetic matrix is more symmetrical than the empirical matrix, as the latter shows more

Fig 1. Comparison of the estimated proportion of contacts at other locations for the empirical contact studies from six geographical regions and

POLYMOD survey. The estimated age-specific proportion of all contacts at other locations—transport, leisure, other locations—matrices from

contact surveys at the country or geographical region (in black) are compared against that observed in the POLYMOD countries (in grey).

https://doi.org/10.1371/journal.pcbi.1009098.g001
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weight above the diagonal (young people report more contacts with old people than vice

versa). The degree of symmetry of both synthetic and empirical matrices in each region is

compared in Table E in S1 Text.

We reconstructed the empirical household age structures for the POLYMOD and DHS

countries with high fidelity (median correlation between the observed and modelled house-

hold age matrix (HAM) 0.92, with an interquartile range 0.85–0.95) (See S1 Text sections

A.2.2 and B.1 for details). The differences in the population and households age composition

by rural and urban settings are presented in section B.2 in S1 Text.

For many of the low-income countries (LIC), a larger mean number of contacts among

children (i.e., 0–9-years-old) were observed in rural settings than urban settings. However, in

high-income countries (HIC), urban settings had a larger mean number of contacts among

children (Fig 4). Among HIC, the basic reproduction number in rural and urban settings are

positively correlated (r = 0.73, 95% confidence interval: 0.52–0.84).

The choice of using synthetic or empirical matrices did not make a large difference to the

infection attack rate for an unmitigated epidemic (Fig D in S1 Text), or to the overall number

of severe COVID-19 cases predicted in a mathematical model of SARS-CoV-2 transmission

and disease across the three physical distancing interventions (Fig 5 and Fig E in S1 Text).

Where there were discrepancies, the relative magnitude of this discrepancy differed between

countries. Differences were more marked in specific age groups (e.g. older people in Hong

Kong SAR, Kenya, Peru, Uganda, Vietnam and Zimbabwe; 10–20 year olds in China; 20–24

year olds in Russia). The largest age-related differences could potentially be attributed to par-

ticular features of empirical survey design such as missing (Peru, Russia) or aggregated

(Kenya, South Africa, Uganda, Vietnam) age groups, mode of questionnaire chosen by partici-

pants (Hong Kong SAR) and survey administration during school holidays (Zimbabwe) (See

Table D in S1 Text for details).

Discussion

Social mixing patterns have not been directly measured in most countries or regions within

countries, particularly in low- and lower-middle-income settings. Synthetic contact matrices

provide alternative age- and location-specific social mixing patterns for countries in different

stages of sociodemographic and economic development [22]. The synthetic contact matrices

presented here were derived by the amalgamation of several data sources and methods: (i)

integration into a Bayesian hierarchical framework of age- and location-specific contact rates

from eight European countries from the POLYMOD contact study; (ii) construction of age-

structured populations at home, work, and school in many non-POLYMOD countries by

combining household age-structure data from the POLYMOD study and DHS (which include

mostly data from lower-income countries), socio-demographic factors from the UN Popula-

tion Division and various international indicators; and (iii) projection of age-structured popu-

lations at home, work, and school and age- and location-specific contact matrices to other

non-POLYMOD and non-DHS countries. Both empirical and synthetic contact matrices cap-

ture age-assortativity in mixing patterns; the pronounced primary diagonal highlights that

Fig 2. Comparison of the normalised empirical and synthetic age-specific contact matrices in five geographical

regions. The empirical matrices collected from contact surveys, modelled synthetic contact matrices, and the scatter

plots of the entries in the observed (x-axis) and modelled (y-axis) contact matrices are presented. The correlation

between the empirical and synthetic matrices are shown. The matrices are normalised such that its dominant

eigenvalue is 1. To match the population surveyed in the empirical studies, the contact matrices from rural settings of

Kenya and Peru are presented; and the contact matrix from urban settings of China is presented. No data are available

in the grey regions.

https://doi.org/10.1371/journal.pcbi.1009098.g002
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individuals interact with others of similar age. Both also show secondary diagonals, approxi-

mately one generation apart, indicating parent-child interactions.

This paper provides a substantial update and improvement to previous synthetic matrices

published in 2017 (Table 1). Improvements in the availability of demographic data globally

have enabled us to provide validated approximations to age- and location-specific contact

rates for 177 geographical regions covering 97.2% of the world’s population, compared to 152

geographical regions covering 95.9% previously. Household data from 34 additional LMICs

were included in the revision. We have also used the most recent data to build the working

and school-going populations. We have extended the method to project contact patterns in

rural and urban settings using country-specific urban and rural data. We find a higher positive

correlation in mean contact rates and basic reproduction number in rural and urban settings

of HIC, owing to the smaller rural-urban differences in these countries. Moreover, when

assessing the consistency of results under different mixing assumptions (empirical and syn-

thetic), we observed small differences in the modelled reduction in number of cases across the

three physical distancing interventions for the COVID-19 pandemic.

The synthetic matrices provide consistency for inter-country comparisons since they are

based on common datasets. This is challenging to achieve through empirical data collection

(see Table 2). For such studies, surveying across the whole population poses several challenges.

Establishing a sampling frame and obtaining a sample representative of an entire country’s

population is expensive and in some regions logistically challenging, so researchers often

restrict studies to a particular subpopulation. For instance, many recent empirical contact

studies only represent certain subregions of countries rather than entire countries. Sometimes

surveys rely on nonprobability sampling techniques [43–45,47,48], e.g., convenience and

quota sampling, when probability sampling techniques are not feasible. Paper or online self-

reported contact diaries are largely used in social contact surveys. Compared to less common

face-to-face interviews, respondent-filled contact diaries have a less demanding data collection

procedure but may report a lower response rate [21,58]. Zhang et al. [43] found significantly

higher contacts documented by telephone interview than by self-reporting in Shanghai, China.

In addition, contact diaries can be administered prospectively or retrospectively (Table 2). In

Hong Kong, prospective surveys have been shown to be less prone to recall bias compared to

their retrospective counterpart [44], but it is often more challenging to find willing participants

for prospective surveys. However, a study in Belgium [59] found no appreciable effect between

retrospective and prospective surveying. Other methods, e.g., proximity sensors and phone-

based GPS trackers or Bluetooth scanners, have also been employed to measure mixing pat-

terns between individuals [60–63] and are forming part of many countries’ contact tracing

efforts during the COVID-19 pandemic [64], though most have been implemented to protect

users’ privacy by storing data with the user rather than centrally. When we compared our syn-

thetic matrices with empirical contact matrices from 11 studies using contact diaries, we found

broad consistencies between findings from the two approaches. However, there were also dif-

ferences which might reflect the heterogeneity in methods used to collect empirical data.

Fig 3. Comparison of the normalised empirical and synthetic age-specific contact matrices in five geographical

regions. The empirical matrices collected from contact surveys, modelled synthetic contact matrices, and the scatter

plots of the entries in the observed (x-axis) and modelled (y-axis) contact matrices are presented. The correlation

between the empirical and synthetic matrices are shown. The matrices are normalised such that its dominant

eigenvalue is 1. To match the population surveyed in the empirical studies, the contact matrices from rural settings of

South Africa, Uganda, Vietnam, and Zimbabwe are presented; and the contact matrices from urban settings of the

Russian Federation are presented. No data are available in the grey regions.

https://doi.org/10.1371/journal.pcbi.1009098.g003
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Fig 4. Mean number of contacts and basic reproduction number between rural and urban settings. Panels a and b present the scatter plots of the mean number of

contacts in younger and older individuals, respectively, in rural (x-axis) and urban (y-axis) settings of a country. Panels c and d present the scatter plots of the basic

reproduction number in rural (x-axis) and urban (y-axis) settings of a country without and with age-dependent susceptibility and infectiousness. Geographical

regions are grouped as low-income countries (LIC), lower-middle-income countries (LMIC), upper-middle-income countries (UMIC), and high-income countries

(HIC), as designated by the World Bank in 2019. Within income group correlations of rural and urban values are presented in the accompanying parentheses.

https://doi.org/10.1371/journal.pcbi.1009098.g004
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Fig 5. Reduction in cases due to interventions in models of COVID-19 epidemics under three intervention scenarios in ten geographical regions using the

empirical and synthetic matrices. The reduction in cases in each of the three intervention scenario—20% physical distancing, 50% physical distancing, and lockdown
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Another consideration affecting both synthetic and empirical matrices is that they change

over time. Estimating synthetic matrices relies on the POLYMOD contact survey administered

more than a decade ago. Another larger contact survey, BBC Pandemic [60,65] conducted in

the UK used mobile phone-based GPS tracking instead of diary-based surveys, reported a

decrease in contacts among adolescents compared to POLYMOD, which may reflect substitu-

tion of face-to-face contacts with electronic communication in this age group. Moreover, in

addition to the rural-urban environment, age- and location-specific contact patterns could

vary by socioeconomic conditions within countries. More differences are expected as countries

implement physical distancing measures to mitigate the COVID-19 pandemic. The COVID-

19 pandemic has affected contact patterns, whether through non-pharmaceutical interventions

or reactive behavioural changes, in particular, how we come into contact with one another.

Baseline, expected contact rates, as those inferred here, are critical for determining the amount

of change in contact rates in response to the pandemic. Understanding the impact of the

COVID-19 pandemic on contact patterns requires a detailed analysis of contact surveys con-

ducted during the pandemic, taking into account baseline contacts and non-pharmaceutical

interventions intensity. Future studies are also needed to quantify the possible long-term beha-

vioural changes.

Both synthetic and empirical matrices have complementary strengths and limitations.

Empirical contact patterns are dependent on the study design and study population, and when

the survey is administered. The synthetic contact matrices are constructed using proxies of

contacts such as population and household age structures and country characteristics. How-

ever, the datasets used to develop these proxy measures (notably population age structure and

DHS data) are generally much larger and more nationally representative than most empirical

contact studies. To assess the robustness or consistency of the results under different mixing

patterns, modellers should consider using multiple contact matrices constructed using differ-

ent methods for sensitivity analyses.

Conclusion

In this study, we provide synthetic contact matrices for 177 geographical regions by updating

our previous matrices with larger and more recent datasets on population age structure, house-

hold, school and workplace composition. The synthetic contact matrices reproduce the main

features of the contact patterns in the out-of-sample empirically collected contact matrices.

Supporting information

S1 Text. Projecting contact matrices in 177 geographical regions: an update and compari-

son with empirical data for the COVID-19 era: Supplementary Material.

(PDF)
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