
RESEARCH ARTICLE Open Access

Prediction of individuals at high risk of
chronic kidney disease during treatment
with lithium for bipolar disorder
Joseph F. Hayes 1,2*, David P. J. Osborn1,2, Emma Francis1, Gareth Ambler3, Laurie A. Tomlinson4, Magnus Boman5,6,
Ian C. K. Wong7,8, John R. Geddes9, Christina Dalman10 and Glyn Lewis1,2

Abstract

Background: Lithium is the most effective treatment in bipolar disorder. Its use is limited by concerns about risk of
chronic kidney disease (CKD). We aimed to develop a model to predict risk of CKD following lithium treatment
initiation, by identifying individuals with a high-risk trajectory of kidney function.

Methods: We used United Kingdom Clinical Practice Research Datalink (CPRD) electronic health records (EHRs)
from 2000 to 2018. CPRD Aurum for prediction model development and CPRD Gold for external validation. We
used elastic net regularised regression to generate a prediction model from potential features. We performed
discrimination and calibration assessments in an external validation data set.
We included all patients aged ≥ 16 with bipolar disorder prescribed lithium. To be included patients had to have ≥
1 year of follow-up before lithium initiation, ≥ 3 estimated glomerular filtration rate (eGFR) measures after lithium
initiation (to be able to determine a trajectory) and a normal (≥ 60 mL/min/1.73 m2) eGFR at lithium initiation
(baseline). In the Aurum development cohort, 1609 fulfilled these criteria. The Gold external validation cohort
included 934 patients.
We included 44 potential baseline features in the prediction model, including sociodemographic, mental and
physical health and drug treatment characteristics. We compared a full model with the 3-variable 5-year kidney
failure risk equation (KFRE) and a 3-variable elastic net model.
We used group-based trajectory modelling to identify latent trajectory groups for eGFR. We were interested in the
group with deteriorating kidney function (the high-risk group).

Results: The high risk of deteriorating eGFR group included 191 (11.87%) of the Aurum cohort and 137 (14.67%) of
the Gold cohort. Of these, 168 (87.96%) and 117 (85.40%) respectively developed CKD 3a or more severe during
follow-up. The model, developed in Aurum, had a ROC area of 0.879 (95%CI 0.853–0.904) in the Gold external
validation data set. At the empirical optimal cut-point defined in the development dataset, the model had a
sensitivity of 0.91 (95%CI 0.84–0.97) and a specificity of 0.74 (95% CI 0.67–0.82). However, a 3-variable elastic net
model (including only age, sex and baseline eGFR) performed similarly well (ROC area 0.888; 95%CI 0.864–0.912), as
did the KFRE (ROC area 0.870; 95%CI 0.841–0.898).
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Conclusions: Individuals at high risk of a poor eGFR trajectory can be identified before initiation of lithium
treatment by a simple equation including age, sex and baseline eGFR. Risk was increased in individuals who were
younger at commencement of lithium, female and had a lower baseline eGFR. We did not identify strong
predicters of eGFR decline specific to lithium-treated patients. Notably, lithium duration and toxicity were not
associated with high-risk trajectory.

Background
Lithium is the most effective maintenance treatment for
bipolar disorder and is first-line in all international clin-
ical practice guidelines [1]. However, its use has been de-
clining globally [2]. Reasons for this include the required
monitoring due to its narrow therapeutic window and
concerns about adverse effects, particularly irreversible
kidney failure [3]. In fact, kidney failure is rare [4], with
end-stage kidney failure occurring at similar rates to
those treated with other mood stabilisers [5], but more
commonly than the general population (0.23% vs 0.11%
[6]). Bipolar disorder itself appears to be associated with
increased risk of kidney failure independent of lithium
exposure [7]. There are inconsistencies in the existing
literature about the association between kidney failure
and lithium treatment duration and episodes of lithium
toxicity [8].
Being able to identify individuals at risk of compro-

mised kidney function would have high clinical utility; it
would encourage the use of this effective treatment in
those at low-risk and so improve outcomes for people
with bipolar disorder. In the general population, estab-
lished risk factors for CKD include age, sex (increased in
women), ethnicity (increased in Black, Asian and
Minority Ethnic (BAME) populations), family history of
kidney disease, smoking, obesity, hypertension, diabetes
mellitus, excessive alcohol consumption and acute kid-
ney injury [9]. Prediction models have been developed
for end-stage kidney failure in groups with a range of
underlying risk [10–14]. These tend to include a small
number of core features including age, gender, ethnicity,
eGFR and albuminuria. Models then vary in terms of
additional features such as glucose, blood pressure,
haemoglobin, lipids, calcium and phosphate. It is unclear
if features related to mental health are useful in predict-
ing CKD risk at the point of lithium initiation. It is also
likely that risk factors for CKD cluster differently in pa-
tients with bipolar disorder prescribed lithium [8] so we
cannot assume that risk prediction models for CKD that
are of value in the general population would apply to
people with bipolar disorder receiving lithium. Because
CKD requiring clinical intervention (CKD stage 4 or
more severe – eGFR < 30mL/min/1.73 m2) is a rare and
late-stage outcome we aimed to develop a model to clas-
sify individuals into high-risk and low-risk trajectories of
kidney function following lithium treatment initiation.

Methods
Population
This study used patient data from the Clinical Practice
Research Datalink (CPRD) Gold and Aurum databases
between 1 January 2000 and 31 December 2018. CPRD
contains electronic health records (EHRs) from general
practices across the UK. Combined, these databases in-
clude 42 million patient records from over 1800 primary
care practices (www.cprd.com). Both databases contain
coded and anonymised data including demographic de-
tails, symptoms, diagnoses, prescribed medication, la-
boratory tests and referrals. CPRD Gold contains data
contributed by practices using Vision software and
CPRD Aurum contains data contributed by practices
using EMIS Web software [15, 16]. Contributing prac-
tices have different geographical distributions; CPRD
Gold contains patients from the whole of the UK,
whereas Aurum contains only practices from England
and Northern Ireland. Therefore, there are some differ-
ences in population structures. We used data from the
Aurum database for the development of our prediction
model and data from the Gold database for external val-
idation. Ethical approval for this study was obtained
from the Independent Scientific Advisory Committee of
CPRD (protocol no. 18_316). Informed consent was
waived because data are anonymised for research pur-
poses. In line with ethical guidance subgroups contain-
ing fewer than 5 people are censored in the results
section.

Cohort definition
The cohort comprised any patient who; was aged 16 or
over, ever received a diagnosis of bipolar disorder in
their clinical record, was prescribed lithium (defined as
receiving two or more concurrent prescriptions), had at
least a year of follow-up before their first lithium pre-
scription and no previous record of being prescribed
lithium (to capture patients’ first exposure to lithium),
had at least three estimated glomerular filtration rate
(eGFR) measures after lithium initiation and had a base-
line measure of eGFR ≥ 60mL/min/1.73 m2 before start-
ing lithium (normal or close to normal kidney function).

Kidney function trajectories
eGFR values were calculated from recorded creatinine
blood tests using the CKD-EPI eq. [17]. Using the eGFR,
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and the date the blood test was performed relative to
lithium initiation, we conducted group-based trajectory
modelling to identify latent subgroups within the cohort
[18]. We included lithium exposure as a time-varying
covariate, as rate of change in eGFR may potentially dif-
fer between the lithium exposed period and following
lithium cessation. In the process of determining the
number of trajectory groups, we initially used a cubic
polynomial function for all groups. The final number of
groups was determined based on the Bayesian Informa-
tion Criterion (BIC), trajectory shapes for similarity, and
the proportion of cohort members in each class [19].
We initially set a 2-group model and increased the num-
ber of groups until BIC was minimised, but no group
was less than 10% of the total cohort. After identifying
the optimal number of groups, the level of the polyno-
mial function for each group was reduced from cubic to
zero-order until the BIC was minimised. With this final
model, each participant was assigned to one of the sub-
groups based on maximum posterior probability. We
were primarily interested in the group predicted to have
the most rapidly declining eGFR trajectory; referred to
as the high-risk group.

Prediction model features
We identified features present in a patient’s record be-
fore they commenced lithium treatment as potential pre-
dictors of being in the high-risk group. These included
predictors of eGFR decline in the general population
and features related to mental health and its treatment
that have been previously identified [20] (code lists avail-
able on request):

Sociodemographics
Age, sex, ethnicity (as BAME vs White), relationship sta-
tus (single vs. in a relationship).

Mental health characteristics
Illness duration before lithium initiation, presentations
for depression, mania, anxiety (including diagnosis and
symptoms of generalised anxiety, phobic anxiety and
obsessive-compulsive disorder), psychosis (including
affective and non-affective psychotic episodes), stress
(including adjustment disorders and symptoms of
stress), self-harm (including intentional overdose and
non-accidental self-injury), disturbed sleep (including in-
somnias and hypersomias).

Physical health characteristics
Hyper/hypocalcaemia, hypo/hyperthyroidism, high LDL
cholesterol, low HDL cholesterol, hypertension, coronary
heart disease, a measure of eGFR < 60mL/min/1.73 m2

any time before lithium initiation, type II diabetes melli-
tus, asthma, weight loss, peptic ulcer, iron deficiency

anaemia, liver disease, chronic pulmonary disease, and
neurological disorders.

Health behaviours
Smoking status (never smoked, current smoker, ex-
smoker), body mass index group (underweight, healthy
weight, overweight, obese), cannabis use, other substance
misuse, alcohol misuse.

Other drug treatment
Antipsychotic prescription, other mood stabiliser pre-
scription, antidepressant prescription.

Interactions
Baseline eGFR with sex and age, sex with age and body
mass index group.

Statistical analysis
We described differences in prevalence of binary covari-
ates and medians of continuous covariates between
high-risk and low-risk groups using p values from chi-
squared tests. We used probit elastic net regression with
10-fold cross-validation to perform variable selection
and penalization of coefficients to generate the predic-
tion model in the Aurum cohort. Elastic net is a regular-
isation method for regression and classification models
which comprises the Least Absolute Shrinkage And
Selection Operator (LASSO) penalty (L1) and the ridge
penalty (L2) [21]. The LASSO (L1) penalty function per-
forms variable selection and dimension reduction by
shrinking coefficients, whilst the ridge (L2) penalty
function shrinks the coefficients of correlated variables
toward their average. The overall elastic net is a function
of parameters λ and α (0 ≤ α ≤ 1), with λ being a param-
eter for the level of penalty, whilst α being the weight of
L1 penalty and (1-α) being that of L2 penalty function.
We reported receiver operating characteristic (ROC)
area (and 95% confidence interval) (CI), sensitivity and
specificity at the empirical optimal cut-off point using
Youden’s index and the predictive accuracy. We com-
pared the derived full model with predictions from the
3-variable 5-year kidney failure risk equation (KFRE)
which includes age, sex and eGFR, and an elastic net
model containing only these 3 variables [14]. We chose
the 3-variable KFRE as albumin-to-creatine ratio was
poorly recorded before lithium initiation and the 3-
variable model performed well in previous validation
studies (ROC area 0.79) [22].

External validation
We used patient data from CPRD Gold for external val-
idation of the model generated in the Aurum cohort. To
categorise individuals at high risk of a rapid decline in
eGFR, we ran group-based trajectory models of the
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eGFRs independently of the Aurum patients’ trajectory
model. We compared trajectory group membership with
the predicted group membership from the Aurum
model. We reported the ROC area, sensitivity and speci-
ficity at the cut-off point defined in the development
data, brier score, predictive accuracy, calibration belt (a
graphical approach designed to evaluate the goodness of
fit of binary outcome models) [23] and decision curve
analysis. We examined how well the model could predict
CKD stage 3b or more severe (eGFR < 45 mL/min/
1.73 m2) during follow-up. We also compared the full
model with simple models: the 3-variable KFRE and 3-
variable elastic net.

Post hoc supplementary analysis
We combined data from the Aurum and Gold datasets
for patients who initiated lithium treatment with a base-
line eGFR ≥ 90mL/min/1.73 m2. We adopted the same
approach in this smaller cohort: we identified a high-risk
trajectory group using group-based trajectory modelling
and then used the full model, 3-variable KFRE and 3-
variable elastic net to predict group membership. We
also examined how well this model could predict
CKD stage 3a or more severe (eGFR < 60 mL/min/
1.73 m2) during follow-up. This analysis was com-
pleted to address issues arising from the strong asso-
ciation between baseline eGFR and future eGFR
measurements in the initial model. All analysis was
completed using Stata 16 [24].

Results
We identified 1609 patients in the development sample
(Aurum cohort), with a median of 14 (IQR 7–26) eGFR
test results each. The median length of lithium

treatment was 1.42 years (IQR 0.53–3.58). Of these pa-
tients, 401 (24.92%) developed CKD stage 3a or more se-
vere (eGFR < 60 mL/min/1.73 m2), 38 (2.36%) CKD
stage 3b (eGFR< 45mL/min/1.73 m2), but none devel-
oped CKD stage 4. In total, 158 (9.82%) died during
follow-up.
To categorise risk groups based on eGFR trajectories

we chose a 5-group model, all groups with cubic trajec-
tories (BIC = 3566.99). This defined 11.87% of the cohort
as high risk. Models with 6 groups had lower BIC but in-
cluded one group with less than 10% of the cohort.
Trajectories of the high-risk vs other groups (com-

bined group 2–5) are shown in Fig. 1 and described in
Table 1. Of those in the high-risk group 168 (87.96%)
develop CKD stage 3a or more severe, and 25
(13.09%) developed stage 3b or more severe, com-
pared to 233 (16.43%) and 13 (0.92%) respectively in
the low-risk group.
Patients in the high-risk group were more likely to be

female, younger at lithium initiation, have a lower eGFR
before starting lithium and be obese. They were more
likely to have a pre-existing diagnosis of migraine. They
were more likely to have a record of high LDL choles-
terol. They were less likely to have had an eGFR < 60
mL/min/1.73 m2 any time before baseline.
There was no statistical evidence of a difference in

duration of lithium treatment and incidence of lithium
toxicity (> 1.5 mmol/L) between groups. Those in the
high-risk group were less likely to die during follow-up
and had fewer eGFR tests in total.
We used 44 features known to the clinician prior to

lithium initiation to generate a prediction model for be-
ing in the high-risk group. Elastic net with 10-fold cross-
validation fitted a model with λ = 0.014 and α = 1.00.

Fig. 1 High-risk and low-risk eGFR trajectory in relation to end of lithium exposure in Aurum
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Table 1 Characteristics of lithium prescribed patients by risk group in Aurum

Feature High-risk Low-risk P value

Patient characteristics

Total, N (%) 191 (11.87) 1418 (88.13)

Female, n (%) 178 (93.19) 852 (60.08) < 0.001

Age, median (IQR) 41.58 (32.14–50.72) 45.80 (36.39–56.59) < 0.001

BAME, n (%) 7 (3.66) 78 (5.50) 0.287

In a relationship, n (%) 32 (16.75) 240 (16.93) 0.953

Death during follow-up 5 (2.62) 153 (10.79) < 0.001

Lithium exposure characteristics

Lithium treatment duration (years), median (IQR) 1.66 (0.72–4.11) 1.51 (0.59–3.85) 0.482

Ever lithium toxic (> 1.5 mmol/L), n (%) 5 (2.62) 62 (4.37) 0.256

Follow-up after stopping lithium (years), median (IQR) 2.92 (0–7.14) 4.07 (0.24–9.43) 0.064

Kidney function characteristics

eGFR tests during follow-up, median (IQR) 12 (7–20) 14 (8–27) 0.004

Baseline eGFR (mL/min/1.73 m2), median (IQR) 67 (63–72) 81 (72–91) < 0.001

Developed CKD stage 3a or more severe (eGFR < 60mL/min/1.73 m2) 168 (87.96) 233 (16.43) < 0.001

Developed CKD stage 3b or more severe (eGFR < 45 mL/min/1.73 m2) 25 (13.09) 13 (0.92) < 0.001

Pre-lithium mental health characteristics

Depression, n (%) 160 (83.77) 1167 (82.30) 0.616

Anxiety, n (%) 60 (31.41) 403 (28.42) 0.391

Psychosis, n (%) 33 (17.28) 266 (18.76) 0.621

Stress, n (%) 45 (23.56) 262 (18.48) 0.093

Self-harm, n (%) 39 (20.42) 217 (15.30) 0.070

Disturbed sleep, n (%) 48 (25.13) 315 (22.21) 0.365

Illness duration (years), median (IQR) 8.47 (4.03–15.65) 8.45 (2.86–16.30) 0.931

Pre-lithium physical health characteristics

Hypertension, n (%) 33 (17.28) 260 (18.34) 0.722

Migraine, n (%) 40 (20.94) 138 (9.73) < 0.001

Type II diabetes mellitus, n (%) 18 (9.42) 107 (7.55) 0.363

Thyroid disease

Hypothyroidism, n (%) 5 (2.62) 70 (4.94) 0.154

Hyperthyroidism, n (%) (−)* 8 (0.56) 0.113

Calcium abnormalities

hypocalcaemia, n (%) (−)* 12 (0.85) 0.640

hypercalcaemia, n (%) (−)* 13 (0.93) 0.184

Cholesterol abnormalities

High LDL, n (%) 47 (24.61) 264 (18.62) 0.049

Low HDL, n (%) 16 (8.38) 101 (7.12) 0.531

Asthma, n (%) 52 (27.23) 282 (19.89) 0.019

Chronic obstructive pulmonary disease, n (%) 57 (29.84) 341 (24.05) 0.081

Anaemia, n (%) 11 (5.76) 67 (4.72) 0.532

Peptic ulcer, n (%) 2 (1.05) 20 (1.41) 0.685

Coronary heart disease, n (%) 5 (2.62) 68 (4.80) 0.175

Liver disease, n (%) (−)* 23 (1.62) 0.546

Neurological disorders, n (%) 15 (7.85) 89 (6.28) 0.405
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The ROC area = 0.868 (95%CI 0.844–0.891) (Fig. 2). The
empirical optimal cut-point was 0.134 with a sensitivity
of 0.86 (95%CI 0.78–0.94) and a specificity of 0.73
(95%CI 0.63–0.84). The Youden index was 0.589. This
gave a prediction accuracy of 74.54% (Table 2).
Features retained in the model were (in order of

coefficient size): baseline eGFR, sex, sex by BMI group
interaction, baseline eGFR by age interaction,
hypothyroidism, migraine, BMI group, SSRI exposure,
high LDL cholesterol, BAME, hyperthyroidism, smoking
status, type 2 diabetes mellitus, and self-harm. The 3-
variable KFRE and the 3-variable elastic net model
performed similarly well to the full model: ROC area =
0.828 (95%CI 0.801–0.855) and ROC area = 0.852
(95%CI 0.827–0.876), respectively (Table 2).

External validation
The external validation data set (Gold cohort) included
934 individuals. We developed new trajectory groups in-
dependently for these patients. BIC in the group-based
trajectory model was minimised by a 5-group solution,
with cubic or quadratic polynomials fitted for each group
trajectory; 3, 2, 2, 3, 3 respectively from “highest risk” to
“lowest risk” groups (BIC = 1919.07). Of the total Gold

cohort, 14.67% (n = 137) were in the high-risk group. Of
the total cohort, 229 (24.52%) developed CKD stage 3a or
more severe and 14 (1.50%) CKD stage 3b or more severe.
Patient characteristics by risk group are described in

Table 3, and trajectories relative to end of lithium expos-
ure are shown in Fig. 3. Of those in the high-risk group,
117 (85.40%) develop CKD stage 3a or more severe, and
14 (10.22%) developed stage 3b or more severe, compared
to 112 (14.05%) and < 5 respectively in the low-risk group.
As with the Aurum cohort, patients in the high-risk

group were more likely to be female, be younger, have a
lower eGFR before starting lithium and less likely to
have a prior record of eGFR< 60mL/min/1.73 m2. High-
risk individuals were also more likely to experience mi-
graine. Unlike the Aurum cohort, the high-risk group
were more likely to have anaemia and less likely to have
hypertension. There was no between group difference
for lithium duration and lithium toxicity was potentially
more common in the low-risk group.
We predicted high-risk group membership using the

model generated in the Aurum Data set. The ROC area
was 0.879 (95%CI 0.853–0.904) (Table 2, Fig. 4). At the
empirical optimal cut-point defined in the development
dataset, the model had a sensitivity of 0.91 (0.84–0.97) and

Table 1 Characteristics of lithium prescribed patients by risk group in Aurum (Continued)

Feature High-risk Low-risk P value

Rheumatoid arthritis, n (%) 6 (3.14) 28 (1.97) 0.293

Weight loss, n (%) 8 (4.19) 31 (2.19) 0.091

Ever eGFR < 60 mL/min/1.73 m2, n (%) (↓)* 40 (2.82) 0.019

Health behaviours

Smoking status, n (%) 0.51

Never smoked 56 (29.32) 403 (28.42)

Current smoker 93 (48.69) 581 (41.47)

Ex-smoker 42 (21.99) 427 (30.11)

Body mass index, n (%) < 0.001

Underweight (−)* 37 (2.61)

Healthy weight 57 (29.84) 616 (43.44)

Overweight 50 (26.18) 409 (28.84)

Obese 80 (41.88) 356 (25.11)

Cannabis use, n (%) (−)* 14 (0.99) 0.938

Other substance misuse, n (%) 10 (5.24) 99 (6.98) 0.367

Alcohol misuse, n (%) 10 (5.24) 82 (5.78) 0.760

Other psychiatric drug treatments

Antipsychotic previously, n (%) 104 (54.45) 766 (54.02) 0.911

Mood stabiliser previously, n (%) 72 (37.70) 432 (30.47) 0.043

SSRI previously, n (%) 50 (26.18) 419 (29.55) 0.336

TCA previously, n (%) 55 (28.80) 334 (23.55) 0.112

Other antidepressant previously, n (%) 43 (22.51) 236 (16.64) 0.044

*n < 5 individuals, (↓) lower % in group, (↑) higher % in group, (−) no evidence of difference between groups
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a specificity of 0.74 (95% CI 0.67–0.82) The Brier score
was 0.0967. This gave a predictive accuracy of 76.55%.
However, the simpler models also predicted high-risk
group membership similarly well: 3-variable KFRE ROC
area = 0.870 (95%CI 0.841–0.898), 3-variable elastic net
0.888 (95%CI 0.864–0.912) (Eq. 1). The calibration plot
suggested that the model performs well up to a probability
of 0.60 at the 95% confidence level, the calibration slope
was 1.29 and calibration-in the-large 0.41 (Fig. 5).

We also predicted CKD 3b or more severe using these
models: ROC area = 0.849 (95%CI 0.792–0.905), ROC
area = 0.865 (95%CI 0.808–0.922), ROC area = 0.858
(95%CI 0.792–0.922) using the full model, 3-variable
elastic net and 3-variable KFRE respectively (Table 4).

The decision curve analysis showed that all 3 of these
models were superior to classifying everyone as high risk
or low risk between a threshold probability of 0.10 and
0.80 and there was little difference between them
(Fig. 6).

Post hoc supplementary analysis
In 668 patients with a baseline eGFR ≥ 90 mL/min/
1.73 m2 a two-group cubic trajectory model minimised
the BIC (642.39) with 120 patients (17.96%) in the high-
risk group (Table 5, Fig. 7). CKD stage 3a or more severe
and stage 3b or more severe were more common in the
high-risk group. Individuals in the high-risk group were
again more likely to be female, be younger and have a
lower eGFR before starting lithium. They were more
likely to be current smokers. We did not observe any of
the other between group differences present in the
Aurum or Gold trajectory groups.
In this reduced dataset, our full model was better at

predicting high-risk group membership than the 3-

Table 2 Prediction of high-risk group membership

Model ROC area (95%CI) Sensitivity (95%CI) Specificity (95%CI) Accuracy %

Development (Aurum)

Full 0.868 (95%CI 0.844–0.891) 0.86 (0.78–0.94) 0.73 (0.66–0.80) 74.54

3-variable KFRE 0.828 (0.801–0.855) 0.87 (0.77–0.96) 0.64 (0.54–0.74) 66.73

3-variable elastic net 0.852 (0.827–0.856) 0.86 (0.77–0.95) 0.68 (0.58–0.78) 70.14

Validation (Gold)

Full 0.879 (0.853–0.904) 0.91 (0.84–0.97) 0.74 (0.67–0.81) 76.55

3-variable KFRE 0.870 (0.841–0.898) 0.86 (0.78–0.94) 0.75 (0.68–0.83) 76.66

3-variable elastic net 0.888 (0.864–0.912) 0.86 (0.79–0.94) 0.80 (0.73–0.87) 80.90

Fig. 2 Sensitivity vs specificity of the high-risk trajectory prediction model in Aurum
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Table 3 Characteristics of lithium prescribed patients by risk group in Gold

Feature High-risk Low-risk P value

Patient characteristics

Total, N (%) 137 (14.67) 797 (85.33)

Female, n (%) 129 (94.16) 466 (58.47) < 0.001

Age, median (IQR) 41.07 (32.68–49.95) 46. 75 (36.84–59.27) 0.001

BAME, n (%) 2 (1.46) 10 (1.25) 0.844

In a relationship, n (%) 34 (24.82) 150 (18.82) 0.103

Death during follow-up 9 (6.57) 80 (10.04) 0.202

Lithium exposure characteristics

Lithium treatment duration (years), median (IQR) 1.23 (0.37–2.66) 1.23 (0.44–3.10) 0.926

Ever lithium toxic (> 1.5 mmol/L), n (%) (↓)* 37 (1.68) 0.048

Follow-up after stopping lithium (years), median (IQR) 3.43 (0.42–7.36) 4.44 (0.81–8.31) 0.165

Kidney function characteristics

eGFR tests during follow-up, median (IQR) 11 [6–21] 14 (7–24) 0.031

Baseline eGFR (mL/min/1.73 m2), median (IQR) 66 (63–71) 83 (74–94) < 0.001

Developed CKD stage 3a or more severe (eGFR < 60mL/min/1.73 m2) 117 (85.40) 112 (14.05) < 0.001

Developed CKD stage 3b or more severe (eGFR < 45 mL/min/1.73 m2) 14 (10.22) (↓)* < 0.001

Pre-lithium mental health characteristics

Depression, n (%) 118 (86.13) 634 (79.55) 0.072

Anxiety, n (%) 396 (49.69) 74 (54.01) 0.349

Psychosis, n (%) 37 (27.01) 179 (22.46) 0.244

Stress, n (%) 25 (18.25) 138 (17.31) 0.790

Self-harm, n (%) 40 (29.20) 185 (23.21) 0.130

Disturbed sleep, n (%) 49 (35.77) 202 (25.35) 0.011

Illness duration (years), median (IQR) 7.73 (2.55–13.80) 7.65 (2.71–15.48) 0.926

Pre-lithium physical health characteristics

Hypertension, n (%) 15 (10.95) 165 (20.70) 0.008

Migraine, n (%) 24 (17.52) 79 (9.91) 0.009

Type II diabetes mellitus, n (%) 10 (7.30) 64 (8.03) 0.770

Thyroid disease

Hypothyroidism, n (%) 15 (10.95) 57 (7.15) 0.124

Hyperthyroidism, n (%) (−)* 5 (0.63) 0.353

Calcium abnormalities

Hypocalcaemia, n (%) (−)* 9 (1.13) 0.740

Hypercalcaemia, n (%) (−)* (−)* 0.678

Cholesterol abnormalities

High LDL, n (%) 20 (14.60) 164 (20.58) 0.104

Low HDL, n (%) 10 (7.30) 66 (8.28) 0.698

Asthma, n (%) 30 (21.90) 131 (16.44) 0.118

Chronic obstructive pulmonary disease, n (%) 36 (26.28) 162 (20.33) 0.115

Anaemia, n (%) 12 (8.76) 30 (3.76) 0.009

Peptic ulcer, n (%) 6 (4.38) 27 (3.39) 0.561

Coronary heart disease, n (%) (↓)* 46 (5.77) 0.035

Liver disease, n (%) (−)* 10 (1.25) 0.138

Neurological disorders, n (%) 10 (7.30) 45 (5.65) 0.448
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Table 3 Characteristics of lithium prescribed patients by risk group in Gold (Continued)

Feature High-risk Low-risk P value

Rheumatoid arthritis, n (%) (−)* 17 (2.13) 0.606

Weight loss, n (%) 5 (3.65) 25 (3.14) 0.753

Ever eGFR< 60 mL/min/1.73 m2, n (%) (↓)* 105 (13.17) < 0.001

Health behaviours

Smoking status, n (%) 0.048

Never smoked 55 (40.15) 297 (37.26)

Current smoker 65 (47.45) 329 (41.28)

Ex-smoker 17 (12.41) 171 (21.46)

Body mass index, n (%) 0.259

Underweight (−)* 9 (1.13)

Healthy weight 58 (42.34) 321 (40.28)

Overweight 34 (24.82) 257 (32.25)

Obese 42 (30.66) 210 (26.35)

Cannabis use, n (%) (−)* 13 (1.63) 0.297

Other substance misuse, n (%) (−)* 21 (2.63) 0.849

Alcohol misuse, n (%) 29 (21.17) 111 (13.93) 0.028

Other drug treatment

Antipsychotic previously, n (%) 73 (53.28) 432 (54.20) 0.842

Mood stabiliser previously, n (%) 38 (27.74) 156 (19.57) 0.030

SSRI previously, n (%) 43 (31.39) 211 (26.47) 0.233

TCA previously, n (%) 35 (25.55) 193 (24.22) 0.737

Other antidepressant previously, n (%) 79 (57.66) 391 (49.06) 0.063

*n < 5 individuals, (↓) lower % in group, (↑) higher % in group, (−) no evidence of difference between groups

Fig. 3 High-risk and low-risk eGFR trajectory in relation to stopping lithium in Gold
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variable KFRE model (ROC area = 0.725; 95%CI 0.675–
0.776 vs ROC area = 0.667; 95%CI 0.617–0.716; p value
for equality = 0.0018), but not the 3-variable elastic net
model (ROC area = 0.729; 95%CI 0.679–0.779; p value
for equality 0.5846) (Table 6, Fig. 8).

Discussion
As far as we are aware, this is the first model developed
to predict high risk of future eGFR decline in people
with bipolar disorder prescribed lithium. We used a
large representative sample of people with bipolar dis-
order initiated on lithium and followed up for up for a
median of 7.10 years (IQR 3.85–11.36). It is also the first

study to use the two CPRD datasets, covering a large,
representative sample of the UK population to develop a
prediction model and provide external validation.
Because of the rarity of kidney failure, and the varied

follow-up time and eGFR recording frequency in EHRs,
we sought to identify approximately 10% of individuals
prescribed lithium who were at highest risk of deterior-
ating kidney function, defined by the trajectory of their
serial eGFR measurements. Using group-based trajectory
analysis we identified high-risk groups independently in
the Aurum and Gold cohorts. In both cases approxi-
mately 85% of those categorised as high risk developed
CKD stage 3a or more severe compared to

Fig. 4 Sensitivity vs specificity of the high-risk trajectory prediction model in Gold

Fig. 5 Calibration plot for Gold data set (20 groups across risk spectrum)
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approximately 15% in the low-risk groups. Approxi-
mately 10% of those identified as high risk developed
CKD stage 3b or more severe, compared to < 1% in the
low-risk group. A number of features differed between
the high-risk and low-risk groups in both cohorts. Those
in the high-risk groups were more likely to be female,
younger, more likely to have a lower eGFR before start-
ing lithium, more likely to experience migraine and less
likely to have a prior record of eGFR < 60 mL/min/
1.73 m2. These CKD risk factors have been previously
identified. CKD is more common in women [25], and
this has been shown in lithium users specifically [26].
Younger women appear to be at particular risk [26].
Low baseline eGFR increases risk of CKD in the general
population [27]. Migraine is not commonly thought of
as a risk factor for CKD, but has been identified as such
in one study, especially in younger age groups [28]. Mi-
graine is highly comorbid with bipolar disorder [29] and
it may also be a proxy for medication use which could
impair kidney function. In both cohorts, there was no

association between duration of lithium treatment or
lithium toxicity (which was rare) and high-risk group
membership.
Our model, developed in CPRD Aurum to predict

whether individuals were in a high-risk group for eGFR
decline during treatment with lithium for bipolar dis-
order, had excellent discrimination in the CPRD Gold
cohort (ROC area = 0.879). However, simple models only
including sex, age and baseline eGFR performed simi-
larly well (3-variable KFRE ROC area = 0.870, 3-variable
elastic net ROC area = 0.888), all with similar levels of
accuracy (> 75%). In the external validation data set, our
model designed to predict high-risk trajectory predicted
CKD stage 3b or more severe (eGFR < 45 mL/min/
1.73 m2) with a ROC area = 0.849. Again, simple models
performed well, with the 3-variable KFRE having the
highest accuracy (78%).
When we reduced our cohort to those starting lithium

with an eGFR ≥ 90mL/min/1.73 m2 our full model and
3-variable elastic net model performed better than the

Table 4 Prediction of CKD stage 3b or more severe

MODEL ROC area (95%CI) Sensitivity (95%CI) Specificity (95%CI) Accuracy, %

Development (Aurum)

Full 0.700 (0.617–0.783) 0.71 (0.52–0.90) 0.66 (0.47–0.85) 66.12

3-variable KFRE 0.627 (0.543–0.710) 0.68 (0.51–0.86) 0.61 (0.48–0.74) 61.18

3-variable elastic net 0.678 (0.598–0.758) 0.58 (0.37–0.78) 0.73 (0.48–0.98) 72.64

Validation (Gold)

Full 0.849 (0.792–0.905) 1.00 (0.96–1.00) 0.67 (0.57–0.76) 67.49

3-variable KFRE 0.858 (0.792–0.922) 0.86 (0.70–1.00) 0.78 (0.63–0.93) 78.12

3-variable elastic net 0.865 (0.808–0.921) 1.00 (0.92–1.00) 0.66 (0.57–0.75) 66.51

Fig. 6 Decision curve analysis for Gold data set
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Table 5 Characteristics of lithium prescribed patients by risk group in patients with baseline eGFR ≥ 90 mL/min/1.73 m2

Feature High-risk Low-risk P value

Patient characteristics

Total, N (%) 120 (17.96) 548 (82.04)

Female, n (%) 65 (54.17) 158 (28.83) < 0.001

Age, median (IQR) 45.48 (34.99–55.58) 52.18 (42.03–65.93) < 0.001

BAME, n (%) *(−) 15 (2.74) 0.500

In a relationship, n (%) 23 (19.17) 82 (14.96) 0.252

Death during follow-up 13 (10.83) 94 (17.15) 0.087

Lithium exposure characteristics

Lithium treatment duration (years), median (IQR) 1.23 (0.54–3.07) 1.61 (0.61–3.84) 0.087

Ever lithium toxic (> 1.5 mmol/L), n (%) 7 (5.83) 36 (6.57) 0.867

Follow-up after stopping lithium (years), median (IQR) 8.01 (2.68–12.08) 4.77 (0.97–9.77) 0.001

Kidney function characteristics

Baseline eGFR (mL/min/1.73 m2), median (IQR) 95 (92–100) 100 (94–108) < 0.001

Developed CKD stage 3a or more severe (eGFR< 60 mL/min/1.73 m2) 34 (28.33) (↓)* < 0.001

Developed CKD stage 3b or more severe (eGFR < 45 mL/min/1.73 m2) (↑)* (↓)* < 0.001

Pre-lithium mental health characteristics

Depression, n (%) 97 (80.83) 423 (77.19) 0.384

Anxiety, n (%) 34 (28.33) 188 (34.31) 0.208

Psychosis, n (%) 26 (21.67) 133 (24.27) 0.544

Stress, n (%) 14 (11.67) 71 (12.96) 0.701

Self-harm, n (%) 24 (20.00) 84 (15.33) 0.208

Disturbed sleep, n (%) 24 (20.00) 113 (20.62) 0.879

Illness duration (years), median (IQR) 7.43 (1.81–12.87) 7.26 (2.53–17.79) 0.687

Pre-lithium physical health characteristics

Hypertension, n (%) 20 (16.67) 140 (25.55) 0.039

Migraine, n (%) 9 (7.50) 35 (6.39) 0.656

Type II diabetes mellitus, n (%) 7 (5.83) 58 (10.58) 0.112

Thyroid disease

Hypothyroidism, n (%) (−)* 24 (4.38) 0.604

Hyperthyroidism, n (%) (−)* (−)* 0.507

Calcium abnormalities

hypocalcaemia, n (%) (−)* (−)* 0.934

hypercalcaemia, n (%) (−)* 6 (1.09) 0.799

Cholesterol abnormalities

High LDL, n (%) 29 (24.17) 97 (17.70) 0.101

Low HDL, n (%) 12 (10.00) 46 (8.39) 0.572

Asthma, n (%) 25 (20.83) 75 (13.69) 0.047

Chronic obstructive pulmonary disease, n (%) 29 (24.17) 100 (18.25) 0.137

Anaemia, n (%) (−)* 20 (3.65) 0.532

Peptic ulcer, n (%) (−)* 16 (2.92) 0.189

Coronary heart disease, n (%) 5 (4.17) 49 (8.94) 0.082

Liver disease, n (%) (−)* 8 (1.46) 0.590

Neurological disorders, n (%) 6 (5.00) 41 (7.48) 0.4336

Rheumatoid arthritis, n (%) 5 (4.17) 11 (2.01) 0.161
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KFRE. However, our sample was too small to complete
external validation of these new models.
Given these findings, simple risk calculators should be

used in clinical practice at the decision to commence
lithium and when eGFR is regularly measured. This

could be the KFRE or our 3-varaible elastic net model
(Eq. 1), which performs better than the 3-variable KFRE
when eGFR ≥ 90mL/min/1.73 m2. We did not find pre-
dictors of eGFR decline that were specific to lithium-
treated patients.

Table 5 Characteristics of lithium prescribed patients by risk group in patients with baseline eGFR ≥ 90 mL/min/1.73 m2 (Continued)

Feature High-risk Low-risk P value

Weight loss, n (%) (−)* 11 (2.01) 0.381

Ever eGFR< 60 mL/min/1.73 m2, n (%) 16 (13.33) 105 (19.16) 0.133

Health behaviours

Smoking status, n (%) 0.001

Never smoked 26 (21.67) 197 (35.95)

Current smoker 62 (51.67) 193 (35.22)

Ex-smoker 32 (26.67) 158 (28.83)

Body mass index, n (%) 0.534

Underweight (−)* 9 (1.28)

Healthy weight 47 (39.17) 227 (41.42)

Overweight 36 (30.00) 187 (34.12)

Obese 35 (29.17) 127 (23.18)

Cannabis use, n (%) (−)* 6 (1.09) 0.799

Other substance misuse, n (%) 7 (5.83) 19 (3.47) 0.225

Alcohol misuse, n (%) 8 (6.67) 47 (8.58) 0.491

Other drug treatments

Antipsychotic previously, n (%) 65 (54.17) 269 (49.09) 0.314

Mood stabiliser previously, n (%) 34 (28.33) 117 (21.35) 0.098

SSRI previously, n (%) 31 (25.83) 126 (22.99) 0.506

TCA previously, n (%) 19 (15.83) 120 (21.90) 0.138

Other antidepressant previously, n (%) 16 (13.33) 60 (10.95) 0.456

*n < 5 individuals, (↓) lower % in group, (↑) higher % in group, (−) no evidence of difference between groups

Fig. 7 High-risk and low-risk eGFR trajectory in relation to stopping lithium in patients with baseline eGFR ≥ 90mL/min/1.73 m2
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Strengths and limitations
Our large, population-based longitudinal sample avoided
selection bias and is generalisable and representative.
Our group-based trajectory approach avoided issues with
differential follow-up time and potential surveillance
bias. Our use of elastic net allowed us to build a parsi-
monious prediction model from a large number of po-
tential features.
The study has a number of limitations. Instead of

using precise eGFR values to define outcome, we split
individuals into those with a high-risk and low-risk tra-
jectory. We forced the group-based trajectory model to
identify > 10% of individuals prescribed lithium who
were at the highest risk of eGFR decline. A more useful
model clinically would be to predict true kidney failure
requiring intervention; however, this was too rare in our
cohort (2% developed CKD stage 3b or more severe),
suggesting it is uncommon in modern clinical practice.
We may also have been limited by the relatively short
duration of lithium prescribing for many individuals in-
cluded in the study. We included a large number of

potential predictors. However, we may not have included
all important features in our elastic net model. Some
variables of interest, such as proteinuria, were poorly re-
corded and biased by diabetes diagnosis. We did not in-
clude the broad range of drugs for physical health
problems that may influence eGFR, but we did include
many physical health conditions for which these drugs
would be indicated.
It is possible that we failed to identify people previ-

ously exposed to lithium, but we attempted to limit this
by ensuring patients had at least a year of follow-up at
the same primary care practice before their first identi-
fied lithium prescription. In most cases this would also
include the uploading of historical records to the EHR.
Patients could also be misclassified in terms of different
features included in the model. However, our intention
was to build a model based on what is already known
about the patient from the EHR. Misclassification may
be more likely for some features (for example, in a rela-
tionship) than others (for example, chronic obstructive
pulmonary disease).

Table 6 Prediction in individuals with baseline eGFR ≥ 90 mL/min/1.73 m2

Model ROC area (95%CI) Sensitivity (95%CI) Specificity (95%CI) Accuracy, %

High-risk group

Full 0.725 (0.675–0.776) 0.62 (0.47–0.76) 0.73 (0.61–0.86) 70.96

3-variable KFRE 0.667 (0.617–0.716) 0.70 (0.48–0.92) 0.57 (0.32–0.81) 59.33

3-variable elastic net 0.729 (0.679–0.779) 0.64 (0.48–0.80) 0.72 (0.56–0.87) 70.66

CKD 3a

Full 0.757 (0.667–0.846) 0.59 (0.38–0.81) 0.80 (0.63–0.97) 78.89

3-variable KFRE 0.610 (0.521–0.698) 0.54 (0.24–0.84) 0.68 (0.29–1.07) 67.22

3-variable elastic net 0.748 (0.657–0.839) 0.56 (0.64–0.75) 0.83 (0.64–1.00) 81.59

Fig. 8 Comparison of ROC areas between full model, 3-variable model and 3-variable KFRE model
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We initially planned to develop a model for individuals
with essentially normal kidney function (eGFR ≥ 60mL/
min/1.73 m2). Although the discrimination and calibra-
tion of the model was good, a simple model based on
baseline eGFR, age and sex performed just as well.

Conclusion
We developed a model for predicting, at lithium initi-
ation, individuals at high risk of a poor trajectory of kid-
ney function using serial eGFR measurements. We
externally validated this model, which had excellent dis-
crimination and good calibration. CKD stage 3b or more
severe occurred in 2% of the population across the two
cohorts. Whilst this is worrying, it means that the
vast majority of patients treated with lithium do not
develop kidney failure, and those at risk can be iden-
tified prior to initiating lithium using their age, sex
and baseline eGFR.
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