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Abstract 47 

 48 

The fields of viral ecology and evolution are rapidly expanding, motivated in part by 49 

concerns around emerging zoonoses. One consequence is the proliferation of host-virus 50 

association data, which underpin viral macroecology and zoonotic risk prediction but 51 

remain fragmented across numerous data portals. Here, we propose that synthesis of 52 

host-virus data is a central challenge to characterize the global virome and develop 53 

foundational theory in viral ecology. To illustrate this, we build an open database of 54 

mammal host-virus associations that reconciles four published datasets. We show that 55 

this offers a substantially richer view of the known virome than any individual source 56 

dataset, but also that databases like these risk becoming out-of-date as viral discovery 57 

accelerates. We argue for a shift in practice towards the development, incremental 58 

updating and use of synthetic datasets in viral ecology, to improve replicability and 59 

facilitate work to predict the structure and dynamics of the global virome. 60 

 61 

  62 
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Introduction 63 

 64 

The emergence of SARS-CoV-2 was a harsh reminder that uncharacterized wildlife 65 

viruses can suddenly become globally relevant. Efforts to identify wildlife viruses with the 66 

potential to infect humans, and to predict spillover and emergence trajectories, are 67 

becoming more popular than ever (including with major scientific funders). However, the 68 

value of these efforts is limited by an incomplete understanding of the global virome 69 

(Wille et al. 2021). Significant knowledge gaps exist regarding the mechanisms of viral 70 

transmission and replication, host-pathogen associations and interactions, spillover 71 

pathways, and several other dimensions of viral emergence. Further, although billions of 72 

dollars have been invested in these scientific challenges over the last decade alone, much 73 

of the data relevant to these problems remains unsynthesized. Fragmented data access 74 

and a lack of standardization preclude an easy reconciliation process across data 75 

sources, making the whole less than the sum of its parts, and hindering viral research 76 

(Wyborn et al. 2018). 77 

 78 

Here, we propose that data synthesis is a seminal challenge for translational work in viral 79 

ecology. This requires researchers to go beyond the usual steps of data collection and 80 

publication, and to develop a community of practice that prioritizes data synthesis and 81 

reconciles semi-reproduced work across different teams and disciplines. As an 82 

illustrative example, we describe the analytical hurdles of working with host-virus 83 

association data, a format that characterizes the global virome as a bipartite network of 84 

hosts and viruses, with pairs connected by observed potential for infection. Recent 85 

studies highlight the central role for these data in efforts to understand viral 86 

macroecology and evolution (Carlson et al. 2019, Dallas et al. 2019, Albery et al. 2020), to 87 

predict zoonotic emergence risk (Han et al. 2015, 2016, Olival et al. 2017, Wardeh et al. 88 

2020), and to anticipate the impacts of global environmental change on infectious 89 

disease (Carlson et al. 2020, Gibb et al. 2020, Johnson et al. 2020). Several bespoke 90 

datasets have been compiled to address these questions, each of which differs in 91 

sources and scope. Scientific knowledge of the global host-virus network is continually 92 

https://paperpile.com/c/cFRW1r/EiEq
https://paperpile.com/c/cFRW1r/nHF0
https://paperpile.com/c/cFRW1r/Lq5O+AduC+BR6R
https://paperpile.com/c/cFRW1r/lksq+Y1kJ+IVLW+CgIl
https://paperpile.com/c/cFRW1r/lksq+Y1kJ+IVLW+CgIl
https://paperpile.com/c/cFRW1r/4S1U+HSm7+vJcE
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evolving as a consequence of novel discoveries, changing research priorities and 93 

taxonomic revision, and as interest in this field has grown, so has the fragmentation of 94 

total knowledge across these datasets. To illustrate this problem (and a simple solution), 95 

we compare and reconcile four major host-virus association datasets, each of which is 96 

different enough that we anticipate the results of individual studies could be strongly 97 

shaped by choice of dataset.  98 

 99 

Four snapshots of one host-virus network  100 

 101 

Although host-pathogen association data exist in dozens of sources and repositories, 102 

there are four particularly large and widely used published datasets,  which each capture 103 

between 0.3% and 1.5% of the estimated 50,000 species of mammal viruses (Carlson et 104 

al. 2019). Individually, these datasets each form the basis for numerous studies in host-105 

pathogen ecology and macroecology, and differences between them – especially with 106 

regards to taxonomic scope, available metadata, and frequency of data updates – make 107 

them preferable for different purposes (Table 1). However, these differences may also 108 

complicate intercomparison and synthetic inference.  109 

 110 

GMPD 2.0: The Global Mammal Parasite Database (Nunn and Altizer 2005), started in 111 

1999 and now in its second public version (Stephens et al. 2017), emerged from efforts 112 

to compile mammal-parasite association data from published literature sources. 113 

Construction of the GMPD used a variety of similar strategies that combined host Latin 114 

names with a string of parasite-related terms to search online literature databases. 115 

Pertinent literature was then manually identified and relevant association and metadata 116 

were compiled. The initial database was focused on primate hosts (Nunn and Altizer 117 

2005), and expanded to include separate sections for ungulates (Ezenwa et al. 2006) and 118 

carnivores (Lindenfors et al. 2007). In 2017, GMPD 2.0 was released, which merged these 119 

three previously independent databases (Stephens et al. 2017). The updated dataset 120 

encompasses 190 primate, 116 ungulate, and 158 carnivore species, and records their 121 

interactions with 2,412 unique “parasite” species, including 189 viruses, as well as 122 

https://paperpile.com/c/cFRW1r/BR6R
https://paperpile.com/c/cFRW1r/BR6R
https://paperpile.com/c/cFRW1r/TQUW
https://paperpile.com/c/cFRW1r/4SwD
https://paperpile.com/c/cFRW1r/TQUW
https://paperpile.com/c/cFRW1r/TQUW
https://paperpile.com/c/cFRW1r/rfjf
https://paperpile.com/c/cFRW1r/wM7i
https://paperpile.com/c/cFRW1r/4SwD
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bacteria, protozoa, helminths, arthropods, and fungi. Notable improvements GMPD 2.0 123 

are the construction of a unified parasite taxonomy that bridges occurrence records 124 

across host taxa, the expansion of host-parasite association data along with 125 

georeferencing, and enhanced parasite trait data (e.g., transmission mode). The original 126 

data are available as a web resource (www.mammalparasites.org), and the data from 127 

GMPD 2.0 can also be downloaded as static files from a data paper (Stephens et al. 128 

2017). In addition, one subsection of the GMPD, named the “Global Primate Parasite 129 

Database,” has been independently maintained and regularly updated by Charles Nunn 130 

(data available at https://parasites.nunn-lab.org/). Consequently, the primate subsection 131 

of GMPD 2.0 includes papers published up to 2015, while the ungulate and carnivore 132 

subsections stop after 2010 (Stephens et al. 2017). 133 

 134 

EID2: The ENHanCEd Infectious Diseases Database (EID2), curated by the University of 135 

Liverpool, may be the largest dynamic dataset of any symbiotic interactions (Wardeh et 136 

al. 2015). EID2 is regularly compiled from automated scrapes of two web sources: 137 

publication titles and abstracts indexed in the PubMed database and the NCBI Nucleotide 138 

Sequence database (along with its associated taxonomic metadata). The EID2 data is 139 

structured using the concepts of “carrier” and “cargo” rather than host and pathogen, as 140 

it includes a number of ecological interactions beyond the scope of normal host-141 

pathogen interactions, including potentially unresolved mutualist or commensal 142 

associations. Interactions are stored as a geographic edgelist, where each carrier and 143 

cargo can also have locality information; additional metadata include the number of 144 

sequences in GenBank and related publications. EID2’s dynamic web interface (currently 145 

available through download on a limited query-by-query basis which researchers often 146 

manually bind or by personal correspondence with data curators) to date contains 147 

information encompassing 1,560 mammal “carrier” species and 3,986 microparasite or 148 

macroparasite “cargo” species, of which 1,446 are viruses (Wardeh et al. 2020). However, 149 

many researchers continue to use the static, open release of EID2 from a 2015 data paper 150 

(Wardeh et al. 2015), which we focus on here for comparative purposes as a stable 151 

https://paperpile.com/c/cFRW1r/4SwD
https://paperpile.com/c/cFRW1r/4SwD
https://parasites.nunn-lab.org/
https://paperpile.com/c/cFRW1r/4SwD
https://paperpile.com/c/cFRW1r/ftCG
https://paperpile.com/c/cFRW1r/ftCG
https://paperpile.com/c/cFRW1r/lksq
https://paperpile.com/c/cFRW1r/ftCG
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version of the database available to the community of practice. The EID2 data were 152 

originally validated for completeness against GMPD 1.0. 153 

 154 

HP3: The Host-Parasite Phylogeny Project dataset (HP3) was developed by EcoHealth 155 

Alliance over the better part of a decade. Published along with a landmark analysis of the 156 

correlates of zoonotic potential (Olival et al. 2017), the HP3 dataset consists of 2,805 157 

associations between 754 mammal hosts and 586 virus species. These were compiled 158 

from literature published between 1940 and 2015, based on targeted searches of online 159 

reference databases. Complementary with the search strategy used for the GMPD, rather 160 

than starting with a list of host names, HP3 started with names of known mammal viruses 161 

listed in the International Committee on Taxonomy of Viruses (ICTV) database. These 162 

virus names along with their synonyms were then used as search terms to identify 163 

literature containing host-virus association data. Data collection and cleaning for HP3 164 

began in 2010 and the database has been static since 2017; it can be obtained as a flat 165 

file in the published study’s data repository (Olival et al. 2017). HP3 includes a host-virus 166 

edgelist (see Glossary), separate files for host and virus taxonomy, and separate files for 167 

host and virus traits. Host-virus association records are provided with a note about 168 

method of identification (PCR, serological methods, etc.), which may be useful for 169 

researchers interested in the different levels of confidence ascribed to particular 170 

associations (Becker et al. 2020). HP3’s internal taxonomy is also harmonized with two 171 

mammal trees (Bininda-Emonds et al. 2007, Fritz et al. 2009), facilitating analyses that 172 

seek to account for host phylogenetic structure while testing hypotheses about viral 173 

ecology and evolution (e.g. Becker et al. 2020, Farrell et al. 2020, Olival et al. 2017, 174 

Washburne et al. 2018, Guth et al. 2019, Park 2019, Albery et al. 2020, Mollentze and 175 

Streicker 2020). HP3 was also validated against GMPD 1.0. 176 

 177 

Shaw: Recent work by Shaw et al. built a host-pathogen edgelist by combining a 178 

systematic literature search with cross-validation from several of the above-mentioned 179 

datasets (Shaw et al. 2020). Similar to the construction of HP3, the authors started with 180 

lists of known pathogenic bacteria and viruses found in humans and animals. They then 181 

https://paperpile.com/c/cFRW1r/CgIl
https://paperpile.com/c/cFRW1r/rrTo
https://paperpile.com/c/cFRW1r/fgZx+eLor
https://paperpile.com/c/cFRW1r/Lq5O+HQcT+QJud+8eFn+CgIl+C0D8+R19a+JhLf
https://paperpile.com/c/cFRW1r/Lq5O+HQcT+QJud+8eFn+CgIl+C0D8+R19a+JhLf
https://paperpile.com/c/cFRW1r/Lq5O+HQcT+QJud+8eFn+CgIl+C0D8+R19a+JhLf
https://paperpile.com/c/cFRW1r/0jwN
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conducted Google Scholar searches pairing pathogen names with disease-related 182 

keywords, followed by manual review of search results. For well-studied pathogens they 183 

limited their manual review to a subset of the top 200 most “relevant” publications as 184 

determined by Google. From the resulting literature searches, the authors compiled 185 

12,212 interactions between 2,656 vertebrate host species (including, but not limited to, 186 

mammals) and 2,595 viruses and bacteria. GMPD2, EID2, and the Global Infectious 187 

Diseases and Epidemiology Network (GIDEON) Guide to Medically Important Bacteria 188 

(Gideon Informatics, Inc. and Berger 2020) were used to validate the host-pathogen 189 

associations. The dataset is available as a static flat file through figshare and the project 190 

GitHub repository (Shaw et al. 2020). Host-pathogen associations are provided alongside 191 

pathogen metadata (e.g., genome size, bacterial traits, transmission mode, zoonotic 192 

status) and diagnostic method (i.e., PCR, pathogen isolation, pathology). The dataset also 193 

includes a comprehensive host phylogeny, developed specifically for the study using nine 194 

mitochondrial genes for downstream analyses of host phylogenetic similarity and host 195 

breadth. 196 

 197 

A reconciled mammalian virome dataset 198 

 199 

Some of these datasets were validated against each other during production and others 200 

have been used for cross-validation in analytical work (Albery et al. 2020), and certain 201 

studies have generated a study-specific ad hoc reconciled dataset (Farrell et al. 2020, 202 

Gibb et al. 2020). However, no work has been published with the primary aim of 203 

reconciling them as correctly, comprehensively, and reproducibly as possible. More 204 

recently developed datasets like Shaw can inherently draw on a greater cumulative body 205 

of scientific work. This could mean they include most of the data captured by previous 206 

efforts, yet we found there are substantial differences among all four datasets. In 207 

isolation, we expect that these differences could impact ecological and evolutionary 208 

inference in ways that are difficult to quantify, with special relevance to significance 209 

thresholds in hypothesis-testing research (i.e., different datasets may confer different 210 

power to statistical tests). We expected that separate host-virus data sources could be 211 

https://paperpile.com/c/cFRW1r/b2sP
https://paperpile.com/c/cFRW1r/Lq5O
https://paperpile.com/c/cFRW1r/QJud+HSm7
https://paperpile.com/c/cFRW1r/QJud+HSm7
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standardized into one shared format, allowing them to cover a greater percentage of the 212 

global virome, a greater diversity of host species, and obviating the need for researchers 213 

to either choose between individual datasets or implement ad hoc solutions that merge 214 

them prior to analysis. 215 

 216 

To illustrate the potential for comprehensive data reconciliation, we harmonized the four 217 

major datasets described here, creating a new synthetic ‘CLOVER’ dataset out of the four 218 

“leaves” (which we have made available with this study). Doing this required harmonizing 219 

and standardizing both host and virus taxonomy, as well as metadata describing the 220 

strength of evidence for interactions. This process involved several steps applied to each 221 

source dataset. First, we manually harmonized virus names across all four datasets to 222 

revolve subtle formatting differences. Second, we applied a standardized scheme of virus 223 

detection methods using information provided in each source dataset (described further 224 

below). Finally, using the R package ‘taxize’ (Chamberlain and Szöcs 2013), we accessed 225 

the most current binomial for each host species, and applied a standardised host and 226 

virus taxonomy (species, genus, family, order and class) using the same taxonomic 227 

hierarchy (Schoch et al. 2020) as the National Center for Biotechnology Information’s 228 

Taxonomy database (ncbi.nlm.nih.gov). Host (n=34) and virus (n=24) species that did not 229 

return an exact automated match (i.e. fuzzy matches) were manually checked and 230 

resolved where possible against the NCBI Taxonomy database (or against the IUCN Red 231 

List database [https://iucnredlist.org/] for 14 mammal species without a match to NCBI). 232 

All virus names are given at the species level even if finer classifications exist, and viruses 233 

that could not be resolved to species are resolved to the next-lowest taxonomic level 234 

(genus or family) (although all original reported names are retained and accessible from 235 

the column “VirusOriginal”). Host and virus names, metadata, NCBI unique taxonomic 236 

identifiers, virus ICTV ratification status and primary data sources as originally described 237 

were included in the combined dataset, to ensure traceability. 238 

 239 

With all four datasets taxonomically consistent, we were able to show that each only 240 

covered a portion of the known global mammalian virome, even for the most studied 241 

https://paperpile.com/c/cFRW1r/X1V8
https://paperpile.com/c/cFRW1r/nl35
https://iucnredlist.org/


9 
 

hosts and viruses (Figure 1). Our taxonomic harmonization helped reconcile some 242 

discrepancies, increasing overlap among the datasets (Figure 2), but notable differences 243 

remained. This could confound inference: for example, using a simple linear model, we 244 

found that data provenance (see Glossary) explained 8.8% of variation in host species’ 245 

viral diversity (but only 4.7% after harmonization). When viral ecology studies report 246 

different findings based on slight variation around a significance threshold, readers 247 

should therefore consider whether subtle differences in the underlying datasets might 248 

account for such variation.  249 

 250 

Integrated datasets move us a step closer to resolving this uncertainty. The CLOVER 251 

dataset covers 1,085 mammal host species and 831 associated viruses. This only 252 

represents 16.9% of extant mammals (Burgin et al. 2018) and at most 2.1% of their 253 

viruses (Carlson et al. 2019) - a marginal improvement over the 957 mammal hosts 254 

(14.9%) and 733 viruses (1.8%) in the reconciled Shaw sub-dataset, but an improvement 255 

nonetheless. The biggest functional gain is not in the breadth of the reconciled data, but 256 

in its depth: the Shaw database records 4,209 interactions among these host and virus 257 

species, while CLOVER captures 5,477. Given that previous studies have estimated that 258 

20-40% of host-parasite links are unknown (in GMPD2 (Dallas et al. 2017)), this 30% 259 

improvement is notable and shows the value of data synthesis: both building out and 260 

filling in synthetic datasets will significantly improve the performance of statistical 261 

models, which are usually heavily confounded by matrix sparsity (Becker et al. 2020, 262 

Dallas et al. 2017).  263 

 264 

In addition, harmonization of metadata on virus detection methods across datasets 265 

enables a greater scrutiny of the strength of evidence in support of each host-virus 266 

association. We applied a simplified detection method classification scheme (i.e. either 267 

serology, PCR/sequencing, isolation/observation, or method unknown) based on 268 

descriptions in the source databases or,  where these are not provided, adopted the most 269 

conservative definition given the data source in question (i.e., EID2 entries derived from 270 

NCBI Nucleotide are classified under PCR/sequencing, though they might also qualify for 271 

https://paperpile.com/c/cFRW1r/1Lxp
https://paperpile.com/c/cFRW1r/BR6R
https://paperpile.com/c/cFRW1r/z9kg
https://paperpile.com/c/cFRW1r/HQcT+z9kg
https://paperpile.com/c/cFRW1r/HQcT+z9kg
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the next strongest level of isolation/observation, whereas entries derived from PubMed 272 

are classified under method unknown). Of the 5,477 unique host-virus pairs in CLOVER, a 273 

total of 2,160 (39%) have been demonstrated using either viral isolation or direct 274 

observation and 1,871 (34%) via PCR or sequencing-based methods (with some overlap, 275 

as some associations have been reported with both of the above methods). Notably, a 276 

substantial proportion (2,256; 41%) are based solely on serological evidence which, 277 

although an indicator of past exposure, does not reflect host competence (i.e. 278 

effectiveness at transmitting a pathogen; Gilbert et al. 2013, Lachish and Murray 2018, 279 

Becker et al. 2020). Such harmonized metadata facilitate investigation of inferential 280 

stability using various types of evidence, as well as enabling a best practice of subsetting 281 

data for a particular research purpose. For example, serological assays are a much 282 

weaker form of evidence if the aim of a study is zoonotic reservoir host prediction, 283 

whereas virus isolation data open new avenues for testing hypotheses about reservoir 284 

competence (Becker et al. 2020).  285 

 286 

Data synthesis inherently relies on a scientific community that generates new, often 287 

conflicting, data. The generation of truly novel data, or finding ways to resolve existing 288 

observations that are in conflict, are two equally viable paths to scientific knowledge 289 

production. However, in the current funding landscape, researchers may have a 290 

significant incentive to position themselves as creating an entirely “novel” dataset from 291 

scratch, even if it partially replicates available data sources, or to focus their limited 292 

resources on datasets that improve the depth of knowledge within a narrow scope (e.g., 293 

a focus on specific taxonomic groups). But when testing microbiological or eco-294 

evolutionary hypotheses, rather than simply using the newest published dataset as a 295 

benchmark for which one is “most up-to-date,” we suggest a necessary shift in scientific 296 

cultural norms towards using synthetic, reconciled data as an analytical best practice. As 297 

an example, two studies have already used CLOVER to advance the science of viral 298 

ecology: one showed that the apparently higher diversity of zoonotic pathogens in urban-299 

adapted mammals is likely a consequence of sampling bias (Albery et al. 2021), while 300 

another showed that a two-step process of network imputation and graph embedding 301 

https://paperpile.com/c/cFRW1r/rrTo+aYfm+RmJ8
https://paperpile.com/c/cFRW1r/rrTo+aYfm+RmJ8
https://paperpile.com/c/cFRW1r/rrTo+aYfm+RmJ8
https://paperpile.com/c/cFRW1r/rrTo
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can be used to substantially improve a model that identifies zoonotic viruses based on 302 

their genome composition (Poisot et al. 2021). 303 

 304 

To make this kind of work possible, at least a handful of researchers will need to continue 305 

the task of stepwise integration, using datasets that synthesize existing knowledge 306 

across teams, institutions, and funding programs to fill in critical data with even more 307 

detail. The required tasks (e.g., identifying relevant source data, cleaning taxonomic 308 

information, harmonizing metadata on diagnostic information or spatiotemporal 309 

structure) can be time-consuming but are relatively straightforward to conduct, and can 310 

increasingly be automated thanks to the rapid growth of new tools for reproducible 311 

research (Boettiger et al. 2015, Lowndes et al. 2017, Colella et al. 2020). There is a clear 312 

need, and no obvious technical barrier, to invest more effort in data harmonization: 313 

engaging in this process as a form of open science will accelerate progress for the entire 314 

research community. 315 

 316 

Relevance to future efforts  317 

 318 

Here, we showed that a simple data synthesis effort can create a dramatically more 319 

comprehensive dataset of mammal-virus associations. However, this is a temporary 320 

solution and one that is becoming less sustainable given global investments aimed at 321 

accelerating the rates of viral discovery in wildlife (Wille et al. 2021). Even if similar 322 

datasets continue to proliferate, or newer iterations of existing datasets are periodically 323 

released, static datasets will quickly become out-of-date, and their relation to the most 324 

recent empirical knowledge will be left unclear. This is already a significant issue with the 325 

CLOVER dataset, which becomes much sparser after 2010, both in terms of the overall 326 

number of reported host-virus associations, and the reporting of novel (i.e. previously 327 

undetected) associations (Figure 3a-b). This sparseness is most likely due to time lags 328 

between host-virus sampling in the field, the reporting or publication of associations, and 329 

their eventual inclusion in one of the component datasets, and suggests that CLOVER 330 

may now be missing up to a decade’s worth of complete host-virus data. This gap is 331 

https://paperpile.com/c/cFRW1r/gj2D+THnG+hsAx
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concerning, given that the last decade has seen unprecedented and exponential growth 332 

in viral discovery and research effort in wildlife (Figure 3c).  333 

 334 

In the near term, microbiologists and data scientists may therefore need to approach the 335 

task of data reconciliation with a much broader scope, and develop a more sustainable 336 

data platform – one that is dynamic, and minimizes the time between scientific 337 

discoveries and their documentation in an aggregate data source. The reconciliation 338 

process we describe here will need to evolve in order to power these kinds of databases; 339 

to integrate data sources that update every day (e.g., NCBI’s GenBank database or the 340 

Global Biotic Interactions database), the taxonomic reconciliation process cannot rely on 341 

manual curation steps like those undertaken to generate CLOVER. The development of 342 

automated taxonomic pipelines is not an unfamiliar challenge in ecological data 343 

synthesis, but it poses a particular problem with respect to viral taxonomy, which is in a 344 

constant state of flux. Often, a substantial lag between virus discovery and official 345 

ratification by the International Committee on the Taxonomy of Viruses (ICTV) 346 

exacerbates the gulf between scientific knowledge and available data. Furthermore, the 347 

global virome is not simply one static, incompletely characterized entity; viruses evolve 348 

more rapidly than most targets of biodiversity databases, and the continual emergence 349 

of new lineages through reassortment and recombination unfortunately implies that 350 

“host-virus associations” are not a static property that can be captured through 351 

snapshots of the system (Shi et al. 2018).  352 

 353 

Given these problems, databases might even be forced in the long term to move away 354 

from the familiar format of species concepts and towards data structures based on 355 

operational taxonomic units (OTUs). While an OTU-based host-virus network would be 356 

better tailored to the underlying virology, it will require the incorporation of genetic 357 

sequence data, which comes with additional logistical challenges in terms of both data 358 

curation and the logistics and governance of data sharing. In the coming decade, these 359 

kinds of radical solutions may be unavoidable.  360 

 361 
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 Steps towards an atlas of the global virome 362 

 363 

Scaling up the aggregation of host-virus association data will not be easy, but is not an 364 

insurmountable endeavour. We suggest working backwards from the intended end 365 

product: the goals outlined here are best served by a central system (with an online 366 

access point to the consumable data), spanning the information available from multiple 367 

data sources (which demands backend engines drawing from existing databases, while 368 

tracking data provenance and ensuring proper attribution). Further, the most valuable 369 

data resource would be easily updatable by practitioners (which demands a portal for 370 

manual user input or an Integrated Publishing Toolkit to work from flat files). For users, 371 

these data should be accessible in a programmatic way (through a web API allowing for 372 

bulk download and/or other interfaces like an R package), encourage reproducibility 373 

(through versioning of the entire database, or of a specific user query), and offer 374 

predictable formats (through a data specification standard devised by a multidisciplinary 375 

group).  376 

 377 

Fortunately, the field of ecoinformatics has the capacity to help inform this design and 378 

development process. Massive bioinformatic data portals like the Global Biodiversity 379 

Informatics Facility (gbif.org), the Encyclopedia of Life (eol.org), and the Ocean 380 

Biodiversity Information System (obis.org) all offer most of the functionalities we outline 381 

here, though they are aimed at slightly different forms of biodiversity data. More recent 382 

contributions dedicated to ecological network data include Global Biotic Interactions 383 

(GLOBI; Poelen et al. 2014), helminthR (Dallas 2016), and mangal (Poisot et al. 2016), all 384 

of which reconcile their taxonomy with other databases through the use of unique taxon 385 

keys. In short, researchers interested in the global virome need not divert their attention, 386 

resources, and effort away from the pressing tasks related to monitoring viral pathogens. 387 

Rather, they can leverage existing products, expertise, and capacity in neighbouring fields 388 

to bolster their ability to do so. Given the eagerness ecologists have shown to participate 389 

in SARS-CoV-2 research, we anticipate that our field may be especially well-poised to 390 

jump into this task post-pandemic. We aim, in our current efforts, to lay that groundwork: 391 

https://paperpile.com/c/cFRW1r/7QVu
https://paperpile.com/c/cFRW1r/NhEr
https://paperpile.com/c/cFRW1r/9LMs
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the CLOVER database is the first step towards a project called The Virome in One Network 392 

(VIRION), a prototype of the next-generation database described here. 393 

 394 

An atlas of the global virome would have inherent value for the entire scientific 395 

community. When the format of a dataset is well established, it allows for the 396 

development of tools that mine the data in real-time. For example, the field of biodiversity 397 

studies has adopted the concept of Essential Biodiversity Variables, which can be 398 

updated when the underlying data change (Pereira et al. 2013, Fernández et al. 2019, Jetz 399 

et al. 2019). Having the ability to revisit predictions about the host-virus network could 400 

improve models that assess zoonotic potential of wildlife viruses (Farrell et al. 2020, 401 

Mollentze et al. 2020), generate priority targets for wildlife reservoir sampling (Becker et 402 

al. 2020, Babayan et al. 2018, Plowright et al. 2019), and help benchmark model 403 

performance related to these tasks. Beyond training and validation, link prediction 404 

models built on these reconciled databases may be used to target future literature 405 

searches, shifting from systematic literature searches to a model-based approach to 406 

database updating. Increased collaboration between data collectors, data managers, and 407 

data scientists that leads to better data standardization and reconciliation is the only way 408 

to productively synthesize our knowledge of the global virome. 409 

 410 

Data and code availability  411 

 412 

The four raw datasets and harmonized CLOVER dataset can be obtained from the 413 

archived link: https://zenodo.org/record/4945274. Code used to generate the analyses 414 

and figures in this study can be found at 415 

https://github.com/viralemergence/reconciliation. 416 

  417 

https://paperpile.com/c/cFRW1r/Nkjb+kGNi+JUWF
https://paperpile.com/c/cFRW1r/Nkjb+kGNi+JUWF
https://paperpile.com/c/cFRW1r/QJud+lPkd
https://paperpile.com/c/cFRW1r/QJud+lPkd
https://paperpile.com/c/cFRW1r/HQcT+QjkC+Oj3r
https://paperpile.com/c/cFRW1r/HQcT+QjkC+Oj3r
https://zenodo.org/record/4945274
https://github.com/viralemergence/reconciliation
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Figures and Tables 552 

 553 

 554 

Table 1. Available “big data” on host-virus associations, and major features of each 555 

dataset. Numbers of unique association records and host, virus, and pathogen species 556 

are all derived from the reconciled version presented in the CLOVER database, and 557 

therefore these numbers may differ from those presented in the main text (which are 558 

taken from the source data, or from self-reporting by the data curators). *Number of 559 

associations and taxa accurate as of 2015 static release in Scientific Data paper. 560 

 561 

 562 

Dataset GMPD2 EID2* HP3 Shaw 

Source U. Georgia U. Liverpool  EcoHealth Alliance 
Shaw LP, et al. 

Molecular Ecology 
(2020). 

Nature of dataset Static Dynamic Static Static 

Association records 895 1,342 2,784 4,210 

Host species 226 418 751 957 

Virus species 154 398 561 733 

Original taxonomic 
scope of pathogens 

All parasites and 
pathogens (incl. 
viruses, bacteria, 
macroparasites, 

protozoans, 
prions) 

All symbionts (incl. 
viruses, bacteria, 
macroparasites, 

protozoans, prions, 
green algae, 

molluscs, and 
cnidarians) 

Viruses Viruses and bacteria 

Original taxonomic 
scope of hosts 

Mammals (subset: 
only ungulates, 
carnivores, and 

primates) 

Vertebrates and 
invertebrates 

Mammals Vertebrates 

Diagnostic method 
identified (PCR, 
serology, etc.)? 

Yes No Yes Yes 

URL of current 
version 

http://onlinelibrary.wiley.c
om/doi/10.1002/ecy.179

9/suppinfo 
https://eid2.liverpool.ac.uk/ 

https://github.com/ecohealt
halliance/HP3 

https://doi.org/10.6084/m9.
figshare.8262779 
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Box 1. Glossary. 565 

 566 

Association data: a format that records ecological interactions between a host and 567 

symbiont (an association) in the form of an edgelist. 568 

 569 

Data provenance: The primary literature origin of a particular record or set of records in a 570 

synthetic dataset. 571 

 572 

Data reconciliation: the task of harmonizing the language of a given dataset’s fields and 573 

metadata to allow a researcher to merge data of different provenance, and generate a 574 

new synthetic product. 575 

 576 

Edgelist: a table, spreadsheet, or matrix of “links” in a host-symbiont network, where 577 

each row records the known association of a different host-symbiont pair. 578 

 579 

Flat file: a static document in Excel or similar spreadsheet or data format, with no 580 

dynamic component (no updating) and all data available from a single file rather than a 581 

queryable interface. 582 

 583 

Metadata: additional data describing focal data of interest and that is relevant to 584 

interpretation and analysis. Important examples for host-virus associations include 585 

sampling method (for example, serological assay, PCR or pathology), date and 586 

geographical location of sampling, and standardized information on host and virus 587 

taxonomy. 588 

 589 

Open data: data that is directly and freely accessible for reuse and exploration without 590 

impediment, gatekeeping, or cost restriction. 591 

 592 

 593 

 594 

 595 

 596 

  597 

 598 
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Figure 1. Network representation of the CLOVER dataset. The nodes of the entire 600 

CLOVER network have been projected to a two-dimensional space using t-SNE, and 601 

disaggregated to each of the four data sources. In each panel, only the nodes found in 602 

the given dataset are shown with filled symbols (unfilled symbols indicate associations 603 

recorded in the other datasets); triangles represent mammal hosts, while circles 604 

represent viruses. In each dataset, a non-trivial proportion of associations are 605 

completely unique and unrecorded elsewhere, even after taxonomic reconciliation. This 606 

was the case for 186 of 1,342 associations in EID2 (13.8%); 611/2,783 in HP3 (22%); 607 

271/895 in GMPD2 (30.3%); and 1,707/4,210 in Shaw (40.5%).  608 

 609 

  610 
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Figure 2. Proportional overlap between datasets before and after host and virus 611 

taxonomic reconciliation. The percentages and fill colours in these tiles can be 612 

interpreted as “% of y axis was contained in x axis”; for example, 31% of originally-613 

reported EID2 hosts were also represented in GMPD2, while 47% of reconciled Shaw 614 

associations were also contained in HP3. Darker colours represent higher proportions 615 

of shared data. 616 
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Figure 3. Temporal trends in host-virus association reports and virus-related research 624 

effort. Bar graphs show, for each year, the annual number of reported associations 625 

coloured by source database (which can include duplicates of the same association 626 

reported over multiple years; A) and the number of novel unique associations (i.e. 627 

unreported before that year; B). Years reflect the date when an association was 628 

reported, either in a published paper or report (for literature-based records) or to the 629 

NCBI Nucleotide database (EID2 only). The trend plot (C) shows the trend in virus-630 

related publications across all hosts in the CLOVER dataset up to 2020 (PubMed search 631 

term: “host binomial and  virus or viral”). Points represent annual total publications 632 

summed across all host species, and point size denotes number of host species with 633 

virus-related publications in a given year. 634 
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