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A B S T R A C T

This paper investigates how households adopt and use air conditioning to adapt to climate change and increas-
ingly high temperatures, which pose a threat to the health of vulnerable populations. The analysis examines con-
ditions in eight temperate, industrialized countries (Australia, Canada, France, Japan, the Netherlands, Spain,
Sweden, and Switzerland). The identification strategy exploits cross-country and cross-household variations by
matching geocoded households with climate data. Our findings suggest that households respond to excess heat
by purchasing and using air conditioners, leading to increased electricity consumption. Households on average
spend 35%–42% more on electricity when they adopt air conditioning. Through an illustrative analysis, we show
that climate change and the growing demand for air conditioning are likely to exacerbate energy poverty. The
number of energy poor who spend a high share of income on electricity increases, and households in the lowest
income quantile are the most negatively affected.

1. Introduction

The threat of global warming is one of the most urgent issues facing
humanity today. Climate change and climate variability affect nearly all
sectors, including agriculture, forestry, energy, tourism, and recreation
industries. These widespread impacts have spurred research in many
different fields. In particular, there is a recent and growing economics
literature focusing on the implications of climate change on residential
demand for electricity throughout the world.

Households respond to uncomfortably hot climate conditions by
adopting cooling devices that contribute to maintaining thermal com-
fort at home, and protecting vulnerable members from the risk of
mortality and other health issues. Moreover, protective behaviour in
response to warmer temperatures might lead people to allocate more
time to indoor activities. When indoors, people can use air conditioning
(AC), which can mitigate the effect of extreme temperature, counteract-
ing the potential health impacts of heat (Graff Zivin and Neidell, 2014).
Deschênes and Greenstone (2011) show that mortality risk is higher at

☆ This paper has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 756194 (ENERGYA). The authors would like to thank Irene Mammi, Francesco Vona, two anonymous referees and the Editors for very
helpful comments and suggestions.The dataset used for this study – the 2011 Environmental Policy and Individual Behaviour Change Survey (EPIC) – is available
from the OECD upon request. The analysis was performed using Stata 15.0 and R 3.5.0. The code is available to bona fide researchers from the authors upon request.
The views expressed in the paper are those of the authors.
∗ Corresponding author. Ca’ Foscari University, Cannaregio 873/b, 30121, Venezia, Italy.

E-mail addresses: teresa.randazzo@unive.it (T. Randazzo), enrica.decian@unive.it (E. De Cian), malcolm.mistry@unive.it (M.N. Mistry).

the extremes of cold and hot temperatures, and that infants and the
elderly are the most sensitive to extreme temperatures. AC increases
households’ probability of survival on hot days, reducing mortality risks
(Barreca et al., 2016). Therefore, in a changing climate, space cooling
becomes an energy service of growing significance in two key respects.
Use of air conditioning grows in importance by potentially protecting
people from ill health effects of high temperatures, and, at the same
time, air conditioning potentially drives future electricity demand to
respond to increasing temperatures.

The use of energy for space cooling is growing faster than for use
of any other energy service in buildings. Between 1990 and 2016,
global demand for “cooling” energy more than tripled. Today, cooling
of buildings accounts for about 20% of the total electricity use world-
wide (IEA, 2018). From 1990 to 2016, annual sales of air conditioners
nearly quadrupled to 135 million units. Figures from the residential
sector alone underscore the trend. China leads the world, with 41 mil-
lion residential units registered, followed by 16 million in the US, and
roughly 9 million in both Japan and Europe (IEA, 2018). In many Euro-
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pean countries the adoption rate and use of air conditioning remain
low, even in relatively warm countries, such as Spain.1 However, pen-
etration of air conditioning is expected to increase. The combination of
more frequent high-temperature events and increasing standards of liv-
ing leads more and more people to buy and use AC to keep themselves
cool. In temperate countries, electricity consumption is rising rapidly,
especially during the summer months. Even in countries located at mid-
latitudes, the frequency of days with very high average temperature is
rising, and therefore the demand for space cooling is also rising (Mora
et al., 2017). Unprecedented heatwaves hit Paris in 2003 and Moscow
in 2010, for example.2 In Moscow, people responded by purchasing any
available air conditioner , rapidly depleting stocks (Kahn, 2016).

A recent literature has begun to examine the implications of the
adoption of air conditioning on residential demand for electricity. How-
ever, the majority of studies look at two essential components – the
matter of how climate affects the adoption of air conditioning, and how
the adoption of air conditioning affects electricity demand – as two sep-
arate decisions, ignoring that these matters are inextricably connected.
Electricity demand depends on the electric appliances people want to
power, and the extent to which they use them. Household decisions
about whether to purchase an appliance, and how intensively to use
it share unobservable common determinants. These can lead to biased
and inconsistent estimates of price, income, and temperature elastici-
ties (Dubin and McFadden, 1984). Because these empirical estimates
are often used to inform future energy policies, quantifying the extent
of the potential bias is extremely important. The limited availability of
data on AC use and electricity consumption has thus far enabled schol-
ars to examine such joint decisions and their economic implications in
the US only (Barreca et al., 2016). Extending such empirical evidence
to other countries has proven to be challenging. Our paper addresses
this gap.

This paper contributes to expanding the empirical evidence on how
the adoption of air conditioning relates to climatic conditions, and how
the use of that appliance influences households’ electricity expendi-
tures. We examine the situation in eight industrialized countries that
span different latitudes: Australia, Canada, France, Japan, the Nether-
lands, Spain, Sweden, and Switzerland. So far as we are aware, previous
empirical analyses investigating the adoption and use of air condition-
ing by households in relation to climate have focused primarily on the
US market. For the rest of the world, the evidence is scarce, largely due
to data limitations. Our paper uses a unique cross-sectional dataset of
geocoded households. This allows us to exploit the cross-country and
the cross-household variation as an identification strategy. Thus, we
are able to disentangle the roles of demographics, house characteris-
tics, and socioeconomic conditions from the role of climate in decisions
regarding the adoption and utilization of air conditioning. Our sample
consists of 3615 geocoded households interviewed in 2011 (Kriström
and Krishnamurthy, 2014; OECD, 2014).

To the best of our knowledge, this paper represents a first attempt
to address the endogeneity of air conditioning uptake and use in a rig-
orous way, and to quantify its size outside of the context of the US. The
only other paper of which we are aware that addresses similar issues is
Barreca et al. (2016), who use the discrete-continuous model of Dubin
and McFadden (1984) to estimate consumer surplus stemming from the
decline in hot day-related fatalities as a result of the introduction of
residential air conditioning in the US.

We test for the potential endogeneity of air conditioning use by
using an instrumental variable strategy to account for the non-random
choice of purchasing air conditioners. Given the non-linearity of the
potentially endogenous variable we then use a control function (CF)
approach (Wooldridge, 2015), with past imports of air conditioners
serving as an exclusion restriction. When the endogeneity of air condi-

1 Authors’ calculations based on data available from https://www.enerdata.net/.
2 See https://maps.esri.com/globalriskofdeadlyheat/.

tioning is taken into account, we find that warm climatic conditions do
not influence electricity expenditures per se. Our findings show that AC
adoption is endogenous, and that the resulting bias can lead to a signif-
icant underestimation of its impact on electricity expenditures. House-
holds with AC on average spend 35%–42% more on electricity than
those that do not own AC; our findings contrast sharply with the esti-
mates suggesting increased electricity usage of 5%–10%, when assum-
ing that AC is exogenous. Our work also shows that air conditioning
is the main mechanism that increases households’ electricity use and
expenditures.

In this paper, we also discuss some of the potential aggregate,
macroeconomic implications of the demand for space cooling by simu-
lating, ceteris paribus, the implications of climate-induced air condition-
ing adoption and use on energy poverty. In Europe and other developed
countries, the concept of energy poverty is mostly linked to the issue
of affordability. Even in the developed world, a significant fraction of
population is not able to pay for energy services adequately. If climate
change makes indoor cooling an essential good for the health and safety
of a growing number of people, sustainable solutions will urgently be
needed (Phoumin and Kimura, 2019).

The remainder of the paper is organized as follows: Section 2 frames
our analysis within the most recent and related literatures. Section 3
describes the data used for the analysis. Section 4 provides the empir-
ical framework. Section 5 discusses results and implications. Section 6
concludes.

2. Literature review

Studies on residential electricity demand using household-level data
have been conducted for many decades, as reviewed by Fell et al.
(2014) and Miller and Alberini (2016). The main objective of those
studies was to estimate energy price and income elasticities for inform-
ing policy analysis. Most of the studies focus on the US (Reiss and
White, 2005; Alberini et al., 2011; Fell et al., 2014; Miller and Alberini,
2016), though a few empirical analyses surface for other countries or
regions (Nesbakken, 1999 [Norway]; Bernard et al., 2011 [Quebec];
Gans et al., 2013 [Ireland]; Pourazarma and Cooray, 2013 [Iran]).
Multi-country cross-sectional studies are comparatively rare. Krishna-
murthy and Kriström (2015) offer what we believe to be the lone exam-
ple, characterizing the heterogeneity in price and income elasticities
across countries in Australia, Canada, Chile, France, Israel, Japan, South
Korea, the Netherlands, Spain, Sweden, Switzerland. A large number of
studies find that electricity price and income elasticities are smaller
than one, and, therefore, electricity consumption is not very sensi-
tive to changes in price and income (Filippini, 1999; Narayan and
Smyth, 2005; Pourazarma and Cooray, 2013). This implies that elec-
tricity consumption is not easily discouraged, and that other factors,
beside income and prices, explain electricity demand. Some studies
suggest that temperature and other meteorological conditions play a
role. For example, Henley and Perison (1998) show that consumers’
responses to higher electricity prices are conditional on temperature
levels. A growing literature supports the relevance of climate variables
in determining energy consumption, suggesting that electricity demand
is very sensitive to meteorological conditions (Pourazarma and Cooray,
2013; Auffhammer and Mansur, 2014).

Evidence shows that weather and climate conditions affect energy
demand, the choice of fuel, and the adoption of energy appliances.
Using cross-sectional data, Mansur et al. (2008) investigate adapta-
tion to climate change through fuel choice and consumption in the
US energy sector. They conclude that households experiencing colder
winters tend to use more natural gas; by contrast, the main source of
energy for households located warmer regions is electricity. The rela-
tionship between climate and electricity consumption as a means of
adaptation has been investigated using panel data, which have the
advantage of addressing the potential bias due to unobserved time-
invariant heterogeneity that characterizes cross-sectional approaches.
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Eskeland and Mideksa (2010) conduct a study for 31 European coun-
tries, strengthening the evidence regarding the relevance of climate
variables in determining electricity use; they predict a reduction in
heating demand in Northern Europe, and an increase in cooling demand
in Southern Europe.

Deschênes and Greenstone (2011) and Auffhammer and Aroon-
ruengsawat (2011) also adopt the panel data approach. Both rely on
random fluctuations in weather to identify climate effects on electric-
ity consumption. Using annual, state-level data on residential electric-
ity consumption in the US, Deschênes and Greenstone (2011) find a
U-shaped response function in which electricity consumption is higher
on very cold and hot days. Estimating California’s residential electric-
ity consumption using panel-micro data, Auffhammer and Aroonrueng-
sawat (2011) conclude that the effect of temperature on electricity con-
sumption varies greatly across climate zones. Moreover, the authors’
simulation results suggest much larger effects of climate change on elec-
tricity consumption than has been suggested by previous studies using
more aggregate data (e.g. Deschênes and Greenstone, 2011). A limita-
tion of their work, however, is that the dataset used does not allow for
the control of household composition and characteristics.

Larger effects of temperature on energy demand also surface in stud-
ies using panel data and dynamic models. The idea is that behavioural
adjustments and changes in appliance efficiency take place over time,
leading to a persistent effect of weather shocks. De Cian and Sue Wing
(2017) show that long-run elasticities of energy demand to temperature
tend to be larger than the short-run elasticities, especially in response to
high temperature levels. This finding suggests that the adoption of more
appliances can amplify the impacts on energy demand, especially for
electricity. The main limitation of panel approach based on macro stud-
ies is the inability to explicitly control for appliance ownership rates,
which are not consistently available across countries over time.

Thus far the literature has not explicitly accounted for the amplifi-
cation effect due to the adoption of appliances for space heating and
cooling in response to changes in climatic conditions. One of the major
mechanisms for adaptation to climate change is the adoption of devices
that help to control for indoor temperatures in the face of rising outdoor
temperatures. Electricity is used in combination with energy appliances
in order to produce energy services, which are the sources of actual
utility for people. Yet, only a few studies have developed empirical esti-
mates that take into account the relationship between the demand for
durables and their use. The two decisions – whether to purchase energy
durables, and whether to put these durables to use – are interrelated.
Advancing understanding of these issues requires joint analysis because
unobserved factors can affect both choices – leading to the potential
of biased estimates (Dubin and McFadden, 1984; Vaage, 2000). In their
pioneering study, Dubin and McFadden (1984) suggest the use of instru-
mental variable methods to address the basic idea: that households
make a joint decision regarding whether to purchase an AC unit and
how often to use it.

Branch (1993) treats AC ownership as exogenous, and includes
an AC ownership dummy and its interaction with climate variables
in the demand equation; the results show that, during the summer
months in New York City, for example, households with AC spend
294% more on electricity than those without AC. In the same spirit,
Depaula and Mendelsohn (2010) estimate the short-run and long-run
effects of climate on residential electricity use in Brazil. They con-
clude that having AC increases electricity expenditures by 23%–33%,
and that climate-induced changes in electricity expenditures can reach
levels that approximate the welfare damages of increased temperature.

Asadoorian et al. (2008) follow a two-stage procedure. They first
estimate the demand of a set of durables, including AC; and then regress
residential electricity demand conditional on the first-stage choices,
including the predicted ownership rates obtained from the first-stage.
They show that having AC shifts electricity demand upwards, among
both rural and urban families in China. Davis and Gertler (2015) use a
sequential approach to, first, predict future AC adoption rates for Mex-

ico, and, second, to estimate the response function of electricity demand
to temperature using only those regions with historically comparable
AC ownership rates. The authors attribute the difference between the
average response function for Mexican households and the response
function of those regions with high AC ownership to the penetration
of new AC, but without including a sample-selection correction term.
They highlight that omitting the first-stage adoption decision signifi-
cantly underestimates the impacts of climate change on future electric-
ity demand in Mexico.

Barreca et al. (2016) apply the model by Dubin and McFadden
(1984) in a rigorous way. Estimating the gain in consumer surplus asso-
ciated with the adoption of residential AC, they find that AC adoption
increases average household electricity consumption by 11%, and that
the AC penetration rate is associated with a consumer surplus of $5
billion to $10 billion annually. Their study emphasizes the important
role of new technologies, such as AC, in helping households to adapt
changes in climate conditions, and, therefore, to minimize potential
adverse consequences on the welfare of an entire country and its cit-
izens. The increasing demand for cooling as an adaptation mechanism
to climate change motivates our work to understand both the determi-
nants and the effects of AC adoption on electricity consumption in a
group of countries that have not previously been the subject of such
research.

3. Data

Our dataset combines i) the 2011 Environmental Policy and Individ-
ual Behaviour Change survey (EPIC; OECD, 2014), which collects data
for 12,200 households; and ii) long-term averages (1986–2010) of grid-
ded annual Cooling (CDDs) and Heating (HDDs) Degree-Days assembled
by using a high-spatial resolution dataset of global-gridded degree-days
(Mistry, 2019). Stratification and quota sampling on a set of key vari-
ables3 are used for collecting the data at the country-level (see Annex
B in OECD (2014) for more detail). Of the 11 countries covered in the
EPIC survey, we retained Australia, Canada, France, Japan, the Nether-
lands, Spain, Sweden and Switzerland – the countries for which the
location of each family had been geocoded, adding an additional source
of cross-sectoral heterogeneity within each country.4

CDDs and HDDs5 are measurements commonly used in the energy
demand literature to capture the typical intensity and duration of
hot and cold climates, and the corresponding cooling and heating
requirements (Mistry, 2019; Atalla et al., 2018). Utilizing annual CDDs
and HDDs, we compute the corresponding long-term averages for the
1986–2010 period as a proxy for past, long-term climatic conditions,6

3 Quotas were set for age, gender, region and income. For Switzerland, the
proportions of French and German speakers were used rather than region.
When quotas were filled, further respondents with those characteristics were
not accepted. For each country, post-stratification weights were constructed
based on official statistics on age and employment status.

4 The geocoded households for the countries listed above are 7449.
5 They have been calculated using the daily temperature (◦C) data aggregated

from the three hourly, global surface-gridded temperature fields (0.25◦ × 0.25◦

resolution, approximately 27 × 27 km at the equator) obtained from the Global
Land Data Assimilation System (GLDAS) (Rodell et al., 2004).

6 The survey and climate data were merged by using the R-software package
rgdal and the DIVA-GIS shapefile provided by the Database of Global Admin-
istrative Areas (GDAM) https://gadm.org/. We have used the extract function
of the R raster package (Hijmans and van Etten, 2014) to extract historical
CDDs/HDDs for each OECD participant through geolocation. The CDDs/HDDs
grid cells are retained and assigned to each household only where the OECD
spatial points fall over them. Each grid cell and each household are then
assigned to the region that overlaps with the largest share of the grid cell.
Note that the grid cells close to water have missing values, because GLDAS data
do not report data close to water bodies. These households have therefore been
dropped.
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Fig. 1. CDDs 18 ◦C (1986–2010) and AC ownership (EPIC Survey, 2011). Red dots indicate households with high CDDs and with AC. Light red indicates high CDDs,
no AC. Blue indicates low CDDs, with AC. Light Blue indicates low CDDs, no AC. High and low CDD levels are defined relative to the sample median of 160 annual
degree days across the eight countries. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

in line with the practice of using long-term climatic conditions in cross-
sectional studies (e.g. see Mansur et al., 2008). Because the calculation
of CDDs and HDDs is sensitive to the chosen balance point temperature,
we test different thresholds between 18 ◦C and 25 ◦C. Although 18 ◦C is
the most frequently used temperature threshold in the literature (Sailor
and Pavlova, 2003; Deschênes and Greenstone, 2011; Rapson, 2014),
recent studies have started to explore different thresholds (Mastrucci
et al., 2019). Increasing the temperature threshold at which AC can be
turned on is also part of the policy strategies aimed at reducing energy
consumption of several countries, such as Japan and India.

Fig. 1 plots the spatial distribution of households’ ownership of air
conditioners along with the long-term average of CDDs and HDDs. Red
dots identify households that are exposed to high CDDs and own an
air conditioner. Clusters generally coincide with major urban centres
or with the southern regions of countries. A number of households,

especially in France and Spain, highlighted in light red, did not own
air conditioners as of 2011, despite being exposed to relatively warm
climatic conditions. The map also shows the households that have air
conditioners, but for which CDDs exposure is below the sample median
(blue dots). The smaller, lighter blue dots are the households that do
not have air conditioners, and have a relatively low exposure to CDDs.
The map provides a way to visualize the large climate variability within
countries and across households, as well as the tendency for urban cen-
tres to register higher temperatures due to “heat island” effects.

While time-series data of residential AC ownership rates are not
available for the countries analysed here, import statistics suggest that
cooling needs have been increasing in these countries. Fig. 2 shows
the value over time for AC imports for the product category 71,912
according to the Standard International Trade Classification SITC Rev.1
obtained from the United Nations Comtrade Database. We clearly see

276



T. Randazzo et al. Economic Modelling 90 (2020) 273–287

that, starting from the 1990s, the imports of air conditioners have
substantially increased in each country, responding to the emerging
demand for such devices. Thus, AC imports indeed provide a good proxy
for the demand for air conditioning (see Section 4.1).

The OECD survey collects a number of energy-related vari-
ables including yearly electricity expenditures and consumption (in
kilowatt-hour, kWh), along with households’ socio-demographic and
behavioural characteristics. Only a small subset of households report
information on the average annual quantity of electricity consumed
in kWh.7 Because data on annual electricity bills are available for a
larger group of households, we follow methodologies used by Hunt and
Ryan (2015) and Krishnamurthy and Kriström (2015), using electric-
ity expenditures instead of quantity as our variable of interest when
estimating the energy demand equation. After accounting for the miss-
ing values in our relevant variables, we conduct the analysis for 3615
geocoded households.

Table 1 presents the descriptive statistics of the survey variables
used in the empirical analysis by country. The adoption of AC ranges
widely, from almost 91% in Japan to only 5% in Switzerland. Switzer-
land has the smallest proportion of homeowners (38%) and households
living in urban areas (34%). By contrast, Spain has the highest level
of homeownership (80%), and Australia and Japan have the highest
proportion of residents in urban areas (above 70% of households). Our
data seem to suggest that those countries with a higher concentration
of households in urban areas also have both a deeper penetration of
AC and relatively high values of annual CDDs, the variable that most
strongly correlates with AC ownership. Indeed, our variables captur-
ing hot and cold climate show that Japan and Australia are the coun-
tries with a higher level of CDDs; Canada, Sweden and Switzerland, as
expected, are those with the higher values of HDDs.

The presence of efficient windows and thermal insulation suggest
whether a household has undertaken investments that influence elec-
tricity demand. Moreover, their presence – or absence – helps to better
characterize the living standards of households.8 The Netherlands and
Australia are the countries with the highest percentage of households
with improved thermal insulation (59% in each country). The Nether-
lands and France have the highest percentage of households with effi-
cient windows, 79% and 65%, respectively.

Household size in our sample ranges from 2.4 members in Canada to
2.9 in Spain. The years of post-secondary education for the household
head ranges from 2.4 in Sweden to 4.7 in Japan. Differences also exist
in reported annual household income, with average household income
levels highest in Switzerland, followed by Japan and Australia.

Residential electricity demand also depends upon households’ char-
acteristics and behaviour. A unique feature of the OECD EPIC survey is
that it reports a number of attitudinal variables that specifically relate
to the consumption of energy, and to concerns for the environment.
Of particular interest in this context is the energy behaviour index,
which summarizes the energy-saving behaviours of a household on a
score between zero and ten. The higher the score, the more frequent
the household implements behaviours such as switching off lights, or
cutting down heating or AC use to save on energy consumption. From
the energy behavioural index, we construct a dummy variable equal
to one for those showing a saving behaviours above the mean. Spanish
households exhibit the highest level of energy saving behaviours, while,
surprisingly, Swedes seem to pay less attention to simple, domestic,
energy-saving practices.

7 In our selected sample only 1402 households provide this information,
which represents 18.8% of the sample.

8 We are aware that several energy appliances such as refrigerators, washing
machines, and televisions can affect electricity consumption. These are very
widely used appliances in the countries analysed. Because almost all households
in our sample own them, we do not have enough variability within the dataset
to include them in the analysis.

4. Methodology

People use sources of energy to power durable goods that they use
for cooking, lighting, space heating and cooling. Here we focus on AC
appliances and the cooling they provide. Together, AC and electricity
are used to adjust a home’s interior temperature, and to obtain a desired
level of thermal comfort. We model the demand for electricity as a func-
tion of household characteristics and climatic conditions. Our empiri-
cal model uses electricity expenditures instead of electricity quantity
as the dependent variable because electricity expenditure information
is available for a larger number of households. In our sample, 56.7%
of respondents include their electricity expenditures, compared to the
18.8% that report information on the quantity of electricity consumed.
As shown in Krishnamurthy and Kriström (2015) and in Hunt and Ryan
(2015), energy demand equations can be estimated in terms of quan-
tity or expenditure. Equation (1) models electricity expenditures (Y) for
household i as a function of a set of covariates Xi and ACi, our variable
of interest, as follows:

Yi = Xi𝛃 + 𝛾 ACi + 𝜖i (1)

The matrix Xi includes our climate variables, CDDs and HDDs, rep-
resenting cooling and heating degree days, respectively9; household-
specific control variables, such as household income, the presence
of other electricity-using appliances, house characteristics (size, type,
insulation), household size, household location in urban areas; and head
of household-specific characteristics, such as education, age, sex, and
attitudes towards energy efficient behaviours. The term 𝜖i represents
the disturbance term.

The main challenge in estimating Equation (1) with cross-sectional
data is that the explanatory variables do not capture unobserved het-
erogeneity.

Even after controlling for a large number of household character-
istics, unobservable heterogeneity that could be correlated with our
covariates could remain. Dubin and McFadden (1984) suggest that the
demand for energy-using appliances and demand for electricity are
related and share common, unobserved determinants. Because AC is
an example of an energy-using durable good in our specific equation,
we suspect that this variable might be endogenous.

As an example, individual body characteristics that affect the bal-
ance point for thermal comfort could simultaneously affect the decision
about whether to adopt AC, as well as the actual quantity of electric-
ity consumed. Moreover, the adoption of AC is a small investment that
might be affected by household’s risk aversion, a characteristic that may
not be perfectly observable and could cause an omitted variable bias.
Our strategy for addressing the endogeneity of the variable ACi, is based
on an instrumental variable approach.

While a two-step approach based on instrumental variables (two-
stage least squares [2SLS] regression analysis) and a two-stage resid-
ual inclusion method (control function [CF] analysis) produce identical
estimates in a linear case, the equivalence does not hold in a non-linear
setting. When the endogenous variable is modelled in a non-linear
framework, the CF method is more efficient than the 2SLS method.
Moreover, the CF produces a test of endogeneity, the heteroskedasticity-
robust Hausman test based on the null hypothesis that our variable of
interest (ACi) is exogenous (Terza et al., 2008; Wooldridge, 2015).

4.1. Exclusion restriction

For an instrumental variable strategy to be valid, the instrument has
to be strongly correlated with the potential endogenous variable (ACi)
and must have no direct effect on the outcome of interest (Yi). Because
our dataset is a cross section, we do not have information on past AC

9 As discussed under Data in Section 3.

277



T.Randazzo
etal.

Econom
ic

M
odelling

90
(2020)

273–287

Table 1
Descriptive statistics by country.

Variables Australia Canada France Japan The Netherlands Spain Sweden Switzerland Total

Electricity expenditure in euros 1162.4
(1027.7)

1120.5
(1045.7)

862.1
(599.4)

1146.8
(1310.0)

1156.6
(795.7)

994.5
(2058.4)

1411.6
(1254.7)

843.1
(741.6)

1049.5
(1303.1)

AC (yes = 1) 0.746
(0.436)

0.483
(0.500)

0.137
(0.344)

0.910
(0.286)

0.112
(0.315)

0.539
(0.499)

0.195
(0.396)

0.0515
(0.222)

0.522
(0.500)

Import AC 1990–2000 ($ mn) 195.3
(0)

937.6
(1.14e-13)

356.6
(5.69e-14)

249.6
(0)

199.1
(0)

433.1
(0)

97.22
(0)

64.66
(0)

380.6
(222.5)

CDDs 1986–2010 (18 ◦C) 581.7
(411.9)

133.9
(110.0)

194.8
(133.5)

702.3
(235.1)

55.52
(17.27)

551.2
(315.3)

22.08
(11.85)

94.49
(54.19)

419.1
(338.8)

CDDs 1986–2010 (22 ◦C) 145.9
(158.1)

15.31
(38.32)

29.55
(36.22)

264.6
(117.5)

2.972
(2.010)

187.1
(152.4)

0.461
(0.675)

6.929
(5.391)

132.1
(148.1)

CDDs 1986–2010 (23 ◦C) 88.12
(110.5)

7.816
(28.80)

15.62
(21.39)

188.1
(90.78)

1.111
(0.975)

129.9
(116.9)

0.138
(0.245)

2.838
(2.427)

90.33
(109.4)

CDDs 1986–2010 (24 ◦C) 48.20
(72.07)

3.966
(21.09)

7.539
(11.41)

124.6
(66.19)

0.350
(0.431)

84.99
(85.56)

0.0314
(0.0617)

1.013
(0.975)

57.99
(76.08)

CDDs 1986–2010 (25 ◦C) 23.84
(43.37)

2.033
(14.77)

3.293
(5.481)

74.42
(44.41)

0.0868
(0.156)

51.95
(59.07)

0.00688
(0.0136)

0.296
(0.330)

34.14
(48.89)

HDDs 1986–2010 (18 ◦C) 1034.3
(616.7)

4388.6
(879.5)

2399.8
(446.0)

2105.5
(701.0)

2835.4
(86.32)

1712.2
(906.6)

4180.5
(511.0)

3308.6
(709.1)

2395.7
(1148.9)

Home owner (yes = 1) 0.677
(0.468)

0.739
(0.440)

0.642
(0.480)

0.589
(0.493)

0.750
(0.434)

0.804
(0.397)

0.657
(0.475)

0.389
(0.489)

0.674
(0.469)

Home size (m2) 162.4
(112.8)

126.1
(62.13)

100.9
(44.70)

97.11
(54.83)

128.9
(63.39)

109.1
(54.19)

100.2
(41.64)

112.5
(56.07)

110.1
(62.32)

N. of other appliances (#) 6.912
(2.803)

7.323
(2.777)

6.171
(2.484)

6.062
(2.571)

6.933
(2.668)

6.185
(2.738)

6.519
(2.685)

6.320
(2.747)

6.373
(2.667)

Effic. windows (yes = 1) 0.150
(0.358)

0.555
(0.497)

0.658
(0.475)

0.219
(0.414)

0.791
(0.407)

0.608
(0.489)

0.447
(0.498)

0.466
(0.500)

0.468
(0.499)

Thermal insulation (yes = 1) 0.608
(0.489)

0.465
(0.499)

0.514
(0.500)

0.242
(0.429)

0.590
(0.492)

0.343
(0.475)

0.378
(0.486)

0.432
(0.497)

0.402
(0.490)

Urban area (yes = 1) 0.809
(0.394)

0.680
(0.467)

0.453
(0.498)

0.725
(0.447)

0.474
(0.500)

0.614
(0.487)

0.542
(0.499)

0.345
(0.477)

0.618
(0.486)

HH size (#) 2.900
(1.416)

2.426
(1.153)

2.679
(1.145)

2.852
(1.561)

2.627
(1.145)

2.923
(1.089)

2.414
(1.143)

2.603
(1.304)

2.751
(1.300)

Share of members under 18 0.160
(0.227)

0.123
(0.207)

0.168
(0.235)

0.104
(0.197)

0.159
(0.233)

0.144
(0.211)

0.159
(0.230)

0.161
(0.227)

0.139
(0.217)

Age of the HH head 43.24
(14.48)

46.67
(13.85)

45.37
(13.98)

47.02
(11.81)

43.83
(13.35)

45.32
(13.60)

44.63
(14.15)

41.33
(11.58)

45.71
(13.35)

Gender of the HH head (male = 1) 0.590
(0.492)

0.518
(0.500)

0.525
(0.500)

0.570
(0.496)

0.580
(0.494)

0.535
(0.499)

0.550
(0.498)

0.611
(0.489)

0.547
(0.498)

HH head’s years of post-educ 3.602
(3.503)

3.280
(2.861)

2.745
(2.363)

4.718
(4.010)

4.693
(3.084)

3.708
(2.980)

2.435
(2.440)

2.984
(2.823)

3.683
(3.289)

Annual HH income in euros 51964.8
(27550.2)

45406.3
(26885.8)

38452.4
(17141.5)

52284.4
(30787.0)

40778.5
(16643.3)

29741.8
(16428.2)

42462.8
(18041.0)

64311.7
(30993.8)

43030.9
(25350.8)

Energy saving behaviour (yes = 1) 8.039
(1.615)

7.197
(1.636)

8.058
(1.547)

7.204
(1.914)

7.048
(1.734)

8.373
(1.436)

5.507
(1.788)

6.818
(1.870)

7.644
(1.787)

Observations 457 518 688 311 382 597 466 196 3615

Notes: Standard Deviations (SDs) are shown in parentheses. Post-stratified weights provided by the survey are used to compute all descriptive statistics. CDDs are
computed with the thresholds of 18 ◦C, 22 ◦C, 23 ◦C, 24 ◦C, 25 ◦C. HDDs utilize the threshold of 18 ◦C. Annual income refers to the average annual income after taxes.
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Fig. 2. Value of AC imports in selected OECD countries. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version
of this article.)

adoption at the same resolution of our data. We identify our instrumen-
tal variable in the past average value of imports of air conditioners. The
past average value of air conditioner imports serves as a good proxy for
demand for air conditioning, in light of the fact that most of the coun-
tries included in the analysis are, in fact, importers of such devices.

Trade data are the only source available10 to serve as a proxy for the
demand for air conditioners because production and demand data are
not available at the global scale. We use the 1990–2000 time frame to
avoid contemporaneous correlation between the AC imports and elec-
tricity consumption. The use of a 10-year time window is motivated by
the average lifetime of air conditioners. As shown in Fig. 2 Section 3,
starting from the 1990s all countries in our sample exhibit a constant
increasing trend in air conditioner imports. Data on past levels of air
conditioner imports are available only at the country level.

Because imports of air conditioners are not uniform across the sub-
national regions of each country, we weight AC country-level imports
by the share of past CDDs11 of each subnational region in each country.
We further redistribute the resulting regional imports to the geocoded
households within each region by using the distance from the equator
measured by the latitude of each household available in our dataset.
We interact the weighted regional imports with the latitude of house-
holds. This procedure makes it possible to create variability at the same
spatial resolution of our data (geocoded points), which we exploit as an
identification strategy. If past imports of air conditioners are correlated
with adoption of air conditioning, there is no reason to believe that they
directly influence the contemporaneous demand for electricity through
other mechanisms different from the availability of air conditioning.

4.2. Control function approach

The adoption of AC, our endogenous variable, is modelled by using
a latent-variable approach:

ACi = 1[Xi𝜹+ 𝜃 IMPi + 𝜇i > 0] (2)

where 1[.] is the binary indicator function. Equation (2) is estimated by
using a probit model, and the error term 𝜇i ~ Normal (0, 1) is uncor-

10 Our import data are from UN Comtrade, https://comtrade.un.org/data/.
11 We use the average annual CDDs in the 1986–2000 period.

related with all the explanatory variables in the equation. In the CF
set-up, Equation (2) represents our reduced form equation. It expresses
the endogenous variable ACi, as a function of all exogenous variables
included in the matrix Xi plus the exclusion restriction, IMPi, identified
in the weighted past AC imports discussed in Section 4.1.

Key assumptions are the relevance of the exclusion restriction in
Equation (2), and its orthogonality with electricity demand in Equation
(1), namely E(IMPi, 𝜖i) = 0. We implement the CF following Wooldridge
(2015) who shows how the two-stage residual inclusion can be used
even when the endogenous variable is not linear.

Because of the endogeneity of ACi, the structural error 𝜖i and the
reduced form error 𝜇i are correlated. In a linear framework, the CF
shows that the correlation can be captured by using a linear relation-
ship:

𝜖i = 𝜂𝜇i + ei (3)

E(𝜇iei) = 0 (4)

Wooldridge defines 𝜂 = E(𝜇i 𝜖i)/E(𝜇i
2) as the population regression

coefficient. Based on the assumption that 𝜖i and 𝜇i are uncorrelated
with the explanatory variables included in the matrix Xi, a valid esti-
mation equation can be obtained by substituting Equation (3) in (1):

Yi = Xi𝛽 + 𝛾 ACi + 𝜂𝜇i + ei (5)

where ei is the new error term uncorrelated with all right-hand-side
variables, including ACi. Instead, 𝜇i is estimated from the reduced form
equation (the first-stage regression), and when added to the structural
equation, it controls for the endogeneity of ACi, thus making it appro-
priately exogenous.

In a linear framework, the CF variable is simply the raw residuals
of the reduced form equation. When the reduced form is estimated by
using a probit model, Wooldridge (2015) shows that the CF variable,
𝜇i, is the generalized error. Given the conditional expectation:

E(Yi|Xi, ACi) = Xi𝛽 + 𝛾 ACi + 𝜂 [ACi 𝜆(Zi 𝜹) − (1 − ACi)𝜆(−Zi𝜹)] (6)

where the matrix Zi includes all the variables in Xi and the exclusion
restriction IMPi, and 𝜆(.) = 𝜑(.)/𝛷(.) represents the inverse Mills ratio.
The generalized residual, computed after the first-stage probit model, is
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expressed in the following way:

𝜇i = ACi𝜆( Zi �̂�i) − (1 − ACi)𝜆(−Zi 𝜹i) (7)

Yi is therefore estimated on Xi, ACi and 𝜇i. A simple test of the null
hypothesis that ACi is exogenous is given by the heteroskedasticity -
robust t statistics on 𝜇i (Wooldridge, 2015).

5. Results

5.1. Empirical results

As discussed in Section 4.2, the control function strategy is imple-
mented in two stages. We first estimate the reduced form in Equation
(2) for the probability of adopting AC by using past import of air con-
ditioners as an exclusion restriction. In the second stage, we estimate
expenditure of electricity, expressed in a natural logarithm,12 including
the residuals from the first stage in the outcome equation together with
the full set of controls, as in Equation (5).

Table 2 reports regression results. Columns 1 and 2 present the
first stage in which we report the probit coefficients and the marginal
effects of adopting AC. The remaining columns present the second stage
for electricity expenditures. Column 3 shows the OLS estimates for
households’ electricity expenditures without accounting for the poten-
tial endogeneity of AC.

The CF approach makes it possible to quantify the bias induced by
the potential endogeneity through the coefficient of the residuals, 𝜇i.
We first compute the raw residuals by estimating AC with a linear prob-
ability model (LPM) (Column 4), and then use generalized residuals
after a probit model (Column 5). Our preferred specification uses the
generalized residuals after a probit model, as suggested by Wooldridge
(2015), and discussed in Section 4. Moreover, the CF makes it possible
to compute a test of exogeneity. The heteroskedasticity-robust Hausman
test for exogeneity is rejected, suggesting that AC is endogenous.

A key role in implementing the CF approach is played by the exclu-
sion restriction, which is identified in the past AC imports weighted by
the regional CDDs and interacted with latitude. Past levels of imports
significantly increase the probability of adopting AC; the F-test on the
relevance of the IV, which is greater than 10, confirms that past imports
are a significant and reliable predictor of adopting AC. Table A.2 shows
that the exclusion restriction holds across different specifications. In the
first specification, we exclude Japan (columns 1–2) as a major exporter
of air conditioners during the 1990s (though its export share of air con-
ditioners declined from 25% in 1990 to 6% in 2010, when China took
the lead with a 32% share). The second specification considers other
forms of investments related to thermal comfort that can be influenced
by CDDs (columns 3–4), such as thermal insulation and efficient win-
dows. Finally, we combine the first two specifications (columns 5–6).

Our results suggest that climatic conditions affect electricity expen-
ditures by inducing more households to adopt air conditioning. From
the first stage we can conclude that a one-standard-deviation (one-SD)
increase in CDDs, which in our sample is 338, increases the adoption
probability by 13.5 percentage points.13 An increase in log income by
one unit increases the probability of adopting air conditioning by 5
percentage points (i.e., a 172% increase in income from the mean of
43,031, equivalent to a three-SD increase, will increase the probability
of ACs being adopted by 5 percentage points [or 1 SD corresponds to
4/3 = 1.6 percentage points]). Conducting a similar analysis for Mex-
ico, Davis and Gertler (2015) find that climate and income contribute to

12 The functional form in logarithm is chosen to reduce the problem of het-
eroskedasticity investigated with a Breusch-Pagan test (Verbeek, 2017).

13 A one-unit increase in CDDs raises the probability of adoption by 0.04 per-
centage points; that is, an increase in CDDs of 100 raises the probability of
adoption by 4 percentage points.

increase the probability of adopting air conditioning by 7–12 percent-
age points and 8 percentage points, respectively. Our results, referring
to industrialized countries, point to a relatively larger role of climate,
as also suggested by US studies (Biddle, 2008; Rapson, 2014).

Our findings show that adoption of AC shifts expenditure by
35%–42%, depending on the specification adopted.14 There is a lot of
variability across countries in the amount of electricity demanded for
space cooling, which normally reaches its peak over summertime. Pre-
vious research has shown that in locations where the “summer” season
lasts for most of the year, demand for cooling accounts for 50% or more
of total electricity demand (IEA, 2018).

In a related US study, Barreca et al. (2016) find that households
with AC consume 11% more electricity annually. Using a sample of
11 OECD countries from the same EPIC survey, Krishnamurthy and
Kriström (2015) find that using electricity as an energy source for heat-
ing and cooling increases electricity demand from 22% to 36%. Work in
Brazil by Depaula and Mendelsohn (2010) finds similar impacts rang-
ing from 23% to 33%. Moreover, the actual impact of AC on electricity
expenditures also depends on technical parameters, such as efficiency
and type of the air conditioner itself. These parameters vary both across
and within countries and households (IEA, 2018).

Finally, since the marginal effect of AC is estimated as a percentage
shift in expenditure, it also depends on the overall amount of electricity
consumed. Indeed, when estimating the same two equations for coun-
tries with low (high) average electricity expenditures, we find a larger
(smaller) marginal effects.15

While air conditioning has a rather strong impact on electricity
expenditures, CDDs do not influence electricity expenditures once the
endogeneity of AC is properly accounted for. Only the OLS regression
indicates that CDDs have an additional influence on electricity expendi-
tures in addition to the AC channel, whereas this effect vanishes when
the CF strategy is implemented. The effect of CDDs on electricity expen-
ditures is absorbed by AC, while HDDs continue to have an impact, cap-
turing the heating signal of those households that also use electricity for
heating.

Indeed, other studies suggest that other forms of self-protection or
adaptation to high temperature could also influence electricity con-
sumption. Temperature might affect the allocation of leisure time
between indoor and outdoor activities, influencing electricity consump-
tions through other channels such as cooking, showering, and watching
television (Graff Zivin and Neidell, 2014).

Average annual income also influences electricity expenditures,
though the elasticity is small, in line with the empirical evidence
that suggests declining elasticities of key energy services once income
reaches certain thresholds (Fouquet, 2014). Electricity demand is not
very sensitive to variations in income and prices, suggesting little room
for discouraging residential electricity consumption (Filippini, 1999).

The rest of Table 2 presents the impact of other households’ charac-
teristics on the two related energy decisions, showing their relevance as
determinants of AC adoption and electricity expenditures. All explana-
tory variables have the expected sign. For example, as also found in
Krishnamurthy and Kriström (2015), both household and home size are
positively associated with energy expenditures, but those variables do
not affect the adoption of AC. Filippini (1999) also concludes that a
large family consumes more electricity given a certain stock of appli-
ances in the household. Electricity usage increases with the age of the
respondent. As argued by Fell et al. (2014), this may be an indicator
of the presence of older individuals in the household who may spend
more time at home due to reduced work hours, and who, therefore,
consume more electricity. A larger share of younger members below
the age of 18 has a positive effect on the adoption of AC, bringing evi-

14 Table A.1 presents weighted estimates using the post-stratified weights pro-
vided by the survey, and shows a 35% impact of AC on electricity expenditures.

15 Results are available upon request.
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Table 2
Estimates for AC adoption and decision on electricity expenditure.

First stage Second stage

AIR CONDITIONING EXP ON ELECTRICITY
Control function

VARIABLES coeff. mfx OLS LPM Probit
Res Gen Res

AC Imports 1990–2000 × Lat 0.0167∗∗∗

(0.004)
0.0063∗∗∗

(0.001)
CDDs 1986–2010 (18 ◦C) 0.0011∗∗∗

(0.000)
0.0004∗∗∗

(0.000)
0.0002∗

(0.000)
−0.0002
(0.000)

0.0000
(0.000)

HDDs 1986–2010 (18 ◦C) 0.0001
(0.000)

0.0000
(0.000)

0.0001∗

(0.000)
0.0000∗

(0.000)
0.0001∗∗∗

(0.000)
Home owner 0.2221∗∗∗

(0.063)
0.0820∗∗∗

(0.023)
0.0652∗∗

(0.029)
0.0156
(0.036)

0.0501
(0.030)

Home size −0.0005
(0.000)

−0.0002
(0.000)

0.0010∗∗∗

(0.000)
0.0012∗∗∗

(0.000)
0.0011∗∗∗

(0.000)
N. of other appliances 0.1289∗∗∗

(0.012)
0.0484∗∗∗

(0.004)
0.0484∗∗∗

(0.007)
0.0130
(0.014)

0.0376∗∗∗

(0.009)
Urban area 0.2267∗∗∗

(0.052)
0.0844∗∗∗

(0.019)
−0.2076∗∗∗

(0.028)
−0.2684∗∗∗

(0.038)
−0.2262∗∗∗

(0.030)
HH size −0.1161∗∗∗

(0.029)
−0.0436∗∗∗

(0.011)
0.1157∗∗∗

(0.013)
0.1456∗∗∗

(0.018)
0.1248∗∗∗

(0.014)
Share of members under18 0.4708∗∗∗

(0.138)
0.1768∗∗∗

(0.052)
−0.0664
(0.067)

−0.1888∗∗

(0.085)
−0.1038
(0.074)

Age of the HH head −0.0017
(0.002)

−0.0007
(0.001)

0.0049∗∗∗

(0.001)
0.0056∗∗∗

(0.001)
0.0051∗∗∗

(0.001)
Gender of the HH head (male) 0.1340∗∗

(0.052)
0.0502∗∗∗

(0.019)
−0.0595∗∗

(0.024)
−0.0922∗∗∗

(0.030)
−0.0695∗∗∗

(0.025)
HH head’s years of post-educ −0.0143

(0.009)
−0.0054
(0.003)

−0.0063
(0.005)

−0.0034
(0.005)

−0.0054
(0.005)

Log annual HH income 0.1392∗∗

(0.059)
0.0523∗∗

(0.022)
0.1231∗∗∗

(0.028)
0.0798∗∗

(0.033)
0.1099∗∗∗

(0.027)
Energy saving behaviour −0.0247∗

(0.015)
−0.0093∗

(0.005)
−0.0162∗∗

(0.008)
−0.0110
(0.009)

−0.0146∗

(0.008)
Country yes yes yes yes yes
AC 0.0984∗∗∗

(0.032)
1.1372∗∗∗

(0.322)
0.4157∗∗∗

(0.157)
First stage residuals −1.0528∗∗∗

(0.325)
−0.1880∗∗

(0.092)
Constant −1.9892∗∗∗

(0.632)
4.4348∗∗∗

(0.303)
4.7870∗∗∗

(0.347)
4.5424∗∗∗

(0.286)
F-test 1st stage 20.99 17.42
Prob > F 0.000 0.000
Heterosk. robust Hausman test 10.99

0.000
4.00
0.045

R-squared 0.197 0.1954 0.1978
Observations 3615 3615 3615 3615 3615

Notes: Robust standard errors are shown in parentheses, and are adjusted for 1056 clusters (districts). ∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Country controls include Australia, Canada, France, Japan, the Netherlands, Spain, Sweden and Switzerland. The first-stage residuals
in column (4) are linear residuals (“Res”) computed after a Linear Probability Model “LPM”. In column (5) we calculate the generalized
residuals (“Gen Res”) after the probit model.

dence to its role as a strategy to protect minors from exposure to hot
weather, as suggested by studies conducted in the US (Deschênes and
Greenstone, 2011). At the same time, households with a larger share of
young members consume less electricity, reflecting the different habits
of persons of different ages, but also possibly pointing to the role of
credit constraints.

Gender and education of the household head affect AC adoption
with a different sign. Households with a male head are more likely to
have AC but, at the same time, they spend 6% less on electricity, sug-
gesting that men pay more attention, on average, to consumption and
expenditure. Turning to education, as the head’s years of post-education
increases, households are 0.5 percentage points less likely to invest in
AC, suggesting that more educated individuals may be more aware of
the impact of energy on the environment, and may try to reduce the
use of those appliances. A very similar pattern is found for the energy
behaviour index. Households that are more accustomed to adopting
energy-saving behaviours are less likely to adopt AC. The coefficient
relating the energy-saving attitude to electricity expenditures is nega-
tive, as expected, but it is not statistically significant. The role of pref-

erences is also indirectly captured by the appliance number variable.
Households with a higher number of appliances tend to have a higher
propensity to adopt AC – which may be an indication that households
used to higher standards of comfort are also more likely to adopt AC.

With respect to the role of home characteristics and location, we find
that, on the one hand, living in an urban area increases the probability
of having AC by 9 percentage points, a sizable effect compared to the
role of income and climate. In fact, CDDs are higher in urban locations
due to the “heat island” effects, and households respond with a higher
investment in cooling systems. On the other hand, the same variable,
that of living in an urban location, is associated with a lower expen-
diture on electricity. This is may be due to the fact that more efficient
buildings and appliances, which help saving energy, are concentrated
in urban areas.

Table 3 shows the impact of CDDs when different temperature
thresholds are used to calculate them. The typical thermal comfort
standards used in calculating CDDs have been developed for commer-
cial settings in the UK and the US, and use a low base temperature of
18 ◦C−22 ◦C, which previous studies suggest could result in exagger-
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Table 3
Estimates with different CDD thresholds.

First stage Second stage

AIR CONDITIONING EXP ON ELECTRICITY
Control Function

VARIABLES Probit coeff. Probit mfx OLS Probit (Gen Res)

CDDs 1986–2010 (18 ◦C) 0.0011∗∗∗

(0.000)
0.0004∗∗∗

(0.000)
0.0002∗∗

(0.000)
0.0000
(0.000)

HDDs 1986–2010 (18 ◦C) 0.0001
(0.000)

0.0000
(0.000)

0.0001∗

(0.000)
0.0001∗∗∗

(0.000)
AC 0.0984∗∗∗

(0.032)
0.4157∗∗∗

(0.157)
CDDs 1986–2010 (22 ◦C) 0.0022∗∗∗

(0.000)
0.0008∗∗∗

(0.000)
0.0004∗∗∗

(0.000)
0.0002
(0.000)

HDDs 1986–2010 (18 ◦C) 0.0000
(0.000)

0.0000
(0.000)

0.0001∗

(0.000)
0.0001∗∗∗

(0.000)
AC 0.0826∗∗∗

(0.031)
0.4029∗∗∗

(0.151)
CDDs 1986–2010 (23 ◦C) 0.0029∗∗∗

(0.001)
0.0011∗∗∗

(0.000)
0.0006∗∗∗

(0.000)
0.0003
(0.000)

HDDs 1986–2010 (18 ◦C) 0.0000
(0.000)

0.0000
(0.000)

0.0001∗

(0.000)
0.0001∗∗∗

(0.000)
AC 0.0827∗∗∗

(0.031)
0.4050∗∗∗

(0.151)
CDDs 1986–2010 (24 ◦C) 0.0039∗∗∗

(0.001)
0.0015∗∗∗

(0.000)
0.0008∗∗∗

(0.000)
0.0004
(0.000)

HDDs 1986–2010 (18 ◦C) −0.0000
(0.000)

−0.0000
(0.000)

0.0001∗

(0.000)
0.0001∗∗∗

(0.000)
AC 0.0827∗∗∗

(0.031)
0.4096∗∗∗

(0.151)
CDDs 1986–2010 (25 ◦C) 0.0053∗∗∗

(0.001)
0.0020∗∗∗

(0.001)
0.0012∗∗∗

(0.000)
0.0007
(0.000)

HDDs 1986–2010 (18 ◦C) −0.0000
(0.000)

−0.0000
(0.000)

0.0000∗

(0.000)
0.0001∗∗∗

(0.000)
AC 0.0830∗∗∗

(0.031)
0.4167∗∗∗

(0.152)

Notes: Robust standard errors are shown in parentheses, and are adjusted for 1056 clusters
(districts). ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. The relevance of our exclusion restriction holds
across the different CDD threshold-specifications. Country controls include Australia, Canada,
France, Japan, the Netherlands, Spain, Sweden and Switzerland. Column (4) present the Con-
trol Function approach using generalized residuals (“Gen Res”) after the probit model. The
table summarizes the estimation results using different thresholds to compute CDDs. For con-
ciseness, the remaining controls are omitted from the table.

ated estimates of energy demand (Azevedo et al., 2015). The descriptive
statistics in Table 1 actually show that the mean occurrence of CDDs
drops significantly when a 25 ◦C threshold is considered, as opposed to
18 ◦C, from a mean value of 419 to 34◦ days.

As we move towards higher thresholds, from 18 ◦C up to 25 ◦C, the
marginal effect of one additional cooling degree day on the adoption
decision increases significantly, by almost 10 times. Varying the ther-
mal comfort set point influences the marginal effect of CDDs on elec-
tricity expenditures, which rises, but, as found in the main specification,
the coefficient is statistically significant only when the OLS approach is
used. When using the CF approach, the estimated coefficient of the AC
variable does not vary across the different CDD thresholds, suggesting
that the biggest impact of using a different temperature cut-off is on the
first-stage, adoption decision.

5.2. Implications

Empirical results in Section 5.1 show that an increase in CDDs leads
to a wider adoption of air conditioners, and that households with air
conditioners on average spend yearly between 35% and 42% more on
electricity compared to families that do not own such appliances. Con-
sidering that climate change will increase the number of extremely hot
days (Russo et al., 2014), in this section we briefly explore the potential
implications of climate-induced AC adoption on energy poverty, ceteris
paribus. Energy itself is not recognized as one of the basic needs, but
it is needed to provide basic services for sheltering, health and edu-

cation (Pachauri et al., 2004). Despite consistent progress in provid-
ing wider access to electricity, 840 million people have no such access
(World Bank, 2019). Energy poverty is not an issue only in developing
countries (see Pachauri et al., 2004; Pourazarma and Cooray, 2013).
In the US about one-third of households struggle to pay energy bills
(IEA, 2018), and in Europe, the population affected by fuel poverty
ranges from 9.7% to 15.11%, depending on the member state (BPIE,
2014). Here we only present an illustrative exercise aimed at showing
the economic significance of the potential distributional impacts of cli-
mate change through energy consumption.16

In order to isolate the impact of global warming through AC adop-
tion, we limit ourselves to considering a change in CDDs, keeping all
other determinants constant to the 2011 level. This is a first-order
assessment that accounts for neither income nor substitution effects.
Considering the role of prices would require a different methodol-
ogy based on a general equilibrium approach. The projected change
in future annual CDDs is computed by utilizing average daily mini-
mum and maximum temperatures from the US National Aeronautics
and Space Administration (NASA) Earth Exchange Global Daily Down-

16 Further exploration of wider ramifications is left for future research. The
literature on energy poverty has offered a broad set of indicators. Addressing
the broader distributional and macroeconomic implications requires a general
equilibrium approach that goes beyond the partial equilibrium analysis of this
paper.
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Fig. 3. Share of income spent on electricity (%) across the eight countries within each income quintile as reported in the EPIC Survey (OECD, 2014).

scaled climate Projections (NEX-GDDP).17 We use the multi-model
median increase in annual CDDs between 2021 and 2060 compared to
1986–2005 period. The simulations are from the higher warming sce-
nario, the Representative Concentration Pathway scenario RCP8.5 (van
Vuuren et al., 2011), which gives a global average temperature increase
of 2 ◦C around the year 2040. We obtain the predicted AC adoption
rates under current and future CDDs, and subsequently compute the
induced change in electricity expenditures. We next use the electricity
expenditures under current and future climate conditions to calculate
a standard indicator of energy poverty – that is, the number of house-
holds with annual electricity expenditures exceeding 5% of household
income (Faiella and Lavecchia, 2019).18

The distribution of electricity expenditure shares across income
groups already provides information on the extent of vertical (across

17 The data includes bias-corrected daily maximum and minimum tempera-
tures on a 0.25◦gridded resolution, simulated by 21 Earth System Models partic-
ipating in the global Climate Model Intercomparison Project round 5 (CMIP5).
Data source: https://cds.nccs.nasa.gov/nex-gddp.

18 There is a broad literature on how to measure energy poverty. For the pur-
pose of this investigation, we focus on one simple indicator.

income groups) and horizontal (within income groups) equity (Pizer
and Sexton, 2019). Fig. 3 shows a declining share of households’ elec-
tricity spending across income quintiles, with the exception of Swe-
den. Spain and Canada show the largest gaps between low- and high-
income households, with poor households spending on average 5% of
their income on electricity, compared to the 1% figure for high-income
households. All countries in our sample include households that spend
more than 5% of household income on electricity. In Canada and Spain,
a significant fraction of households spends more than 10% of their
income on electricity.

Countries exhibit a different degree of horizontal inequality, as illus-
trated by the dispersion of the boxplots within each income group.
Within-income dispersion is largest for the first decile in Spain, Canada
and, the Netherlands, and it tends to decline when moving towards
higher-income classes.
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Table 4
Share of households spending more that 5% of
income on electricity.

Current climate Future climate

Australia 11.5 13
Canada 20.4 21.1
Switzerland 5.1 5.1
Spain 18.5 19
France 8 8.4
Japan 12.8 12.5
The Netherlands 18.1 18.4
Sweden 24.2 24.5

Under the RCP8.5 climate scenario considered in this exercise, the
number of annual CDDs around year 2040 will increase – from as few
as 49 additional degree-days in Sweden, to as many as 302 additional
degree-days in France. Warming induces more households to adopt air
conditioning universally among the countries in our study. Increase in
the adoption of air conditioning ranges from about 3% in Japan to 35%
in France. Increased adoption rates translate into higher annual elec-
tricity expenditures, with additional costs per household ranging from
7 additional euros in Sweden and the Netherlands, to 38 additional
euros in Spain. On average, each household spends at least 20 euros
more per year on electricity in Australia, Canada, and Spain across all
income deciles, whereas the impact of climate change is more limited in
Switzerland, the Netherlands, Sweden, and Japan. Climate impacts tend
to be regressive, and the increase in the share of electricity spending is
relatively larger among the lowest quintiles. With climate change, the
number of energy poor households that spend more than 5% of their
income on electricity rises, though the effect is moderate. The share of
energy poor varies between 24.2% in Sweden and 5.1% in Switzerland.
The extent of the increase in the population of the energy poor varies
from country to country, as shown in Table 4. The share of energy poor
increases the most in Australia, from 11.5% to 13%, and in Canada,
from 20.4% to 21.1%

6. Conclusions

This paper uses a unique dataset to examine to what extent cli-
matic conditions influence households’ electricity expenditures in eight
developed, temperate economies (Australia, Canada, France, Japan, the
Netherlands, Spain, Sweden, and Switzerland). We use a cross-sectional
dataset of geolocated households in these eight countries, which are
characterized by different climatic conditions, which we proxy by cool-
ing degree days (CDDs) and heating degree days (HDDs).

We show that CDDs affects electricity expenditures primarily by
inducing households to purchase and then use air conditioners. Once
the endogeneity of air conditioning is controlled for in the electric-
ity expenditure equation, warm climatic conditions influence electricity
expenditures only indirectly, through the acquisition of air condition-

ers. There do not seem to be other mechanisms through which a hot
climate influences electricity consumption. Instead, cold climatic con-
ditions, measured by HDDs, remain a significant driver of electricity
expenditures, capturing the heating signal for those households that
use electricity for space heating.

Evidence shows that space cooling consistently affects the demand
of electricity, and that extremely high temperature levels drive demand.
Such high-temperature extremes will intensify with global warming.
Thus, the situation requires policy interventions – particularly because
air conditioning may evolve into a new health “need” for vulnera-
ble populations in places that face an increasing number of days with
ever hotter temperatures. Space cooling can put enormous pressure on
electricity systems, and drive up emissions. National policy agendas
should thus prioritize increasing the supply of electricity from renew-
able sources, incentivising both supply and demand of more efficient
appliances, and improving the energy performance of buildings.

Our results suggest that climate change, by increasing the number
of CDDs, could lead to a wider adoption of air conditioning, and there-
fore could lead households to spend a larger share of their income for
electricity. The emerging role of cooling as a new, basic need – even in
countries that traditionally have not “needed” such appliances – could
exacerbate energy poverty. Families might not be able to purchase the
most efficient appliances, due to overall costs and credit constraints.
They might need to divert a larger share of their income to satisfy the
demand for cooling, and away from other types of expenditures, such
as food and education, that contribute to increase welfare. An illustra-
tive simulation exercise based on our empirical estimates shows that
climate-induced increase in electricity expenditures tend to be regres-
sive and could increase energy poverty because households within the
lowest income quintiles are more strongly affected.

Our study is not without caveats. The availability of geocoded data
made it possible to have a heterogeneous sample with respect to several
attributes both within and across countries. Yet, it should be acknowl-
edged that the data reported on electricity expenditures and consump-
tion are not always reliable, an issue that we address by showing that
our results are robust to using a trimmed sample. Energy prices, as
well as appliance prices, are important variables affecting both adoption
and utilization decisions. While the survey used and the cross-country
nature of the analysis make it difficult to include these controls, we
exploit the cross-country dimension of the survey and include country
fixed effects to control for country-specific factors. We note that our cli-
mate indicators (CDDs and HDDs) are computed as an annual average
number of days with temperatures above or below a threshold. Thus,
they do not capture the inter-annual variability in the extremes, which
could also potentially drive decisions related to the adoption and use of
air conditioning. Future work is needed to explore the role of climate
extreme indices, and to extend the analysis to OECD and non-OECD
countries.
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A. Appendix

Table A.1
Estimates for AC adoption and decision on electricity expenditure

First stage Second stage

AIR CONDITIONING EXP ON ELECTRICITY
Control function

VARIABLES coeff. mfx OLS LPM Probit
Res Gen Res

Import AC 1990–2000 × Lat 0.0188∗∗∗

(0.005)
0.0074∗∗∗

(0.002)
CDDs 1986–2010 (18 ◦C) 0.0014∗∗∗

(0.000)
0.0006∗∗∗

(0.000)
0.0003∗∗∗

(0.000)
−0.0002
(0.000)

0.0001
(0.000)

HDDs 1986–2010 (18 ◦C) 0.0000
(0.000)

0.0000
(0.000)

0.0001∗

(0.000)
0.0001∗

(0.000)
0.0001∗∗

(0.000)
Home owner 0.1353

(0.082)
0.0536
(0.033)

0.0346
(0.049)

0.0116
(0.060)

0.0279
(0.056)

Home size −0.0011∗

(0.001)
−0.0004∗

(0.000)
0.0008
(0.000)

0.0010∗∗

(0.000)
0.0008∗∗

(0.000)
N. of other appliances 0.1361∗∗∗

(0.016)
0.0538∗∗∗

(0.006)
0.0492∗∗∗

(0.009)
0.0177
(0.015)

0.0400∗∗∗

(0.013)
Urban area 0.2833∗∗∗

(0.062)
0.1120∗∗∗

(0.024)
−0.2111∗∗∗

(0.042)
−0.2755∗∗∗

(0.048)
−0.2300∗∗∗

(0.045)
HH size −0.1199∗∗∗

(0.036)
−0.0474∗∗∗

(0.014)
0.1118∗∗∗

(0.017)
0.1373∗∗∗

(0.021)
0.1193∗∗∗

(0.020)
Share of members under18 0.5494∗∗∗

(0.163)
0.2171∗∗∗

(0.064)
−0.0588
(0.079)

−0.1786∗

(0.096)
−0.0939
(0.087)

Age of the HH head 0.0000
(0.002)

0.0000
(0.001)

0.0052∗∗∗

(0.002)
0.0055∗∗∗

(0.002)
0.0053∗∗∗

(0.002)
Gender of the HH head (male) 0.1057

(0.065)
0.0418
(0.026)

−0.0863∗∗

(0.036)
−0.1087∗∗

(0.046)
−0.0929∗∗

(0.043)
HH head’s years of post-educ −0.0122

(0.013)
−0.0048
(0.005)

−0.0011
(0.009)

0.0007
(0.010)

−0.0006
(0.009)

Log annual HH income 0.2193∗∗∗

(0.068)
0.0867∗∗∗

(0.027)
0.1527∗∗∗

(0.048)
0.0975∗

(0.052)
0.1365∗∗∗

(0.045)
Energy saving behaviour −0.0226

(0.019)
−0.0089
(0.007)

−0.0386∗∗∗

(0.011)
−0.0333∗∗∗

(0.011)
−0.0370∗∗∗

(0.010)
Country yes yes yes yes yes

AC 0.0525
(0.041)

1.0582∗∗∗

(0.313)
0.3475∗

(0.192)
First stage residuals −1.0217∗∗∗

(0.317)
−0.1751+”>+

(0.109)
Constant −2.9920∗∗∗

(0.736)
4.2562∗∗∗

(0.464)
4.6513∗∗∗

(0.503)
4.3721∗∗∗

(0.449)

F-test 1st stage 20.54 14.96
Prob > F 0.000 0.000
Heterosk. robust Hausman test 10.41 2.57
Prob > 𝜒2 0.001 0.108
Observations 3615 3615 3615 3615 3615
R-squared 0.169 0.171 0.169

Notes: Robust standard errors are shown in parentheses, and are adjusted for 1056 clusters (districts). ∗∗p < 0.01,
∗∗p < 0.05, ∗p < 0.1, +”>+p < 0.11. Post-stratified weights provided by the survey are used to compute the regres-
sions. Country controls include Australia, Canada, France, Japan, the Netherlands, Spain, Sweden and Switzer-
land. The first-stage residuals in column (4) are linear residuals (“Res”) computed after a Linear Probability Model
(“LPM”). In column (5) we calculate the generalized residuals (“Gen Res”) after the probit model.
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Table A.2
Robust Estimates for the expenditure on electricity

Second stage: EXP ON ELECTRICITY

VARIABLES LPM Probit LPM Probit LPM Probit
Res Gen Res Res Gen Res Res Gen Res

AC 1.1900∗∗∗

(0.364)
0.4613∗∗∗

(0.175)
1.1478∗∗∗

(0.316)
0.4188∗∗

(0.163)
1.2001∗∗∗

(0.365)
0.4616∗∗∗

(0.176)
CDDs 1986–2010 (18 ◦C) −0.0002∗

(0.000)
0.0000
(0.000)

−0.0002∗

(0.000)
0.0000
(0.000)

−0.0003∗

(0.000)
0.0000
(0.000)

HDDs 1986–2010 (18 ◦C) 0.0000
(0.000)

0.0000∗∗

(0.000)
0.0000∗

(0.000)
0.0001∗∗

(0.000)
0.0000
(0.000)

0.0000∗

(0.000)
Home owner 0.0058

(0.040)
0.0456
(0.032)

0.0210
(0.039)

0.0550∗

(0.032)
0.0117
(0.040)

0.0513
(0.032)

Home size 0.0013∗∗∗

(0.000)
0.0012∗∗∗

(0.000)
0.0012∗∗∗

(0.000)
0.0011∗∗∗

(0.000)
0.0013∗∗∗

(0.000)
0.0012∗∗∗

(0.000)
N. of other appliances 0.0106

(0.016)
0.0365∗∗∗

(0.010)
0.0130
(0.013)

0.0378∗∗∗

(0.009)
0.0106
(0.016)

0.0369∗∗∗

(0.010)
Effic. windows −0.0113

(0.038)
−0.0083
(0.034)

0.0088
(0.035)

0.0112
(0.029)

Thermal insulation −0.0163
(0.034)

−0.0155
(0.030)

−0.0341
(0.035)

−0.0329
(0.029)

Urban area −0.2789∗∗∗

(0.039)
−0.2338∗∗∗

(0.028)
−0.2701∗∗∗

(0.035)
−0.2274∗∗∗

(0.029)
−0.2820∗∗∗

(0.039)
−0.2361∗∗∗

(0.028)
HH size 0.1432∗∗∗

(0.023)
0.1216∗∗∗

(0.017)
0.1458∗∗∗

(0.018)
0.1248∗∗∗

(0.015)
0.1430∗∗∗

(0.023)
0.1210∗∗∗

(0.017)
Share of members under18 −0.1997∗

(0.105)
−0.1122
(0.081)

−0.1901∗∗

(0.089)
−0.1042
(0.075)

−0.1997∗

(0.105)
−0.1109
(0.081)

Age of the HH head 0.0051∗∗∗

(0.001)
0.0046∗∗∗

(0.001)
0.0056∗∗∗

(0.001)
0.0052∗∗∗

(0.001)
0.0051∗∗∗

(0.001)
0.0046∗∗∗

(0.001)
Gender of the HH head (male) −0.0861∗∗∗

(0.032)
−0.0605∗∗

(0.026)
−0.0924∗∗∗

(0.030)
−0.0695∗∗∗

(0.026)
−0.0866∗∗∗

(0.032)
−0.0607∗∗

(0.026)
HH head’s years of post-educ −0.0074

(0.006)
−0.0090∗

(0.005)
−0.0033
(0.006)

−0.0054
(0.005)

−0.0073
(0.006)

−0.0090∗

(0.005)
Log annual HH income 0.0671∗

(0.034)
0.0937∗∗∗

(0.027)
0.0806∗∗

(0.035)
0.1107∗∗∗

(0.028)
0.0677∗∗

(0.034)
0.0945∗∗∗

(0.027)
Energy saving behaviour −0.0047

(0.010)
−0.0085
(0.009)

−0.0102
(0.009)

−0.0140∗

(0.008)
−0.0039
(0.011)

−0.0078
(0.009)

First stage residuals −1.1031∗∗∗

(0.363)
−0.2140∗∗

(0.103)
−1.0634∗∗∗

(0.318)
−0.1898∗∗

(0.094)
−1.1133∗∗∗

(0.364)
−0.2142∗∗

(0.103)
Constant 5.0095∗∗∗

(0.366)
4.7449∗∗∗

(0.296)
4.7792∗∗∗

(0.366)
4.5337∗∗∗

(0.298)
5.0045∗∗∗

(0.367)
4.7375∗∗∗

(0.296)

F-test 1st stage 20.44 17.44 20.86 17.35 20.32 17.34
Prob > F 0.002 0.000 0.000 0.000 0.000 0.000
Heterosk. robust Hausman test 9.25 4.35 11.15 4.11 9.34 4.33
Prob > 𝜒2 0.002 0.037 0.000 0.042 0.002 0.037
R-squared 0.2125 0.2095 0.2005 0.1979 0.2129 0.2099
Observations 3304 3304 3615 3615 3304 3304

Notes: Robust standard errors are shown in parentheses, and are adjusted for 1046 clusters (districts). ∗∗∗p < 0.01, ∗∗p < 0.05,
∗p < 0.1. Country controls include Australia, Canada, France, Japan, the Netherlands, Spain, Sweden and Switzerland. Columns
(1–2) exclude Japan. Columns (3–4) include house investments in thermal comfort. Columns (5–6) include house investments in
thermal comfort, excluding Japan. The first-stage residuals (“Res”) in columns (1), (3) and (5) are linear, computed after a Linear
Probability Model (“LPM”). In column (2), (4) and (6) we calculate the generalized residuals (“Gen Res”) after the probit model.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.econmod.2020.05.001.
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