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Preface 

 

This thesis is written as a research paper style thesis with adequate background information about 

each of the primary research papers and review to allow the reader to appreciate how the 

publications fit within the broader field of Trypanosoma cruzi research. This has been done in 

accordance with the research degree regulations of LSHTM 2020/2021. The 1st chapter provides 

a broad overview of T. cruzi epidemiology, clinical presentation of Chagas disease and the current 

status of drug and vaccine development. Chapter 2 is a joint-first author review published in 

Parasite Immunology, covering the most up-to-date thinking on how the parasite interacts with the 

host immune system at all infection stages. Chapter 3 provides an overview of the development of 

the parasite reporter strains used in the subsequent publications. Chapter 4 consists of work 

towards identifying the chronic stage localisation, both tissue and cellular, of this parasitic infection 

and is presented as a published first-author manuscript in mBio. Chapter 5 covers work, the aim of 

which was to identify a potential quiescent/dormant stage of the parasite life-cycle, presented as a 

first-author manuscript in Open Biology. Chapter 6 is based on work aimed at establishing why T. 

cruzi is able to persist in hosts that have generated a robust and well characterised immunological 

response. This chapter is presented as a first-author submitted manuscript. All published and 

submitted manuscripts are presented in this thesis after a chapter introduction, that will aid the 

reader in viewing the work within the context of the literature, and a summary that allows me to 

give my views and thoughts on the subjects outside of the word limits required by the publication 

process. Manuscripts are incorporated into this thesis as word documents. Figures and 

accompanying legends appear at the end of each text. The reader may find the published and 

submitted versions on-line if embedded figures within the main text are preferred.   
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Abstract 

 

Trypanosoma cruzi infection is responsible for Chagas disease, a condition that causes 

unacceptable morbidity and mortality throughout poorer populations of Latin America. Due to 

international migration, Chagas disease cases and asymptomatic T. cruzi infections are becoming 

a public health concern globally. At present there is no practical vaccine and the front-line drugs 

are rarely used due to low levels of diagnostic testing, long treatment regimens, unacceptable side 

effects and low efficacy.  

 

Here, we have employed state-of-the-art bioluminescent-fluorescent parasite reporter cell lines in 

experimental murine models to investigate parasite localisation in the chronic stage of 

infection, to assess if the recently reported dormant life-cycle stage can be demonstrated 

in vivo, and to better understand why infections are almost always life-long.  

 

In both the BALB/c and C3H/HeN murine models the gastrointestinal tract (GIT), specifically the 

colon and stomach, were confirmed to be primary sites of parasite persistence. In the colon, 

parasites were most commonly found in the circular smooth muscle layer, occupying the 

cytoplasm of the smooth muscle myocytes. The skeletal muscle in C3H/HeN, but not BALB/c 

mice, was identified as a key site of persistence, with the skeletal muscle fibres being the primary 

host cell type occupied. The skin in both models was shown to routinely harbour bioluminescent 

infection foci and therefore is likely to be a site of persistence, and critical to onward transmission. 

Infection in the acute stage is characterised by a large number of infected host cells, with rarely 

>50 amastigotes per cell. After transition to the chronic stage, even in reservoir sites such as the 

colon, the number of infected cells was extremely low. However, within these extremely rare 

infected myocytes, parasite numbers could be very high, up to 2000 in some cases.  

 

To monitor the rate of parasite replication in vivo, we injected infected mice with the thymidine 

analogue EdU (5-Ethynyl-2-deoxyuridine). Incorporation of this analogue into parasite or host DNA 

identifies cells that are in S-phase during the period of exposure. This revealed that during the 

chronic stage of infection, there was a ~3-fold slow-down in the inferred rate of parasite replication, 

compared with the acute stage. Using a pulse-chase protocol we showed that long-term 

occupation of colonic wall myocytes is not a common feature of the chronic stage infection. We 

cannot exclude the possibility that parasites can enter a dormant state, but we found no definitive 

evidence for the existence of a truly dormant life-cycle stage in our T. cruzi infection model. Our 

interpretation of current data is that T. cruzi replication kinetics in vivo are more analogous to the 
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general slow-down described in Leishmania, rather than the definitive long-term cell cycle arrest 

seen in the Plasmodium hypnozoites or Toxoplasma gondii bradyzoites.  

 

The technical approaches developed during this thesis allowed us, for the first time, to investigate 

the immunological context of large numbers of rare infected host cells in the colonic gut wall at late 

infection time-points. This revealed that a subset of infected host cells can act as a niche in which 

parasites are able to exist in large ‘mega-nests’ in the local absence of otherwise protective 

circulating T-cells. Investigating the molecular mechanisms responsible for this, and how they 

facilitate the long-term survival of the parasite, will be a focus of future work. We also found that 

serum antibody is incapable of maintaining the tight tissue load control characteristic of chronic 

infections, in the absence of circulating T-cells.   
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1. Introduction  

 

1.1 Trypanosoma cruzi: transmission and control 

Endemic to the Americas for millions of years1, Trypanosoma cruzi, the protozoan parasite that 

causes Chagas disease, is widely detected in diverse mammalian species across the region2, 

making elimination impossible. Transmission to humans occurs when the Triatominae insect 

vector becomes established in the domestic environment, particularly in traditional housing built in 

rural areas. Night blood feeding on human occupants leaves parasite contaminated vector faeces 

on the skin. Infective stage parasites are then rubbed into the bite wound or a mucous membrane, 

leading to inoculation. Oral infection is also possible after the consumption of food or drink, 

commonly fruit juices, contaminated with vector faeces. Success in controlling the rate of new 

infections has been achieved by improving housing stock3, making vector colonisation less likely, 

and routine insecticide spraying4. Approximately 6-7 million people are currently infected (WHO, 

2020), mostly in the endemic regions (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 – Migration of people from the endemic countries in Latin America is leading to the global spread of 
infections and adds to the public health concerns of non-endemic countries. Figure taken from Lidani et al 20195. 

 

Migration from endemic countries to North America, Europe, Japan and Australia has driven 

globalisation of the disease with transmission via the congenital or blood/organ 

transfusion/transplant routes possible outside the vector range. The current estimate of the global 

economic cost of Chagas disease is $7 billion per year6. Efforts to halt transmission have had 
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successes7 but are incomplete. T. cruzi infection remains an uncontrolled threat with tens of 

millions at risk.  

 

1.2 Chagas disease in the clinic 

Acute infection in humans is asymptomatic or oligosymptomatic with fever, muscle stiffness, joint 

pain and headaches common (WHO, 2020). Parasite entry into the eye can lead to an obvious 

monocytic infiltration and swelling, referred to as Romana’s sign or a ‘Chagoma’ if the swelling has 

taken place at the insect bite site. A small number of acute cases, particularly in children, can lead 

to complications including meningeal encephalitis, cardiac inflammation/dysfunction and death. It 

has been suggested that a more severe acute stage develops in orally transmitted cases8, but this 

has been challenged in murine models9. Difference in infective load likely explains the 

discrepancy. Acute phase symptoms in human cases, if apparent, resolve over several 

weeks/months to be replaced by the intermediate stage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Of the unknown number of new T. cruzi infections each year, the large majority will experience none or 
only mild symptoms over the first few weeks and months.  A tiny minority, usually children, will experience severe 
cardiac or brain inflammation and a fraction of these individuals will die. In the decades following infection, an 
increasing proportion of cases will experience symptomatic cardiac disease, and for a sub-set, mortality. ~70% of 
human infections remain asymptomatic for life. Figure taken from Bonney and Engman, 201510.  

 

This period is characterised by the absence of clinically recognisable pathology. In ~70% of cases, 

this situation continues until an unrelated mortality. In the remaining ~30% of cases, a spectrum of 

cardiac complications typical of Chagas disease develop at a rate of ~2% per year11. Chagasic 

cardiac disease can include arrythmias and infarctions. Dilated cardiomyopathy or congestive 

heart failure are prevalent at disease end-point12. The current consensus is that the cardiac 
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complications of Chagas disease are the result of inflammatory damage13, although the details of 

how this relates to infection and a possible role of autoimmunity remain undefined14.  

 

In ~10% of cases, sometimes in conjunction with the cardiac symptoms, the digestive pathologies 

develop15. Digestive Chagas disease involves the hyperdilation of organs of the digestive tract, 

most commonly the colon and oesophagus. These pathologies are commonly referred to as 

‘mega-syndromes’ and are responsible for significant morbidity and mortality. The mechanism that 

generates these complications is not well described but has been suggested to be the result of 

inflammatory damage combined with age-related loss of neurones in the gut wall16.  

 

Once the clinical pathologies have become established there is little evidence that drug treatment 

has much benefit (BENEFIT trial17). Treatment is essentially palliative and aims to improve the 

quality of life for patients18. Heart transplants have been conducted with some successes, but 

there are also issues with infection re-bound brought on by immune suppression19. Drug cure does 

appear to have a positive effect if done before the onset of clinical pathology20 and is currently 

recommended by the WHO for all patients with positive serology. Despite this advice, ~1% of 

cases in the endemic regions are treated21, due to a lack of diagnostic testing. In addition, there is 

reluctance to using poor-quality drugs to treat positive cases, the majority of whom will remain 

asymptomatic for life.   

 

1.3 Drugs and clinical trials 

There are two chemotherapy options available in the clinic, benznidazole (BZ) and nifurtimox, 

recently reviewed in Francisco et al 202022. Both are heterocyclic pro-drugs activated by the 

parasite specific mitochondrial enzyme, type 1-nitroreductase (TcNTR-1)23,24. This enzyme 

catalyses the reduction of the nitro (NO2) group on both drugs using flavin mononucleotide (FMN) 

as an electron donor. Downstream reductive metabolism yields a host of cytotoxic compounds 

with multiple targets25. The mode of action (MOA) for both drugs is poorly characterised, although 

DNA mutagenesis has been demonstrated in the case of BZ. Cross resistance to both drugs is 

easily generated in vitro by reduced expression of TcNTR-126. Natural isolates show variable drug 

susceptibility27, but no function-linked polymorphisms at the TcNTR-1 loci have been recorded. 

The mechanisms behind these resistance phenotypes could involve alternative catabolic pathways 

for the pro-drugs28 generating less toxic metabolites, up-regulation of oxidative defence29, 

enhanced DNA-repair pathways30, or decreased drug up-take (Francisco Olmo, in preparation). 

Due to the low rates of usage and the fact that humans are a very minor component of the host 

range, selection of mutations for drug resistance is unlikely to occur at a parasite population level. 

Whether the acquisition of resistance mutations in individual patients is responsible for treatment 
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failures is currently unknown. The main issue with the current front-line compounds is the need for 

long treatment regimens, 30-60 days, combined with adverse side effects. Dermatitis, digestive 

tract intolerance, anorexia, sleeping disorders and headache are commonly reported side 

effects31. Less common, but more serious, is depression of the bone marrow leading to 

neutropenia32. Despite their well validated effect in vitro against multiple clinical isolates33, 

outcomes in patients can be variable34. Nitroaromatic compounds other than BZ and nifurtimox 

have shown pre-clinical efficacy. The lead compound fexinidazole (Figure 3) out performs BZ in 

highly-sensitive bioluminescent mouse models35. This compound has already been licenced for 

treatment of the related kinetoplastid T. brucei36. A phase II clinical trial (DNDi, Fexinidazole for 

Chagas trial) is currently underway with results from Spain due in 2021.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3 – A and B., The frontline drugs Benznidazole (BZ) and Nifurtimox with parts of their respective reductive 
metabolite processing indicated. C., Fexinidazole, another nitroaromatic drug, currently undergoing clinical trials in 
humans as an anti-chagasic agent. Taken from Francisco et al 202022. 
 

The repurposing of anti-fungal drugs has been attempted with the ergosterol inhibitor 

posaconazole, with significant knock-down of parasite load in mice, but not sterile cure37. Results 

in humans have been disappointing (STOP-CHAGAS trial38), highlighting the need for definitive 

pre-clinical cure rather than temporary reduction of parasite load. A related drug targeting the 

same lipid biosynthesis pathway has also had disappointing results in field trial39. The phase II 

(DNDi, BENDITA40) trial reduced the treatment regimen of BZ from 8 to 2 weeks, and the dosage 

from 300 to 100mg/day. The cure rate (~80%), as assessed by repeated PCR (polymerase chain 

reaction) of blood samples during follow-up, was similar to the standard treatment course but with 

fewer toxic effects. A shorter treatment regimen is desired to improve compliance in patients.  
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1.4 Cure vs. not cured 

A major obstacle to better optimisation of front-line drugs and the testing of new compounds is the 

inability to rapidly determine cure of infection, reviewed in Machado-de-Assis et al 201241. The 

most recent clinical trials testing new drugs and optimizing currently available compounds (above) 

have all used repeated rounds of PCR to distinguish cure vs. non-cure. Patient blood samples are 

assayed using the multi copy parasite minicircle mtDNA as a target42. The vast majority of patients 

enrolled on these trials are in the chronic stage of infection, a period when parasite numbers are 

extremely low and the infection focally distributed43. False negatives are a major problem44. An 

alternative method is assaying for reversion to serological negativity by ELISA. However, a 

significant time-lag exists between successful treatment and loss of serum antibodies in both 

murine models and humans45, and evidence suggests not all positive cases can be detected by 

current serological methods46. Despite some recent progress47, determining cure vs. treatment 

failure is still problematic in the clinic and in controlled trials. Current consensus states that 

infections can be more effectively cured in the acute stage48, with current WHO guidance reflecting 

this. However, this has been challenged in murine models49, where chronic infections, which have 

much lower parasite burdens, can be cured more easily. 

 

1.5 Genetic organisation, diversity and evolution of Trypanosoma cruzi 

T. cruzi is a member of the order kinetoplastida and forms part of the Euglenozoa phylum, which 

represents one of the earliest splits in the eukaryotic lineage. This order also contains the African 

trypanosome, T. brucei, and the Leishmania species, that are responsible for the human diseases 

sleeping sickness and leishmaniasis, respectively. The order is named after the morphological 

feature termed the ‘kinetoplast’, which consists of multiple copies of the mitochondrial genome 

(mtDNA) and associated proteins. Each parasite is endowed with a single mitochondrion. The 

mtDNA encodes several proteins essential for oxidative phosphorylation. These genes are 

expressed from maxicircles, circular copies of the mtDNA. Each transcribed mRNA product must 

be ‘edited’ through a series of enzymatic cleavage-ligations to produce the open reading frame 

mRNA for translation. The molecular machinery for this editing is directed by complementary guide 

RNA (gRNA). These guides are transcribed mostly from minicircles, which are catenated small 

circular DNA molecules that co-localise with the maxicircles. The selection pressures that have 

driven RNA editing in the kinetoplastid mitochondria are not known50. High minicircle copy 

numbers (in the 1000’s per parasite) are the basis for the highly sensitive PCR reactions used to 

determine cure in clinical trials (above). By microscopy (Chapter 4), the mtDNA appears as a 3D 

flattened disk of intense DNA stain, which in the amastigote is positioned adjacent to the more 

dimly stained nucleus.  
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Since the advent of wide spread sequencing, it has been clear that there is a huge amount of 

diversity within what is still classed a single species. Chromosomal polymorphism51 and expanded 

families of genes52, often in copy numbers of >2000, are hallmarks of the T. cruzi genome. From 

the whole sequences available to date (UniPro53), ~20,000 protein coding genes are predicted in a 

nuclear genome, which is ~40-50 Mb in size51. The largest of these duplicated families are the 

trans-sialidases (TS) that catalyse the removal of host sialic acid from the extracellular matrix and 

glycocalyx onto acceptor sites on the parasite membrane. Mucins and mucin associated surface 

proteins (MASPs) are the next largest gene families. Unlike in T. brucei54 there is no evidence that 

these large families are mono-allelically expressed55. Their precise role is not fully determined but 

it is hypothesised that the selection of these large groups of surface expressed proteins has been 

driven by immunological pressure from the wide host range.  

 

Genome expression in T. cruzi is also unusual, as in other kinetoplastids. Protein coding genes, 

transcribed by RNA polymerase II (pol II), are arranged in long poly-cistronic transcription units 

with start sites that lack the properties of classical pol II promoters56. Control of gene expression is 

predominantly at the mRNA level, with the polycistronic transcripts undergoing a process of trans-

splicing in which a short splice-leader sequence is added to the 5’-end of each mRNA protein 

coding sequence57. This occurs in concert with polyadenylation, prior to the export of the mRNA 

from the nucleus into the cytoplasm. The stability of individual mRNAs is usually mediated by 

sequences in the 3’-untranslated region (UTR) of the transcript58.  

 

At present, this species diversity is categorised into six distinct typing units (DTUs) (I, II, III, IV, V 

and VI), two of which (V and VI) are hybrids of the II and III lineages. These were originally defined 

on the basis of single nucleotide polymorphisms (SNPs) in 3 housekeeping genes; rDNA, Hsp60 

and GPI (glucose phosphate isomerase)59. Strains in each DTU have been hypothetically linked to 

pathological, drug resistance and virulence phenotypes60, although evidence for this remains non-

definitive. T. cruzi has historically been described as a clonal species that experiences rare 

stochastic hybridization events reviewed in Messenger and Miles, 201561. The 2 major 

hybridization events occurred ~60,000 years ago62 and may even have been a single event 

followed by clonal divergence. The mechanism of genetic exchange is difficult to assess in natural 

transmission cycles but has been shown to take place in vitro63. Figure 4 shows the hypothesised 

fusion of epimastigotes of different clonal lineage followed by recombination and chromosomal 

loss, producing a diploid hybrid with allelic variants from both parents. It has been suggested that 

hybridization events do not just take place on evolutionary time-scales, but are also relevant to 

epidemiological surveillance and case detection by PCR62.   
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Figure 4 – Hypothesised mechanism of hybrid generation in T. cruzi. 2 epimastigotes in the Triatomine vector gut fuse 
to produce a 4 genome copy tetraploid cell. Subsequent loss of genetic material permits a return to the diploid state. 
Taken from Messanger and Miles 201562. 
 

1.6 The life-cycle 

The life-cycle of the parasite was pieced together soon after discovery of the pathogen64. 

Inoculation into a new mammalian host occurs on contact with the faeces of the vector as 

described above. The infecting life-cycle stage, the metacyclic trypomastigote, is fully 

differentiated in the vector midgut. This stage is replication arrested and specifically adapted for 

survival in complement active fluids and for initial host cell invasion. Entry into host cells has been 

widely investigated, reviewed in Epting et al 201065 and Maeda et al 201266. Briefly, interaction 

between parasite and host glycocalyx reduces the motility of the trypomastigote67. Secreted pore-

forming toxins ‘wound’ or ‘puncture’ the host plasma membrane causing an influx of extracellular 

Ca2+ down its biochemical gradient68. The ancient and ubiquitous membrane repair pathway69 

responds to local calcium increase by mobilising lysosomes to translocate from the peri-nuclear 

region and fuse with the plasma membrane stemming the breach. It is hypothesised that T. cruzi 

‘hijacks’ the resulting endocytosis of the inserted lysosomal membrane for invasion. The 

exploitation of this pathway, which is conserved in all nucleated cells, likely contributes to the 

parasite’s ability for promiscuous cell invasion. Trypomastigote cell entry ends in occupation of a 

parasitophorous vacuole (PV) within the cytoplasm, composed of lysosomal membrane. Rapid 

escape is triggered by increased H+ concentration70. Differentiation into the non-motile intracellular 

life-cycle stage, the amastigote, begins in the PV and is completed following escape into the 

cytosol. Replication then occurs by asynchronous cell division71. At the chronic stage of infection, 

replication within host cells can generate up to 2000 parasites within a single cell, termed ‘mega-

nests’72. Differentiation into the replication arrested blood stage trypomastigote completes the 

process. Rupture/lysis of the host cell membrane releases motile, compliment resistant, 

trypomastigotes that disseminate in the lymph/blood and other tissue fluids invading further host 
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cells. Uptake in the insect blood meal occurs from the skin or blood stream, although the kinetics 

have not been defined. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – All intracellular and extracellular stages of the T. cruzi life-cycle – Metacyclic trypomastigotes are 
inoculated into the host where they invade nucleated cells. Differentiation to the amastigote in the cytoplasm is 
followed by repeated cycles of parasite cell division. Differentiation into the motile blood stage trypomastigote, leads to 
the rupture of the plasma membrane and allows dissemination of the parasites. Most trypomastigotes will either enter 
new hosts cells or be cleared by the immune response. The uptake of trypomastigotes, or amastigotes, into the 
Triatomine vector triggers differentiation to the insect stage epimastigote. Epimastigotes go through several rounds of 
cell division, and then undergo differentiation ready for deposition in the faeces on to the next host. Most mammalian 
species can act as reservoirs for the infection, including humans and domestic animals. Taken from CDC73.  
 

The replication cycle is completed by the introduction of trypomastigotes, and possibly also 

amastigotes, into the gut of the insect vector. Differentiation into the replication-competent 

epimastigote leads to amplification of parasites numbers prior to deposition onto the next host.  
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2. Immunology of Trypanosoma cruzi infection  

 

2.1 Contribution to joint-first author review 

As joint-first author, my contribution to the review in Parasite Immunology includes the innate 

detection and effectors sections, and the roles of T-cells in T. cruzi-host interaction. Since the 

publication of this manuscript I have generated new data which adds to the story (Chapter 6). I 

provide additional comment on the new data in section 2.3. Since I only edited and commented on 

the role of B-cells and serum antibody in parasite control, I also take the opportunity to comment 

more broadly on this topic in section 2.3.  

 

See https://onlinelibrary.wiley.com/doi/abs/10.1111/pim.12786 for the on-line version. 
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Abstract 

 

Trypanosoma cruzi is a remarkably versatile parasite. It can parasitize almost any nucleated cell type  and 

naturally infects hundreds of mammal species across much of the Americas. In humans it is the cause of 

Chagas disease, a set of mainly chronic conditions predominantly affecting the heart and gastrointestinal 

tract that can progress to become life threatening. Yet around two thirds of infected people are long-term 

asymptomatic carriers. Clinical outcomes depend on many factors, but the central determinant is the nature 

of the host-parasite interactions that play out over the years of chronic infection in diverse tissue 

environments.  In this review, we aim to integrate recent developments in the understanding of the spatial 

and temporal dynamics of T. cruzi infections with established and emerging concepts in host immune 

responses in the corresponding phases and tissues.  

 

 

Trypanosoma cruzi: A Formidable Foe 

 

Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), is an extraordinarily 

versatile parasite. Its wild transmission cycles across the Americas are maintained by over 100 species of 

haematophagous triatomine bugs. Chagas disease is a zoonosis and T. cruzi infects diverse mammal 

reservoir species, including marsupials, bats, rodents, ungulates, carnivores (including domestic cats and 

dogs), armadillos, pilosans and primates (1). T. cruzi undergoes regulated morphological transitions involving 

at least four developmental forms, each with a distinctive biology e.g. cell structural features, modes of 

motility, surface protein coats (2) and metabolic programmes (3). The epimastigote form replicates in the 

vector’s gut, then differentiates to a highly motile form, the metacyclic trypomastigote, which invades 

mammalian host cells after transmission. Potentially any nucleated cell type may be parasitized in any tissue 

the trypomastigote can reach (4-16). After invasion and escape from a parasitophorous vacuole into the 

cytosol, another transition occurs to the amastigote form, which replicates repeatedly and then differentiates 

to generate a population of pleomorphic tissue/bloodsteam form trypomastigotes. These are released into 

the extracellular space from where they may infect a new cell, in some cases after migration to the 

bloodstream. Alternatively, in the rare event they are taken up in a triatomine blood meal, they can complete 

the cycle by differentiating into epimastigotes. 

 

Mounting evidence shows T. cruzi’s life cycle is considerably more complex than the textbook view. Findings 

include epimastigote-like forms in mammals, asynchronous replication and trypomastigogenesis, asymmetric 

divisions, reversible transitions and formation of apparently quiescent or dormant amastigotes (17-22). The 

morphological, antigenic and spatial variability, combined with active evasion strategies presents a 

formidable challenge to the mammalian immune system. Nevertheless, most infections resolve to a stable 

chronic equilibrium of parasite replication and suppression via a combination of sustained antibody and type 

1 cellular responses. The majority of people (>95%) survive acute infection and progress to a chronic, 

asymptomatic phase. Chagas cardiomyopathy is then estimated to develop at a rate of ~2% per year (23). 
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Disorders of the gastrointestinal (GI) tract develop in a smaller proportion of cases, sometimes in combination 

with cardiac disease (24). Why Chagas pathology only affects a limited subset of tissues in only a specific 

subset of infected people is one of the longest-standing and most important unanswered questions in the 

field.  

 

In this review, our aim is to integrate recent developments in the understanding of the spatial and temporal 

dynamics of T. cruzi infections with established and emerging concepts in host immune responses in the 

corresponding phases and tissues. The result is a view that parasite persistence occurs in a small number 

of privileged tissues alongside highly competent, T. cruzi-specific systemic responses, suggesting a 

substantial degree of compartmentalization, even within tissues. The low-level, yet perpetual chronic 

inflammation has the potential to become pathological, dependent on largely undefined host, parasite and 

environmental factors. Thus, progress in the development of anti-parasitic drugs, adjunct treatments, 

immunotherapies and vaccines is likely to require a much better understanding of the molecular and cellular 

determinants of T. cruzi persistence at the tissue-specific and even hyper-local, intra-tissue scale. 

 

Advances in studies of tissue-specific infection dynamics 

 

While T. cruzi must spend some time in extracellular environments of the blood and interstitial fluid to sustain 

infections and ensure transmission, it is predominantly an intracellular parasite of solid organs. Consequently, 

most of what is known of the cells and tissues targeted by T. cruzi comes from experimental animal studies. 

It is difficult to obtain robust data on tissue distribution in human patients, although post-mortem, transplant 

and biopsy results tend to be consistent with animal models. The mouse is the species of choice, but other 

rodents, rabbits, dogs and non-human primates have also demonstrated utility (25). Tissue-specific parasite 

loads can be measured by a range of direct and indirect methods (reviewed in (26). Developments in real-

time bioluminescence imaging methods have underpinned much recent progress in understanding T. cruzi 

infection dynamics (4, 5, 27-31). These systems are based on transgenic parasites expressing luciferases, 

enabling analysis of light signals emitted by parasites in discrete anatomical locations. Major advantages 

include greatly reduced tissue sampling bias and the ability to monitor individual mice over time. 

Bioluminescence lacks the resolution necessary to visualise parasites at individual cell scale, but this can be 

achieved using parasites expressing fluorescent reporters (21, 32, 33), an approach that becomes particularly 

powerful when luciferase-fluorescence fusion proteins are employed (22, 34) (Figure 1). The possibility to 

integrate these imaging methods with analyses of concomitant immune responses (35) holds considerable 

promise for advancing our understanding of T. cruzi – host interactions.  

 

Stage 1: T. cruzi systemic colonisation and innate responses 

 

In vectorial transmission scenarios, infection results from contamination of the triatomine bite wound or of 

mucosal membranes with trypomastigotes present in the bug’s faeces. Transmission may also occur orally, 

via contaminated food or drink, in utero, and by blood transfusion and organ transplant. Several mechanisms 
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of host cell invasion have been described and reviewed elsewhere (36). In humans, oedema with intense 

mononuclear infiltrate at the entry site in the skin (chagoma) or eye (Romaña’s sign) indicate an initially very 

localised infection (37). However, the true extent of trypomastigote dissemination is not clear and surprisingly 

little is known at the cellular level about the actual sites of primary invasion and the first cycle of intracellular 

parasite replication, which lasts approximately one week. Experimental animal studies indicate that the route 

of inoculation is a key factor. Intra-peritoneal injection results in similar parasite numbers in diverse tissues 

after six days (38). Conversely, oral transmission results in highly localised infections in the stomach or 

nasomaxillary tissues (31, 38, 39) with initial infection of the local mucosal epithelium (40). Similarly, after 

conjunctival inoculation, parasites first invaded and replicated in the mucosal epithelium of the nasolacrimal 

ducts and nasal cavities (41).  

 

At the end of the first intracellular cycle, trypomastigotes are released and the infection disseminates widely. 

T. cruzi is pan-tropic in the acute phase of infection (reviewed in (26). However, the relative intensity of 

infection in different cell or tissue types again varies depending on the inoculation route, inoculum size as 

well as intrinsic factors such as replication rate and capacity for dissemination. Sites reported to harbour the 

highest acute infection intensities include skeletal, smooth and cardiac muscle and adipose tissues. Some 

studies have described T. cruzi strains with an increased capacity to parasitize mononuclear phagocytes (13, 

42, 43) or to cross the blood-brain barrier (12, 44, 45).  

 

Sensors 

 

The host response to T. cruzi primary infection is considered to be markedly delayed by comparison with 

model intra-cytosolic pathogens (46, 47). The main features of the immediate response are the induction of 

type I interferon signalling and recruitment of neutrophils, macrophages and Natural Killer (NK) cells (48). 

Ca2+ mobilization, associated with invasion of myeloid cells, can activate the transcription factor NFATc1, 

leading to interferon gamma (IFNγ) production by NK cells and dendritic cell (DC) maturation (49). T. cruzi 

also produces multiple B cell mitogens that directly trigger a robust T-independent B cell activation (50-52). 

 

Few canonical pathogen associated molecular patterns (PAMPs) are conserved in T. cruzi. The best 

characterised innate pattern recognition receptors (PRRs) for T. cruzi PAMPS are Toll-like receptor (TLR) 2 

and 9. These recognise, respectively, the glycophosphatidylinositol (GPI) anchor of parasite surface proteins 

and parasite genomic DNA, specifically unmethylated CpG motifs (53, 54). TLR2+9 double knockout mutant 

mice suffer higher, parasitaemias and significantly increased mortality rates (50% by day 50) compared to 

wild type controls (54). Mice lacking both MyD88 and TRIF, thus rendered incapable of any TLR-mediated 

responses, have uncontrolled parasitaemia and 100% mortality by 18 days of infection (55). This may be 

explained by the additional involvement of TLR4 and TLR7, recognising parasite glycoinositolphospholipids 

and RNA respectively (56-58). 
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Many T. cruzi surface proteins are extensively glycosylated (2) and several host galectins (a widely expressed 

family of carbohydrate-binding proteins) are able to bind them (59). Interactions involving several different 

galectins may actually help T. cruzi bind to and enter host tissues (60, 61), but this does not appear to directly 

trigger any anti-parasitic effector activity. As an occupant of the host cell cytoplasm, it is likely that T. cruzi 

triggers cytosolic sensors. The best known candidate systems centre on NOD-like receptors (NLR). Mice 

lacking the NOD1 receptor suffer 100% mortality to acute T. cruzi infection, although the mechanism 

explaining this remains obscure (62). Studies also support a parasite-suppressive role for the related 

receptor, NLRP3 and downstream components of the inflammasome complex that drives IL-1β and IL-18 

secretion (63-65), although as with NOD1 it is not clear if this involves direct sensing of T. cruzi in vivo.  

 

The majority of studies of innate immunity to T. cruzi have focussed on responses in myeloid cells, especially 

macrophages, yet these could represent only a minor subset of the parasite’s early targets. Transcriptomic 

analysis of in vitro infected human fibroblasts revealed that inflammatory cytokine expression peaked 24 hr 

post-infection and the TLR-independent type I IFN response became the dominant signature by 72 hrs, which 

was suggested to promote, rather than inhibit, the infection (66). Trypomastigotes have a diverse secretome 

comprising proteins in native form and also as cargoes in shed extracellular vesicles (67-70). Important 

research questions to address include whether and at what point these are relevant for triggering PRRs in 

vivo and whether there are equivalent processes for intracellular amastigotes. 

 

After the first cycle of replication ends, host cells rupture and trypomastigotes escape into the extracellular 

environment. At this point, trypomastigotes may invade local tissue cells, enter infiltrating leukocytes or 

migrate via the blood or lymphatics to other tissues. The factors governing the parasite’s propensity to stay 

local or not remain obscure. Host cell rupture releases intracellular material rich in danger associated 

molecular patterns (DAMPs), further stimulating innate signalling via TLRs as well as, for example, 

degranulation of nearby mast cells and activation of myeloid cells. Recently, sensing of oxidised DNA in 

extracellular vesicles via cyclic GMP-AMP Synthase (cGAS) was identified as an important DAMP recognition 

mechanism for macrophage activation (71). As a eukaryote, T. cruzi has endogenous orthologues of many 

mammalian DAMPS, potentially blurring the boundaries between DAMPs and PAMPs. For example, 

recombinant T. cruzi High Mobility Group B (TcHMGB) protein can induce production of nitric oxide (NO) in 

macrophages in vitro and expression of genes encoding inflammatory cytokine genes in vivo (72).  

 

Signal Mediators and Amplifiers 

 

A plethora of cross-talking signalling pathways are activated downstream of the PAMP/DAMP sensors 

described above. Signalling converges on a set of transcription factors, (NF-κβ, AP-1, IRF3) which results in 

production of inflammatory cytokines (73-76). Critical amongst these are the IL-12 family, IFNγ and TNF-α, 

the canonical drivers of type 1 immune responses required to tackle intracellular infections. IL-12 is essential 

for the early activation of recruited natural killer cells and their production of IFN-γ; both these cytokines are 

indispensable for control of parasite loads and avoidance of acute mortality (77). TNF-α is also essential for 
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survival of the acute stage (78). IFNy and TNF-α activate parasite destructive effector mechanisms via 

autocrine and paracrine signalling. Beyond the canonical IL-12-IFNγ axis, signalling through the IL-1 receptor 

is essential for early (10 days p.i.) induction of myocarditis needed to control heart parasitism (65).  

 

The local tissue response is amplified via chemokine-driven recruitment of inflammatory monocytes, 

macrophages, neutrophils and, eventually, antigen (Ag) specific CD4+ helper T and CD8+ cytotoxic T 

lymphocytes (Th and CTL) to the site of infection (79). Microvascular plasma leakage into parasitized tissues 

is promoted further by activation of mast cells and the kallikrein-kinin system (KKS), via a mechanism 

involving cruzipain, a parasite-derived cysteine protease (80). The resulting tissue oedema and upregulation 

of associated receptors on cardiomyocytes may increase specific susceptibility to heart invasion as the 

infection progresses (81).  

 

Innate effectors and their evasion 

 

The infection, cell necrosis and associated inflammatory signalling result in the activation of a range of innate 

effector mechanisms. There is some evidence from analysis of Beclin-1-deficient mice that host cell 

autophagy can provide some marginal early restraint on parasite replication (82). Epimastigotes are 

complement-sensitive but trypomastigotes have effective molecular mechanisms providing resistance to 

complement-mediated lysis (83). Infiltrating NK cells, in addition to being major producers of IFNγ, may have 

direct parasiticidal effects involving release of cytotoxic granules (84).  

 

An unusual population of innate-like CD8+ T cells with activation characteristics of (e.g. production of 

granzyme A and IFNγ) expands in the thymus of T. cruzi-infected mice. These cells appear to be driven by 

antigen-independent mechanisms and adoptive transfer experiments of thymocytes from infected mice 

suggest they might provide protection from otherwise lethal challenge (85); however, the underlying 

mechanisms conferring this protection remain to be elucidated. 

 

Reactive oxygen and nitrogen species (ROS, RNS) are principal effectors for T. cruzi control. These are 

generated by IFNγ/TNF-α-activated macrophages and via diverse other mechanisms in non-phagocytes and 

extracellular compartments (86). They are a significant cause of collateral damage in infected tissues, but 

high levels are necessary because T. cruzi has an extensive and highly effective anti-oxidant defence system 

(86, 87). ROS can even promote T. cruzi replication, by a mechanism proposed to depend on the increased 

availability of intracellular Fe2+ ions that the parasite can utilise (88). Nitric oxide (NO) is directly parasiticidal 

in vitro (89) and inducible NO synthase (iNOS) is essential for in vivo parasite control in some models (62, 

77, 90), although not in others (63, 91).  

 

Despite the plethora of innate responses, the overall effectiveness of T. cruzi’s evasion mechanisms renders 

it debatable whether they actually have any meaningful impact on most infections apart from the induction 

and conditioning of the adaptive response (see below). Indeed, T. cruzi infections are 100% lethal in mice 
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that are genetically incapable of mounting adaptive responses (SCID, RAG, nude) (92-94) and 

bioluminescence imaging studies show that parasite growth in such mice is close to exponential (4).  

 

Stage 2: Adaptive responses take control 

 

The infection usually peaks, in terms of total parasite numbers and the extent of tissue dissemination, at a 

point between 2 and 3 weeks post-infection. Over the following weeks, parasite loads are reduced by several 

orders of magnitude by a highly adaptive immune response. Although they are ultimately thought to be non-

sterilizing in virtually all cases (95), it is worth reviewing the key features at the systemic level before we 

consider the tissue-specific host-parasite dynamics at play in the chronic phase. We also refer readers to 

more in-depth reviews of adaptive immunity in Chagas disease (46, 96, 97).  

 

T and B cell activation 

 

T. cruzi cycles between the cytosolic and extracellular compartments and, accordingly, its control is critically 

dependent on the generation and deployment of Ag-specific CTL to infected tissues and antibody production 

by B cells. This is evidenced by relevant gene disruption and antibody-mediated depletion experiments in 

mice (98-102). Mature DCs in the spleen and lymph nodes draining infected tissues, conditioned by the 

inflammatory environment, activate parasite Ag-specific CD8+ and CD4+ T cells from the naïve pools (47, 

103). Activated T cells then migrate to sites of infection to exert effector mechanisms or in some cases begin 

differentiation to memory subsets (102, 104). A number of factors may impinge on the quality and magnitude 

of the T cell response, including parasite-driven immature thymocyte apoptosis (105) and direct and indirect 

modulation of DC-T cell interactions (106-109). In terms of antigen specificity, the murine T cell repertoire is 

focussed mainly on a small number of immunodominant epitopes from highly expressed surface proteins 

(110-112) but in humans there is evidence of a broader hierarchy (97, 113) and immunodominance appears 

not to directly contribute to chronicity.  

 

The role of CD4+ T cells is not well characterised, but the association between HIV infection and life-

threatening acute T. cruzi relapse in humans (114) indicates they are critical for parasite control. Accordingly, 

mice that are specifically incapable of mounting CD4+ T cell responses experience 100% acute lethality of T. 

cruzi infection (115). This has been linked to loss of support for parasite-specific CD8+ T cell cytotoxicity 

against i.v. delivered splenocytes loaded with parasite antigens from the ASP-2 gene (99), but not in similar 

experiments using trans-sialidase peptides (116). This may reflect differing requirements for T cell help 

depending on immunodominance hierarchies (97). Nevertheless, the majority of CD4+ T cells develop a 

protective Th1 profile and contribute further to the abundance of type 1 cytokines, particularly IFNγ (93, 117-

119). Broader phenotypic diversity does develop alongside Th1 predominance, including minor Th17, 

Th1/Th17 intermediate and possibly Th2 subsets in some circumstances (118, 120-124). There is no clear 

consensus on the relevance of these to parasite control and immunopathogenesis, but this is an active area 

of research. The CD4+ T cells that provide B cell help are termed follicular helper T cells (Tfh), and represent 
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a distinct CD4+ T cell programme regulated by the master transcription factor Bcl6. Although activation of Tfh 

responses to T. cruzi infection has not been explored in detail, it is reasonable to hypothesize that they are 

required for the production of T. cruzi-specific antibodies and ultimate control of the infection. In line with this, 

IL-6, which supports Tfh differentiation (125, 126), is required for the control of parasitaemia and splenocyte 

recall response to parasite antigens (127), but not for T-cell independent polyclonal activation of B cell 

responses (51).  

 

The initial B cell response in the spleen is estimated to be at least 10-fold higher as compared to LNs draining 

infected tissues (52) and a robust T. cruzi-specific antibody response is still generated there alongside the 

aforementioned polyclonal B cell activation and non-specific hyper-gammaglobulinaemia. The parasite-

specific antibody response is presumably driven by B cell activation involving T cell collaboration because it 

is accompanied by a robust germinal centre B cell response and production of parasite-specific class-

switched antibodies (52). The specific and non-specific splenic B cell responses appear to be either 

differentially regulated or carried out by different B cell compartments because only the latter depend on the 

cytokine B cell activating factor (BAFF) (128).  

 

Activation of auto-reactive T and B cell clones, the latter leading to the production of autoantibodies, are well 

described phenomena during T. cruzi infection (129). Polyclonal B cell activation, host molecular mimicry by 

parasite proteins and bystander activation caused by tissue damage have been postulated as underlying 

mechanisms (129). There is broad evidence and consensus that parasite persistence is required to sustain 

these autoimmune responses (130-132). Nevertheless, the significance of autoantibodies and auto-reactive 

T cells for Chagas disease pathogenesis and the mechanisms involved in their production during T. cruzi 

infection remain major unresolved questions. 

 

It has been suggested that the non-specific polyclonal B cell activation contributes to delay the generation of 

T. cruzi-specific B cell responses, thus contributing to parasite escape and establishment of chronic infections 

(133, 134). Polyclonal B cell activation is associated with rapid, innate-like production of IL-17 and IL-10 (135, 

136) but the wider relevance is unclear as both protective (136-138) and deleterious (51, 52, 135) roles for 

such innate-like B cell responses have been documented in different models. The infection also causes a 

transient, yet marked loss of immature B cells in the bone marrow in experimental mouse models, possibly 

further compromising the response (139). 

 

The kinetics of the adaptive response depend to some extent on the early parasite load (99) but in most 

cases it coincides with second or third intracellular cycle and is considered relatively delayed (47). 

Nevertheless, substantial immune memory can be generated quite rapidly: mice whose infections were cured 

by benznidazole anti-parasitic chemotherapy starting 4 or 14 days after infection were then able to restrict 

acute parasite loads in challenge infections by 85% and >99% respectively (35). Notably though, very few of 

these animals achieved sterile cure and they progressed to chronic phase infections that were comparable 
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to primary infections in naïve mice. This raises important questions about what is mediating memory 

responses to secondary infections, for example whether they are T cell-dependent or independent.  

 

Adaptive effector mechanisms 

 

Lymphocytes contribute to control of T. cruzi by production of type 1 cytokines that amplify the prior, innate 

ROS and RNS production in infected tissues. Their signature, direct effector mechanisms are also crucial. 

These include the principal CTL effector pathways, namely perforin-mediated delivery of granzymes and 

FasL-induced apoptosis. In particular, granzymes cause fatal oxidative damage to T. cruzi, which can be 

mitigated by ROS scavenging drugs or overexpression of parasite antioxidant genes (140). This may 

potentially be accelerated in humans by granulysin-mediated delivery of granzymes directly into intracellular 

parasites themselves (140). Mice do not have a granulysin gene but in most cases still achieve good control 

of parasite levels, so immune pressure may be more focussed on extracellular amastigotes after host cell 

apoptosis and on clearance of trypomastigotes. These canonical pathways are essential in some 

experimental models (140-142) but dispensible in others (98, 143). The difference is likely explained by other 

pathways providing sufficient compensatory effector capacity in lower parasite load or virulence scenarios.  

 

T. cruzi-specific lytic and neutralizing antibodies are normally detected in humans and animal models (144-

147). These are mostly produced in the spleen; antibody secretion by bone marrow cells obtained from 

acutely infected mice is below detection level (52). This suggests that either plasma cells generated in 

secondary lymphoid organs during acute T. cruzi infection are unable to migrate to the bone marrow, or that 

the bone marrow may not sustain plasma cell survival during the early phase of the infection, or that plasma 

cell homing in the bone marrow is somehow delayed during T. cruzi infection. Whether this is a temporary 

mechanism or extends throughout chronic infection, and whether it is a direct mechanism driven by presence 

of the parasite in the bone marrow, are unknown.  

 

Antibodies target extracellular trypomastigotes but they may also have a role in binding amastigotes released 

from ruptured host cells, for example, downstream of CTL-mediated lysis. Opsonized parasites are efficiently 

taken up by tissue-resident macrophages, especially in highly-vascularised organs e.g. liver, lung, spleen 

(148, 149). It is not clear how a subset of trypomastigotes evade this fate to sustain chronic infections. Beyond 

their role as antibody producers, B cells are critically required for functional T cell responses to control T. 

cruzi infection (102, 150-152) and production of cytokines including IL-17 and IL-10 (135, 136).  

 

Deactivating / Regulatory Mechanisms 

 

The strong and sustained systemic inflammation, host cell lysis and tissue parasite killing in this control phase 

causes potentially dangerous levels of collateral tissue damage. Infections may become overtly symptomatic 

and in some cases fatal, particularly if the CNS is involved (153). Tissue-protective immune regulatory 
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pathways are therefore initiated to dampen the inflammatory response, to the benefit of the remaining 

parasites, which form the founding populations of the chronic infection reservoirs (Figure 3).  

 

The factor with the strongest evidence for an important regulatory role is probably the cytokine IL-10. Early 

studies of IL-10 deficiency using high virulence Tulahuen strain parasites reported better control of acute T. 

cruzi parasitaemia at the expense of rapidly fatal (~2 weeks p.i.) pathogenic inflammation e.g. TNF-α-

mediated toxic shock (154, 155). More recent studies point to additional complexity. Rôffe et al (2012) 

reported IL-10 was essential to protect against later mortality (3-6 weeks p.i.) associated with poor control of 

Colombiana strain tissue parasite loads and increased myocarditis intensity. In still lower virulence scenarios, 

the absence of IL-10 has been associated with reduced CTL effector function but without any increased 

mortality (156). Both CD8+ and CD4+ T cells are IL-10 sources and a high proportion simultaneously produce 

IFNγ (157), likely supported by IL-27 production (158) and potentially in direct response to parasite shed 

trans-sialidase (123). B cells also produce IL-10 (135) and overall IL-10 production is lower in B1 B cell-

deficient mice early during infection (159). CD11b+ B1 B cells from asymptomatic, infected individuals show 

increased capacity to produce IL-10 compared to those with cardiac disease symptoms (138). In addition, 

recent data shows that when compared to non-infected donors, chronically T. cruzi-infected individuals with 

cardiac manifestations have an increased proportion of immature transitional CD24highCD38high and naïve B 

cells able to produce IL-10 upon in vitro re-stimulation (160). This suggests B cell-intrinsic IL-10 signalling 

might be important to regulate the intense adaptive immune response, as is the case for other parasitic 

infections (161), but direct mechanistic evidence is required to support this hypothesis.  

 

Transforming growth factor beta (TGF-β), another potent regulatory and tissue protective cytokine, can be 

activated from its latent form by a T. cruzi protease (cruzipain) in vitro (162). TGF-β signalling to T cells 

reduces the risk of late acute mortality and this appears to involve inhibition of cell proliferation rather than 

suppression of inflammatory cytokine production (106, 163). Other factors potentially contributing to early 

inhibition of adaptive immune effector responses include suppressor of cytokine signalling (SOCS) (164), 

regulatory CD4+ T cells (Tregs) (106, 165) and induction of various regulatory/suppressive myeloid cell 

phenotypes, for example expression of iNOS-limiting arginase (109, 166, 167).  

 

The overall result of these deactivating pathways is the avoidance of potentially life-threatening levels of 

inflammation and tissue damage at the expense of incomplete clearance of the infection (Figures 2 and 3). 

The situation at the tissue-specific level, however, is likely to be more complex because only a subset of 

tissues serve as privileged sites for T. cruzi persistence in the chronic phase (26). 

 

 

Stage 3: The 1% and the chronic host-parasite equilibrium 

 

In the chronic phase, blood parasitaemia is typically sub-patent and tissue parasite loads are between 0.1 

and 1% of their levels in the acute phase (4, 29). Animal imaging studies (4) and serial analysis of patient 
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blood by PCR (168) show infection levels fluctuate over time, pointing to a dynamic equilibrium between 

intracellular parasite replication, antibody and effector T cell activity. The state of this equilibrium at the 

organismal level is the product of many discrete host-parasite interactions within and between multiple tissues 

(Figure 2). Over time, these interactions can become overtly pathological and subsets of infected people 

develop a spectrum of symptomatic forms of Chagas disease, as reviewed elsewhere (169).   

 

Given the difficulty in sampling tissue parasites from humans, most of our knowledge on their tissue 

distribution comes from animal models. These indicate that chronic infection dynamics are shaped by the 

combination of T. cruzi strain and the host’s genetic background. It appears that the GI tract, mainly the large 

intestine and stomach, is a universal site of continual parasite persistence in mice (29, 170, 171). The well-

studied parasite strain CL Brener is also commonly detected in the skin of BALB/c mice (38) but only 

sporadically in other sites e.g. skeletal muscle, lung, adipose. More virulent parasite strains (e.g. Brazil, 

Colombiana, Tulahuen, VFRA) and certain mice (e.g. C3H) are associated with more disseminated infections, 

including heart and skeletal muscle localisation (29, 170-176). There have been few robust data on the 

relevant cell types within any of these chronically infected tissues, but recent in vivo imaging analysis at single 

cell resolution revealed smooth muscle cells as the most frequent targets in the colon (176).  

 

A population of central memory T cells (TCM) is detectable during the chronic phase of infection, which may 

stem from a lack of parasite antigen in lymph nodes draining non-parasitized organs (104, 177). These TCM 

are maintained after benznidazole-mediated cure of chronic infection and provide protection against re-

challenge after transfer into naïve mice (178). Homologous challenge infections, in drug-cured mice 

themselves, result in acute parasite loads less than 1% of those in primary infection controls and fully sterile 

protection is seen in around half of the animals (35). The determinants of both categories of protection remain 

to be defined, but it is likely critically dependent on the TCM population. It is likewise an open question whether 

TCM-derived effectors contribute to suppression of tissue parasite numbers during chronic infections, 

particularly in organs subject to cycles of episodic re-invasion and clearance. 

 

The mechanisms of immune evasion sustaining the host-parasite equilibrium during perpetual chronic 

infection are not necessarily the same as those that prevent sterile clearance in the acute to chronic transition, 

which resemble a conserved host tissue-protective, anti-inflammatory programme. They are also harder to 

study, both from the parasite perspective, owing to the scarcity of T. cruzi foci in tissues, and from the host 

perspective because of the need for conditional intervention techniques that can be applied after acute 

infections have been brought under control. The essentiality of CD8+ T cells for continued suppression of 

parasite numbers in the chronic phase is reasonably clear. Parasite loads rapidly rebound upon treatment 

with anti-CD8 antibodies, almost to the level seen with pan-adaptive immunosuppression using 

cyclophosphamide (175, 179), although depletion of CD8+ NK cells and DCs may contribute to the relapse 

in addition to CTLs. Unlike in the acute phase, experimental anti-CD4 treatment has no effect on chronic 

parasite loads (179). Nevertheless, severe reactivation of Chagas disease in HIV co-infected patients 
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indicates CD4+ T cells are vital for control and the frequent presentation of meningoencephalitis points to a 

specific role in protection against invasion of the CNS (114).  

  

There are various non-exclusive hypotheses for how a small subpopulation of parasites reliably evades 

sterilisation in the face of the sustained adaptive immune pressure. However, in our view none currently has 

compelling evidence supporting a mechanistic explanation so this will remain an active area of investigation. 

 

1. Antigenic diversity 

 

African trypanosomes famously evade host immunity using a system of antigenic variation, involving tightly 

regulated mono-allelic expression and switching of variant surface glycoprotein genes (180) but this is not 

conserved in T. cruzi. The T. cruzi genome contains enormous repetitive arrays of surface protein genes and 

there is evidence that some of these gene families or sub-families are reserved for expression in specific life 

cycle stages (2, 181). Signatures of strong positive selection in surface gene families (182) indicate immune 

pressure for diversification of antigens. At the population level, simultaneous expression of massively diverse 

‘decoy’ antigens may conceivably prevent T or B cell clones specific to any particular epitope from reaching 

sufficient frequency in infected tissues and/or effector capacity (83, 112, 181, 183) but direct evidence for this 

is lacking.  

 

Very little is known about how variant copy expression may be controlled at the individual cell level i.e. 

amongst amastigotes and amongst trypomastigotes. Investigating this is difficult, because gene control is 

mainly post-transcriptional and suitable variant-specific monoclonal antibodies are lacking. Available 

evidence suggests that within a class of surface proteins, expression in individual parasites is not strictly 

mono-allelic. For example, trypomastigotes can co-express at least two members of the mucin (184) and 

GP85 families (183). The finding that a specific mucin-associated surface protein (MASP) peptide was only 

expressed in ~5% of parasites indicates that neither is expression totally promiscuous at the protein level 

(185). Mechanisms controlling the expression of parasite surface proteins may therefore vary between gene 

families or sub-families. T. cruzi may also regulate its antigenic repertoire expression between infection 

phases and between different host cell types. This requires much deeper analysis because currently there is 

insufficient data to rule out clonal antigenic variation as a mechanism contributing to perpetual immune 

evasion. 

 

2. Parasite dormancy 

 

Many pathogens use dormancy or metabolic quiescence as an immune evasion strategy (186, 187). At the 

population level, T. cruzi amastigotes can rapidly decrease their replication rate in response to changes in in 

vitro culture conditions but this is a function of a longer G1 phase rather than exit from the cell cycle (188). 

Individual non-replicating amastigotes also occur spontaneously in vitro and are less susceptible to the anti-

parasitic drug benznidazole (21). The frequency of 4-day replication arrested in vitro amastigotes has been 



41 
 

estimated to be approximately 0.1 – 6 %, depending on the parasite strain (189). The in vivo relevance of 

these phenomena remains almost completely unknown and will be hard to establish definitively, not least 

because neither amastigote DNA/kDNA replication, nor differentiation to constitutively non-replicating 

trypomastigotes is synchronised (22). Nevertheless, it is reasonable to suspect that slowly replicating or 

transiently arrested intracellular parasites could have a selective advantage under immunological pressure 

and play a role in sustaining chronic infections. 

 

3. Cytokine-mediated suppression of type 1 responses 

 

T. cruzi may continue to benefit from the above-mentioned conserved negative-feedback mechanisms that 

damp down the acute inflammatory response. However, administration of blocking antibodies targeting IL-10 

signalling had no discernible effect on chronic T. cruzi infections (175). This is in stark contrast to the well-

established role of IL-10 in promoting chronicity of infections with the related parasite Leishmania spp. (190), 

which predominantly infects professional antigen-presenting cells. Chemical inhibition of the TGF-beta type 

I receptor significantly alleviated cardiac pathology and function in chronically infected mice, but this was not 

associated with any change in heart parasite loads (191). It should be noted that parasite loads in the chronic 

phase are often close to the limit of detection, which means that in these types of intervention experiment it 

is relatively clear when immunity is compromised, but difficult to conclusively demonstrate a significant 

enhancement of infection control.  

 

Cytokine gene expression in heart tissue from human patients with severe chronic Chagas cardiomyopathy 

remains strongly polarised to a type 1 profile (192). Type 2 cytokine (IL-4, IL-5, IL-13) expression is reported 

as undetectable (192) and while it is a feature of some animal models, this is apparently not at the expense 

of IFNγ production (170). Interestingly, helminth co-infection is associated with reduced control of T. cruzi in 

a subset of patients, potentially as a result of a modulation of the cytokine balance (193). Overall, cytokine-

mediated suppression of anti-parasitic type 1 inflammation likely influences the host-parasite equilibrium and 

long-term disease progression, but there is little evidence that it explains T. cruzi chronicity. 

 

4. Immunological exhaustion 

 

T cell exhaustion is a feature of many infectious and non-infectious diseases that involve chronic antigen 

stimulation and this has been a recent focus of research in the Chagas disease field. Analysis of PBMCs 

from Chagas patients revealed increased frequencies of CD4+ and CD8+ T cells expressing exhaustion 

markers e.g. PD-1+, CTLA4+, TIM-3+ (194-196). Experimental studies suggest the development of exhaustion 

characteristics may be promoted by suboptimal B cell (152), IL-17A (197) or IL-10 (198) immune responses. 

Nevertheless, in chronically infected children and mice, both effector and memory CD8+ T cells retain 

cytotoxic capacity and there is little to no evidence of functional exhaustion (119, 152, 175, 178, 199). 

Infection chronicity may also promote dysregulation of the Tfh and B cell compartments, for example, distinct 

phenotypes and frequencies of these have been noted between symptomatic and asymptomatic T. cruzi-
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infected individuals (200, 201). Whether these alterations reflect a process of B-cell exhaustion which 

negatively impacts parasite control remains to be further elucidated. In summary, while deterioration of 

lymphocyte functional capacity may potentially be associated with progression from asymptomatic to 

symptomatic disease states, via progressively loosened control of parasite loads, exhaustion does not seem 

to be a core reason for parasite persistence per se.  

 

5. Local and hyper-local immune privilege  

 

The realisation that long-term T. cruzi infections exhibit an unexpectedly high degree of spatio-temporal 

dynamism (4) indicates that host responses and evasion mechanisms, including those set out above, need 

to be studied more intensively at the tissue-specific level. Motile trypomastigotes probably traffic between 

tissues in both blood and lymph, but there is also evidence that a significant amount of parasite trafficking 

between tissues may occur inside SLAMF1+ myeloid cells, akin to a Trojan horse strategy (202). 

Consequently, parasites from privileged reservoir sites, such as the digestive tract, may seed other, less 

permissive sites such as the heart, resulting in episodic cycles of re-invasion and locally sterilizing host 

responses (26) (Figure 2). Tissue-specific variability in permissiveness is consistent with divergent responses 

observed in different secondary lymphoid organs (203). Moreover, when chronically infected mice are 

immunosuppressed, the infection relapses first in the GI tract and then disseminates to other organs (29). 

Host microbiota may also play a role: its composition can be modulated by T. cruzi infection (204), but it is 

not yet known whether this in turn influences anti-parasite immunity in barrier tissues. 

 

To keep up with the parasite, effector cells must be continually deployed to infection foci in many organs. 

There appears to be no problem with T cell homing and entry into infected tissues (205), which is dependent 

on expression of integrins including VLA-4 and LFA-1 (175, 206), and CXCR3 chemokine receptor signalling 

(207). After extravasation though, the distinct microenvironment of each organ potentially drives phenotypic 

changes to infiltrating cells and in some cases the effect may be tolerogenic and incompatible with local 

sterilisation. For example, skeletal muscle bulk CTLs recovered from early chronic phase mice produced less 

IFNγ and had greatly diminished cytotoxic activity compared to splenic CTLs (208). Similar results have been 

reported for cardiac muscle compared to blood (205). Intriguingly, splenic CTLs adoptively transferred from 

one chronically infected mouse to another retained a high IFNγ response phenotype if they migrated to spleen 

or lung tissue, but lost it if they migrated to skeletal muscle or liver (208). More recently, however, direct ex 

vivo analysis of parasite-specific CTLs without antigen re-stimulation showed cells from chronically infected 

skeletal muscle tissue had equal or even greater effector capacity (production of IFNγ, TNF-α, granzyme B) 

than spleen-derived cells (175). To our knowledge, detailed analysis of CTLs in smooth muscle has yet to be 

conducted. 

 

There is thus likely to be further compartmentalisation of response and evasion dynamics at the intra-organ 

level, perhaps even down to the hyper-local scale of individual infected cells’ microenvironments. For 

example, the muscular, neuronal and mucosal layers of the GI tract, a key site of T. cruzi persistence, have 
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distinct immunological microenvironments that respond differently to Salmonella infection (209). Recent work 

has highlighted differences in the cellular composition of perivascular and parenchymal inflammatory 

infiltrates in T. cruzi-infected skeletal muscle (172, 179). Large, apparently immunologically invisible parasite 

nests even occur immediately adjacent to severely inflamed blood vessels, which led these authors to 

suggest leukocytes might fail to migrate through the parenchyma to infected cells because chemoattractant 

signalling is too weak in low parasite load settings (172). Immune evasion may also operate at the level of 

physical interaction between T cells and parasite antigen presenting cells, for example via manipulation of 

MHC class I or II expression (107, 210-212) or by parasitism of muscle cells, which are poor activators of NF-

κB upon T. cruzi infection (76) and, in the case of skeletal muscle, do not normally express MHC class I 

(213).  

 

 

Conclusions  

 

From its origins in ancient South American fauna, T. cruzi has spread to diverse mammalian orders across 

the Americas and become a widespread human pathogen. This reflects a remarkable adaptability to evade 

mammalian immune responses and maintain enzootic, zoonotic and anthroponotic transmission cycles. As 

we have set out, this involves sophisticated molecular mechanisms that allow T. cruzi to resist innate 

responses so that in the early stages of infection parasite loads are high and widely disseminated in blood 

and solid organs. The adaptive immune response, principally effected by CTLs and antibodies, is able to 

eliminate ~99% of the parasites. The infection then transitions to a permanent chronic phase in which 

parasites replicate, mainly within muscle cells in a small number of privileged tissues, in a dynamic equilibrium 

with host responses. The available evidence supports the existence of a complex set of molecular and cellular 

mediators that firstly, prevent complete sterile clearance at the acute to chronic transition and, secondly, 

ensure perpetual parasite persistence during the chronic phase. These include parasite-intrinsic evasion 

mechanisms, direct and indirect manipulation of host responses, and host-intrinsic deactivating feedback 

loops. Further complexity arises from T. cruzi’s cycling between intra and extra-cellular parasite forms and 

its trafficking between different organs, tissues and cells, each with specific immunological 

microenvironments of variable permissiveness.  

 

Important advances in fundamental aspects of tissue level immunity have yet to be investigated in detail in 

the Chagas disease field, for example, defining relative contributions of tissue resident and inflammatory 

myeloid cells, innate lymphoid cell populations, tissue resident memory T cells and neuro-immune 

interactions. Further progress in understanding T. cruzi-host interactions and how they shape Chagas 

disease pathogenesis is also likely to come from more intensive research at the tissue-specific and even 

single cell scale. Some key questions include: (i) Why do some infected people remain asymptomatic carriers 

while others progress to life-threatening disease states? (ii) Does active infection support concomitant 

immunity to second infections? (iii) Do drug-cured patients have protective immunity to re-infection? (iv) Can 

vaccines be developed that provide sterile protection? (v) To what degree are the proposed mechanisms of 
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immune evasion actually enabling parasite persistence in vivo in different tissues? (vi) How do host-parasite 

interactions promote or limit in utero transmission? The difficulties of answering these questions and 

addressing the wider challenges in Chagas disease biomedicine are great; however, the massive unmet 

need for better treatments, prophylaxis and diagnostics requires us to overcome them. 
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2.3 Trypanosoma cruzi-host interaction, final thoughts 

 

Innate and adaptive effector pathways – A major effector mechanism specifically associated 

with cytotoxic CD8+ T-cells (CTLs) is the recognition of a damaged or infected cell, followed by 

local permeabilization of the target membrane and introduction of granzymes. These granzymes 

cleave pro-caspases in the cytosol, triggering the apoptotic cascade to the detriment of the 

defective host cell and any microbial occupants1. In several mouse models, the key effector 

molecules of this pathway can be knocked out with no effect on proficiency of parasite control, and 

even in other models the effect is marginal2. ‘The’ major canonical, and protective, effector 

response is the delivery, probably very locally, of IFN-γ3. This cytokine upregulates the production 

of ROS and RNS not just in cells of the immune system, but in all somatic cells expressing the 

IFN-γ receptor4. These reactive effector molecules are generated by innate signalling during T. 

cruzi infection5, and the protection provided by T-cells is likely in the form of upregulation of the 

pathways that are already producing these oxidative agents. In addition, the largely under-studied, 

not just in T. cruzi but across immunology, role of the terminally differentiated somatic cells that 

are all capable of pathogen recognition and response, may also be important. The molecular 

events within these cells, as explored in Chapter 6, could be fundamental to T. cruzi infection 

outcome.   

 

Hyper-local immune privilege is potentially the most significant factor in parasite 

persistence – Since completing the data collection, analysis and interpretation presented in 

Chapter 6, I would now qualify the idea that the negative immune feedback mediated via IL-10, 

PD-1 and TGF-β is likely involved in parasite survival after resolution of the acute stage. The 

chapter will present an extended hypothesis in which survival of rare parasites is possible even 

with fully activated circulating, and tissue resident, T-cell effectors.  

 

B-cells and antibody roles beyond the resolution of the acute stage – Parasite specific serum 

antibody undoubtedly contributes to optimal control of virulent acute stage infections, with multiple 

examples described in the above review. However, the data presented in Chapter 6 now suggests 

that serum antibody does not have a non-redundant role, at least in the absence of T cells in 

continued suppression of chronic stage parasite burden.   
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2.4 Aims 

The aims of this work were to utilise the recently available bioluminescent-fluorescent CL Brener 

reporter strains (Chapter 3) in mouse models to answer three unknowns currently inhibiting 

progress in our understanding and management of Chagas disease: 

 

• In which host cells and tissues do the extremely rare chronic stage 

parasites persist? (Chapter 4) 

 

• Can these new reporters be used to identify/characterise the potentially 

quiescent/dormant stage of the parasite life-cycle recently 

hypothesised? (Chapter 5) 

 

• Why is the parasite able to routinely establish life-long infections in 

hosts that generate specific, non-exhausted and highly effective 

systemic immunological responses? (Chapter 6) 

 

The progress achieved in the direction of each of these is presented below in the form of 3 

published (Chapter 4 and 5) or submitted (Chapter 6) first-author manuscripts. My overarching 

conclusions are reserved until after the reader has been exposed to each of the manuscripts and 

will come as a general discussion in Chapter 7.  
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3. Materials and Methods 

 

3.1 Background to the CL Brener Luc::mNEON reporter stain 

Multiple attempts to stably transfect T. cruzi, with the luciferase gene isolated from the firefly 

Photinus pyralis, and employ these reporters in vivo for drug treatment assays have been 

published1,2,3,4. Although useful for assaying the acute stage in vivo parasite load and the kinetics 

of drug activity at this time point, none of these reporters were detectable after suppression of 

acute parasitaemia and establishment of the chronic stage. The ability to identify chronic stage 

parasites in and ex vivo by bioluminescence has been made possible by the introduction of 

mutations into the w.t. luciferase gene generating a far-red shifted photon output5. The increased 

wavelength improves tissue penetrance and reduces absorption by haemoglobin. Both T. brucei6 

and T. cruzi7 are capable of integrating and expressing red-shifted luciferase from highly active 

rRNA loci. Serval strains of bioluminescent T. cruzi have now been developed8. Shown in (Figure 

12) is a cartoon of the integration of this gene.  

 

 

 

 

 

 

 

Figure 12 – Integration of the red-shifted luciferase gene into an rRNA loci. LucPpyRE9h, red-shifted luciferase gene. 
NeoR, neomycin phosphotransferase gene. gGAPDH gene fragments from the T. cruzi genome are included as 
intergenic and 3’UTR regions. The rDNA promotor and 3’ rDNA spacer sequences were taken from the published CL 
Brener genome and used as targets. Taken from Lewis et.al, 20147.  

 

A critical additional improvement of the utility of these reporters was the addition of a gene, plus 

amino acid linker, coding for the intrinsically fluorescent mNeonGreen protein9. The resulting ‘dual-

expressing’ reporters parasite cell lines are bioluminescent in vivo and ex vivo when the red-

shifted luciferase enzyme has access to ATP and the injected luciferin substrate. Once 

histologically processed, individual parasites are identifiable as a result of their stable expression 

of the fixable mNeonGreen protein. Shown in (Figure 13) is a cartoon describing the insertion of 

the mNeonGreen protein coding sequence into a red-shifted luciferase transgene already 

integrated into a rRNA locus the CL Brener genome.  
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The DTU type VI CL Brener (CLBr) duel expressing (CL Luc::mNeonGreen) clone is employed in 

all three of the following chapters of this thesis. In addition, a DTU type I mono-functional JR strain 

parasite expressing the far-red shifted luciferase (TcI-JR Luc) gene only is used in Chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13 – Insertion of the mNeonGreen protein plus amino acid linker sequences immediately downstream of a  
previously integrated LucPpyRE9h, red-shifted luciferase gene. The high level expression of the resulting dual 
functional gene, driven by an RNA polymerase I promotor (flag), results in covalently linked bioluminescent and 
fluorescent protein sequences.  Hyg, hygromycin resistance gene. Taken from Costa et.al, 20189.  
 

 

3.2 Workflow overview 

In the following chapters, parasites constitutively expressing the CL Luc::mNeonGreen reporter 

were combined with in vivo injection of the thymidine analogue EdU (5-Ethynyl-2´-deoxyuridine), 

extensive immunohistochemistry and novel tissue processing protocols. Since the materials and 

methods sections in each publication adequately cover how these techniques were employed, 

repetition is avoided here, and instead a workflow overview is provided (Figure 14). Additional pilot 

data are described at the beginning of chapters 4 and 5. The layout of the visceral organs in all ex 

vivo bioluminescence images is consistent throughout this thesis and is shown in Figure 14c.  
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Figure 14 – A and B., Workflow overview showing the infection of 

mouse models with the CL Luc:mNeonGreen bioluminescent-

fluorescent reporter, the in vivo i.p. injection of EdU either as an in 

situ or pulse-chase protocol, and the processing and 

immunohistochemical staining of the tissue (principally the colon) for 

imaging. C., A cartoon showing the layout of the visceral organs used 

throughout this thesis and in the published or submitted papers.  
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4. Localisation of Trypanosoma cruzi in the chronic 

stage  

 

4.1 The autoimmune hypothesis 

Unlike other parasitic infections caused by Trypanosoma brucei, Toxoplasma gondii and 

Plasmodium species, the pathologies associated with T. cruzi infection develop at time-points 

when parasite numbers are extremely low1. A link between acute phase severity and progression 

of disease at later time-points has been hypothesised2, but remains unresolved. The inability to 

routinely find parasites in infected humans and animal models after the resolution of parasitaemia3 

has been taken to suggest that infections are either cleared to sterility, or that the numbers of 

persisting parasites are so low that they are secondary to autoimmune damage. This ‘autoimmune 

hypothesis’, which stated that the chronic pathology was driven by immune activity against host 

targets triggered by, but not driven by, infection with the parasite, has been reviewed multiple 

times over past decades4,5,6. Self-reactive antibodies (Ab) and T-cells have long been identified in 

Chagas disease patients7. However, a direct link between these adaptive effectors and pathology 

is lacking8. Current dogma states that although autoreactivity may synergise with parasite targeted 

Ab and T-cells to promote cardiac damage, the continued presence of the parasite is required to 

drive the disease. This was summed up by Tarleton et al 20019 who states that, ‘the persistence of 

Trypanosoma cruzi at specific sites in the infected host results in chronic inflammatory reactivity’, 

and this is responsible for disease progression. Evidence supporting this hypothesis has come 

from improved detection technology10,11, which is able to detect the rare parasites missed in earlier 

studies. Early12,13 but not late (BENEFIT trial14) treatment with front-line drugs can slow 

progression of the cardiac disease.  

 

4.2 Wide dissemination in the absence of adaptive effectors 

Characterising parasite distribution, and dynamics, at the tissue/single cell level at chronic time-

points is essential to better understand how pathology relates to infection and to better target new 

drugs. This has been recently reviewed15. Briefly, the earliest attempts to identify organs 

harbouring infection16 involved creating histological sections from human tissue sourced from 

those who had succumbed to the disease. ‘Nests’ or ‘pseudocysts’ of amastigotes are sometimes 

visible as tightly packed clusters inside fixed host cells. Access to human tissue samples has been 

by necessity limited to patients who died during acute infection (Chagas, 191617), or from chronic 

pathologies18 or heart transplants. Animal models, most commonly the mouse, have been 

employed to better understand the organ/tissue distribution of T. cruzi infection and correlate well 
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with data collected in humans19. It is now widely accepted that in acute stage infection, or in 

instances of immunosuppression20, the parasite is widely disseminated. It has been demonstrated 

in vitro that strains of all the T. cruzi lineages (DTU’s) readily infect a large variety of cultured 

mammalian cells21. The parasite is assumed to have the capacity to invade any nucleated cell. 

Almost all organs and tissues have been described to harbour acute stage parasites across the 

diversity of mouse models and strain isolates. Tissues that have been reported to harbour high 

acute stage parasite loads include skeletal muscle22, cardiac muscle23, smooth muscle24 and 

adipose tissue25. Sites of lower recorded infection load include immunologically privileged sites: 

brain, ovaries, testes and bone/cartilage26. Whether parasite-driven tropism27; nutritional 

environment of the invaded cells28 or differing host immunological pressure29 determines these 

higher/lower acute stage loads is unknown.  

 

4.3 Chronic infection dynamics  

Parasitaemia decreases dramatically with the expansion and deployment of the adaptive immune 

effectors. Since the published review presented in Chapter 2 has covered this topic, here it is 

sufficient to say that depending on the acute infection model30 multiple arms of the innate and 

adaptive immune response are required for optimal acute phase control. Using data from 

bioluminescent models31, the drop in tissue load is in the order of 100 to 1000-fold in size and 

occurs across all organs and tissues. Using more conventional PCR based sampling and histology 

in other mouse models32 and humans33, the transition to the chronic stage is marked by a similar 

decrease in parasite numbers. Detection of trypomastigotes in the blood of infected mice and 

patients becomes difficult. However, sterile cure is rarely noted31,34, and an acute-like parasitaemia 

returns with the onset of immune suppression, even decades after resolution of the acute stage35. 

 

A key unresolved question is where do the remaining parasites persist in the host during 

chronic infections? The relevance of data derived from human chagasic syndrome end-points is 

uncertain36 and no systematic autopsies have been conducted on intermediate stage patients who 

succumbed to other mortalities. Due to its importance in the morbidity and mortality associated 

with T. cruzi infection, the hearts of various parasite strain-mouse model combinations have been 

exhaustively examined by microscopy and sampled for T. cruzi DNA by PCR. Using these 

approaches, a direct correlation between end-point parasite presence and pathology has not been 

demonstrated. Even with highly sensitive molecular methods, parasites are not always detected in 

mouse hearts or in autopsies of human Chagas patients37. A recent review Lewis and Kelly, 

201615, drawing on data from bioluminescent murine models, proposed a new hypothesis for the 

generation of cardiac pathology. It proposed that parasites periodically reinvade the heart form 
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other more permissive tissue sites, and that the resulting inflammatory responses drive the 

development of cardiac fibrotic damage, which accumulates over time.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 – Three non-mutually exclusive hypothesis for continued parasite persistence in patients and murine models. 
Taken from Lewis and Kelly, 201615.  

 

The frequency of these events played out over >100-day infections in mice, and decades in 

humans, determines disease outcome. The symptoms observed in the clinic are therefore a 

cumulation of these repeated inflammatory events. Three mechanisms for tissue occupation have 

been proposed: (i) continuous replication and presence balanced by the local immune response, 

(ii) periodic activation of dormant parasites undetectable by bioluminescence imaging or PCR, and 

(iii) repeated re-invasion which promotes a sterilising immune response. Each mechanism is not 

mutually exclusive and is likely to be influenced by both parasite and host genetics29. Chapter 5 is 

concerned with the existence of a potentially dormant or quiescent life-cycle stage, so comment is 

reserved here. The current PCR, histology and bioluminescence data from both mice and man 

suggest the heart is not a site of continuous high load persistence and may routinely be cleared to 

sterility before being reseeded from other sites.  
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4.4 Localisation of the immuno-permissive sites 

All currently available methodologies have been deployed in mouse models to identify these ‘sites 

of persistence’, from which the heart is repeatedly seeded. The skeletal muscle has been 

described in multiple models, and using multiple assays, as harbouring chronic stage 

parasites38,39. No evidence exists for the persistence of parasites at this site in humans. Smooth 

muscle tissue in the vascular system has been shown to harbour chronic parasites24, again with 

no human data available for comparison. Adipose tissue has been described as a site of chronic 

stage occupation34 and certainly harbours intense concentrations in mice lacking functional T and 

B cells. In the more disseminated infection associated with the C3H/HeN model, the visceral 

adipose tissue29 is frequently found to contain bioluminescence signal. In the other host models, 

signal was more infrequent, or rarely found. Infection of cells of the central and peripheral nervous 

system has been recorded in humans during the acute stage and in reactivated infections40, and a 

single report41 from mice suggests this could be a site occupied during the chronic stage. The 

clinical features of both the cardiac and the digestive pathology involve the loss and damage of 

neuronal cells42. Whether this is the result of bystander immunological destruction or specific 

invasion of these cell types is unknown. The rationale behind the work presented in this chapter 

was to better define these chronic stage permissive sites at the level of the single-cell using state-

of-the-art reporters in mouse models.  

 

4.5 Background to publication 

The gastrointestinal tract is a chronic persistence site – Despite significant effort, as 

referenced above, the localisation of chronic T. cruzi infection at the tissue and cellular level 

remains undefined. The development of the highly sensitive red-shifted luciferase reporter cell 

lines has allowed for the non-bias assessment of animal wide parasite persistence in the chronic 

stage, for the first time. This system circumvents the issue of sample bias that limits PCR and 

histological methods. Prior to this current project, the TcVI-CL Luc (CL Brener red-shifted 

luciferase) strain had been utilised. Identification of the gastrointestinal tract (GIT) as a site of 

relative higher parasite load >300dpi in the BALB/c model was published in 201431. The other 

visceral organs were more sporadically bioluminescence positive at end-point. This relative 

restriction was abolished in immunosuppressed animals31, which returned to an acute-like 

dissemination of infection. A 201629 study confirmed that higher GIT loads, specifically in the 

stomach, colon and caecum, were also a feature of both the C3H/HeN and the C57BL/6 mouse 

models. The level of restriction of infection to the GIT can be ordered BALB/c > C57BL/6 > 

C3H/HeN. Bioluminescent versions of the TcI-JR and TcX10/6 stains allowed comparison with 

TcVI-CLBr in all 3 murine hosts. All parasite strains were persistent in the GIT during chronic 
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infections, with the ability to disseminate to the ‘systemic’ organs ordered from TcI-JR > TcI-X10/6 

> TcVI-CL. These papers, and some preliminary data that showed the skin in the BALB/c model as 

an additional site of higher chronic tissue loads43, informed the hypothesis described above15. This 

hypothesis suggests that chagasic heart pathology is not the result of intense and persistent 

infection of this organ, as had been suggested, but the result of repeated invasions from more 

immunotolerant sites such as the GIT.  

 
 

Pilot data using the CL Brener bioluminescent:fluorescent reporter – The completion of the 

first bioluminescent:fluorescent reporter (CLBr Luc:mNeonGreen)44 opened the possibility that the 

cell types occupied by chronic stage parasites could be defined for the first time. The aim of the 

work presented in the mBio publication (below) was:  

1: To fully exploit the highly-sensitive bioluminescent and fluorescent properties of the CL 

Luc:mNeonGreen reporter in both the BALB/c and C3H/HeN models. These were chosen as they 

represent opposite ends of the spectrum of ability to restrict infection to the GIT, which correlates 

directly with cardiac fibrosis at end-point15. 

2: To identify the host cell types occupied by the parasites at time-points >100dpi.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14 – Representative bioluminescent and fluorescent images from a CB17 SCID mouse 15dpi. A., in vivo 
imaging reveals animal wide signal with the highest intensities around the site of the i.p. inoculation. B., When visceral 
organs are imaged ex vivo the adipose tissues had the highest radiance (p/s/cm2/sr) output. Fluorescent 
mNeonGreen+ parasites are evident in large numbers throughout histological sections. C., Removal of the adipose 
tissue allows the software to match less intense regions of photon output with the log10 scale pseudocolour heatmap. 
Histological sections from the heart routinely show infected host cells containing mNeonGreen+ parasites but not at 
the intensities of the adipose tissue. mNeonGreen+ parasites imaged in a colon section is also shown.  
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Figure 15 – A., Cartoon showing >100dpi ex vivo analysis of the T. cruzi CL Luc:mNeonGreen infected C3H/HeN 
model. Representative bioluminescence images for the visceral organs (B), skin (C) and skeletal muscle (D). 
Fluorescent parasites fixed in tissue sections from both the GIT and the skeletal muscle can be imaged after laborious 
and time-consuming searching. Routine detection in skin biopsies is not possible.  

 

As a pilot to establish how easily the CL Luc:mNeonGreen reporter could be identified in 

processed tissues, and to assess the quality of the images that could be generated, CB17-SCID 

mice were infected. Through a natural mutation in the DNA-dependent protein kinase, catalytic 

subunit (DNA-PKcs) gene, which is essential for V(D)J recombination, these animals lack 

functional T and B lymphocytes (TACONIC website). The germ-line encoded innate compartment 

is unaffected. Animals were infected with 10,000 in vitro tissue cultured trypomastigotes (TCTs) 

and culled 15 days post inoculation (Figure 14). In vivo and ex vivo imaging, tissue processing and 

confocal image generation methodology are described in the published paper (below) and were 

unaltered from this pilot. Bioluminescence signal was strongest from the adipose tissue. Only after 

removal of this tissue from the dish was the IVIS software able to produce a pseudocolour Log10 

scale heatmap for the other organs due to the high-level signal from the adipose tissue swamping 

the other signals. Fluorescent mNeonGreen+ parasites were easily identified, and in extremely 

high numbers, in the adipose tissue. Even in organs with relatively low signal, i.e. colon and heart, 

fluorescent parasites were routinely detectable and easily imaged. The picture quality was 

excellent and encouraged us to pilot a chronically infected animal to determine if parasites could 

be routinely imaged at this key time period (Figure 15).   
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Whole mounting the colonic gut wall, a key technical advance – The immunocompetent 

C3H/HeN model was selected for infection with the T. cruzi CL Luc:mNeonGreen clone. Tissue 

was exercised >100dpi and histologically sectioned and fixed in paraffin. An advantage of this 

method was the preservation of the distinct morphological layers of the GIT. The major 

disadvantage was the time required to find chronic stage parasites. Despite exhaustive searches 

of several hundred 10µm thick sections from the GIT, heart and spleen, many of which had been 

selected based on positive bioluminescence signal, the number of parasite-infected cells found 

was very low. Additionally, since individual amastigotes are ~5 µm in diameter larger clusters or 

‘nests’ of parasites were inevitably sliced and placed on different slides.  

 

To overcome these limitations, we focused on the colon, a region already well defined as 

harbouring higher infection loads into the chronic stage. In collaboration with Dr Connor McCann 

of UCL Institute of Child Health, we developed a novel protocol that produced colonic gut wall 

whole mounts suitable for confocal imaging. The production of these whole mounts is described in 

the paper below and has allowed us now to search much larger volumes of material in a shorter 

time. This made it practical, for the first time, to detect multiple extremely rare infected cells at a 

persistence site. This advance also made possible the work presented in Chapters 5 and 6.  
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ABSTRACT  Infections with Trypanosoma cruzi are usually life-long despite generating a strong adaptive 

immune response. Identifying the sites of parasite persistence is therefore crucial to understand how T. cruzi 

avoids immune-mediated destruction. However, this is a major technical challenge because the parasite 

burden during chronic infections is extremely low. Here, we describe an integrated approach involving 

comprehensive tissue processing, ex vivo imaging, and confocal microscopy, which has allowed us to 

visualise infected host cells in murine tissue, with exquisite sensitivity. Using bioluminescence-guided tissue 

sampling, with a detection level of <20 parasites, we show that in the colon, smooth muscle myocytes in the 

circular muscle layer are the most common infected host cell type. Typically, during chronic infections, the 

entire colon of a mouse contains only a few hundred parasites, often concentrated in a small number of cells 

containing >200 parasites, that we term mega-nests. In contrast, during the acute stage, when the total 

parasite burden is considerably higher and many cells are infected, nests containing >50 parasites are rarely 

found. In C3H/HeN mice, but not BALB/c, we identified skeletal muscle as a major site of persistence during 

the chronic stage, with most parasites found in large mega-nests within the muscle fibres. Finally, we report 

that parasites are also frequently found in the skin during chronic murine infections, often in multiple infection 

foci. In addition to being a site of parasite persistence, this anatomical reservoir could play an important role 

in insect-mediated transmission, and have implications for drug development. 

 

IMPORTANCE  Trypanosoma cruzi causes Chagas disease, the most important parasitic infection in Latin 

America. Major pathologies include severe damage to the heart and digestive tract, although symptoms do 

not usually appear until decades after infection. Research has been hampered by the complex nature of the 

disease and technical difficulties in locating the extremely low number of parasites. Here, using highly 

sensitive imaging technology, we reveal the sites of parasite persistence during chronic stage infections of 

experimental mice at single-cell resolution. We show that parasites are frequently located in smooth muscle 

cells in the circular muscle layer of the colon, and that skeletal muscle cells and the skin can also be important 

reservoirs. This information provides a framework for investigating how the parasite is able to survive as a 

life-long infection, despite a vigorous immune response. It also informs drug-development strategies by 

identifying tissue sites that must be accessed to achieve a curative outcome.  

 

KEY WORDS: Trypanosoma cruzi, Chagas disease, chronic persistence, murine imaging, colon, skeletal 

muscle, skin 
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INTRODUCTION  

The intracellular protozoan parasite Trypanosoma cruzi is the etiological agent of Chagas disease, and can 

infect a wide variety of mammalian hosts. Transmission to humans is mainly via the hematophagous 

triatomine insect vector, which deposits infected faeces on the skin after a blood-meal, with the parasite then 

introduced through the bite wound or mucous membranes. Oral, congenital and blood transfusion are other 

important transmission routes. 6-7 million people in Latin America are infected with T. cruzi (1), and as a 

result of migration, there are now hundreds of thousands of infected individuals in non-endemic regions, 

particularly the USA and Europe (2, 3).  

 

In humans, infection normally results in mild symptoms, which can include fever and muscle pain, although 

in children the outcome can be more serious. Within 6 weeks, this acute phase is usually resolved by a 

vigorous CD8+ T cell response (4, 5), and in most cases, the infection progresses to a life-long asymptomatic 

chronic stage, where the parasite burden is extremely low and no apparent pathology is observed. However, 

in ~30% of individuals, the infection manifests as a symptomatic chronic condition, although this can take 

many years to develop. The associated cardiac dysfunction, including dilated cardiomyopathy and heart 

failure, is a major cause of morbidity and mortality (6, 7). In addition, ~10% of those infected display digestive 

pathologies, such as megacolon and megaoesophagus, which on occasions can occur in parallel with cardiac 

disease. There is no vaccine against T. cruzi infection, and the current frontline drugs, benznidazole and 

nifurtimox, have limited efficacy, require long treatment regimens, and can result in severe side effects (8, 9). 

The global effort to discover new drugs for Chagas disease involves not-for-profit drug development 

consortia, as well as the academic and commercial sectors (10, 11). Progress would benefit considerably 

from a better understanding of parasite biology and disease pathogenesis.  

 

One of the major challenges in Chagas disease research is to determine how T. cruzi survives as a life-long 

infection, despite eliciting a vigorous immune response which is able to reduce the parasite burden by >99%. 

Exhaustion of the parasite-specific CD8+ T cell response does not appear to be the reason (12). Alternative 

explanations include the possibility that T. cruzi is able to persist in immune-tolerant tissue sites (13), and the 

potential for the parasite to assume a non-dividing dormant form that does not trigger an overt immune 

response (14). Attempts to investigate these issues in humans have been limited by the long-term and 

complex nature of the disease, and by difficulties in monitoring tissue infection dynamics during the chronic 

stage. By necessity, most information on the sites of parasite location in humans has come from autopsy and 

transplant studies (15), and the significance of these data to patients in the asymptomatic chronic stage is 

unclear. Bioluminescence imaging of animal models has therefore been adapted as an approach to explore 

aspects of host:parasite interaction, disease pathology and drug-development (16-18). Our previous work 

has exploited highly sensitive in vivo imaging to monitor mice infected with bioluminescent T. cruzi that 

express a red-shifted luciferase (19-21). These experiments have shown that mice are useful predictive 

models for human infections in terms of infection dynamics (21, 22), drug-sensitivity (23) and the spectrum 

of cardiac pathology (24). We have also demonstrated that T. cruzi infection is pan-tropic during the acute 

stage, and that the adaptive immune response results in a 100 to 1000-fold reduction in the whole animal 
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parasite burden as infections transition to the chronic phase, a process initiated 2-3 weeks post infection. 

The gastrointestinal (GI) tract, particularly the colon and/or stomach, was found to be a major site of parasite 

persistence during chronic stage infections, but it has not so far been possible to identify the infected host 

cell types in these complex tissues. The immune-mediated restriction to the GI tract was not absolute, with 

both host and parasite genetics impacting on the extent to which the infection could disseminate to a range 

of other organs and tissues (22). The severity of chronic cardiac pathology in different mouse strains was 

associated with the ability of parasites to spread beyond the permissive niche provided by the GI tract, and 

with the incidence of cardiac infection. This led us to propose a model in which the development of chagasic 

cardiac pathology, was linked with the frequency of the localised inflammatory immune responses stimulated 

by periodic trafficking of parasites into the heart (13). 

 

More detailed information on the precise sites of parasite survival during chronic infections will provide new 

insights into disease pathogenesis, and aid the design of both immunotherapeutic and chemotherapeutic 

strategies. The scarcity of parasites during the chronic stage has made addressing this issue a major 

challenge, with PCR-based approaches being both uninformative with respect to host cell types, and 

unreliable because of the highly focal and dynamic character of infections (20, 23). To resolve this, we 

constructed T. cruzi reporter strains engineered to express a fusion protein that was both bioluminescent and 

fluorescent (25). This allowed individual infected host cells to be visualised routinely within chronically 

infected mouse tissue. The bioluminescent component facilitates the localisation of infection foci within ex 

vivo tissue samples, and fluorescence then enables histological sections to be rapidly scanned to identify 

infected cells (26). The utility of this approach has been further extended by using EdU labelling and TUNEL 

assays to explore the replicative status of parasites in situ.  

 

Here, we describe how these enhanced imaging procedures, coupled with modifications to tissue processing, 

have allowed us to identify the sites of parasite persistence during chronic murine infections. We reveal that 

the circular muscle layer is the major reservoir of infection in the colon, that skeletal muscle can be an 

important site of persistence, although this phenomenon appears to be strain-specific, and that the skin can 

harbour multiple infection foci.    

 

RESULTS  

Locating the sites of T. cruzi persistence within the external wall of the colon during chronic murine 

infections. In multiple murine models, with a variety of parasite strains, bioluminescence imaging has 

revealed that the GI tract, particularly the large intestine and stomach, is a major site of parasite persistence 

during chronic T. cruzi infection (20, 22). However, our understanding of how this impacts on pathogenesis 

has been complicated by the difficultly in precisely locating, and then visualising, parasite infected cells. To 

resolve these technical issues, we infected mice with the T. cruzi CL-Luc::Neon line that constitutively 

expresses a reporter fusion protein that is both bioluminescent and fluorescent (25), and adapted our 

dissection procedures to allow a more detailed assessment of parasite location (Materials and Methods). At 

various periods post-infection, the colon of each mouse was removed, pinned luminal side up, and peeled 
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into two distinct sections (Fig. 1a and b) - the mucosal layers consisting of (i) thick mucosal, muscularis 

mucosa, and submucosal tissue, and (ii) the muscular coat, including the longitudinal and circular smooth 

muscle layers, the enteric neuronal network, at the level of the myenteric plexus, intramuscular neurons and 

extrinsic nerve fibres. The resulting external gut wall mount is thin enough, and sufficiently robust, to allow 

the full length of the colon to be viewed in its entirety at a 3-dimensional level by confocal laser scanning 

microscopy. Using this approach, each bioluminescent focus in live peeled tissue from chronically infected 

mice could be correlated with fluorescent parasites in individual infected host cells (Fig. 1c and d). The 

resulting images revealed that the limit of detection achievable by bioluminescence imaging is less than 20 

parasites. This level of sensitivity, in an ex vivo context, confirms the utility of this model for studies on 

infection dynamics (22), and drug and vaccine efficacy (24, 27, 28). In infected host cells, the number of 

parasites could be determined with precision using full-thickness serial Z-stacking (Fig. 1e, Fig. S1). This 

allowed us to establish that the total number of parasites persisting in the external colonic wall (tunica 

muscularis) of a chronically infected mouse is typically in the range of a few hundred (697 + 217, n=16), 

although this number can be higher if the tissue contains one or more “mega-nests” (Fig. 1c, highlighted in 

yellow, as example).  

 

When we compared parasite distribution in the external gut wall during acute and chronic murine infections, 

the most striking difference was the presence in the chronic stage of some host cells that were infected with 

>200 parasites (Fig. 2). The existence of these mega-nests resulted in a major alteration in parasite number 

distribution at the level of single infected host cells (Fig. 1, Fig. 2b-d). In acute infections, parasites were 

spread between many more host cells, with the average parasite content per cell remaining relatively low 

(Mouse M1=6.5, M2=6.7, M3=6.5, M4=4.6, M5=19.7, mean=9.4; 1.15<µ<16.46, 95% confidence interval) 

(Fig. 2a, c and d). In the chronic stage, the situation was different. Of the total parasite number in the smooth 

muscle, more than half were present in mega-nests of >200 (marked by a dashed red line, Fig. 2c), although 

most infected cells (>90%) contained fewer than 50 parasites. Nest size could extend to >1000 parasites. 

The number per infected cell was determined by Z-stacking, which could be done with accuracy, even at this 

level of parasite burden (for details, see Fig. S1). In the chronic stage, fully developed trypomastigotes were 

not apparent in any of the infected cells examined during this study. In contrast, fully developed flagellated 

trypomastigotes were routinely observed in nests during the acute stage (Fig. 2e, as example). We did not 

find a single mega-nest in external colonic wall tissue derived from any animal during an acute stage infection, 

with 63 parasites being the maximum. Both of these findings could indicate faster replication and 

differentiation rates during the acute stage as the parasite attempts to more rapidly disseminate at the 

beginning of an infection. As a corollary to this, it may be that a slower growth rate during the chronic stage 

also benefits the parasite by reducing the immunological footprint of the infection. It will be important to 

explore this further. 

 

To more accurately determine the specific location of parasites within the colon of chronically infected mice, 

we made histological sections of paraffin embedded whole colon tissue derived from both C3H/HeN and 

BALB/c mice infected with the CL Brener dual reporter strain. Using bioluminescence-guided sampling and 
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confocal imaging, we exhaustively searched the tissue sections for fluorescent parasites (>100 sections per 

mouse). Bioluminescent foci could be well correlated with individual infected host cells, or small numbers of 

infected cells in close proximity (Fig. 3b, Fig. S2). Infected cells were most commonly located in the circular 

muscle layer, and only infrequently in the longitudinal muscle, or, despite its relatively larger size/volume, the 

mucosal layer (Fig. 2, Fig. 3b and c, Fig. S2). No infections of the columnar epithelial cells in the mucosal 

layer were detected in any mouse. We therefore conclude that in the colon, smooth muscle tissue is the 

major, although not the exclusive site of parasite persistence during chronic infection. Consistent with the 

whole mount imaging results (Fig. 2c), there was high variability in the number of T. cruzi per infected cell in 

the colonic tissue, ranging from single parasites to nests of >200, but no obvious correlation between the 

parasite burden per cell and the location of the infected cells within the various tissue layers. In the whole 

tissue mounts, based on the bioluminescence profile, there was a tendency for the proximal region of the 

colon to be more highly infected than the mid and distal regions, although this did not reach statistical 

significance (Wilcoxon rank sum test) (Fig. 4a). 

 

To identify the major cell type(s) which act as parasite hosts during chronic infections of the GI tract, we 

single-stained whole mounted external colonic wall sections with specific antibodies against SMA-α (smooth 

muscle actin-α), β-tubulin-3 (a marker for neurons), and CD45 (a broad range marker of all nucleated 

hematopoietic cells) (Materials and Methods). These experiments showed that smooth muscle myocytes 

were the predominant host cell type (Fig. 4b and c), with a minority of infected cells stained with the neuronal 

or leukocyte marker. Interestingly, mega-nests, cells infected with >200 parasites, were refractive to staining 

(Fig. 4b). In the case of the cytoplasmic markers SMA-α and β-tubulin-3, this could reflect that their levels 

are considerably reduced because almost all of the cytoplasm is filled with parasites.  

 

Assessing skeletal muscle and the skin as sites of parasite persistence during chronic stage murine 

infections. For this study, BALB/c and C3H/HeN mice were chronically infected with T. cruzi CL-Luc::Neon 

(25), and the dissection procedures used for ex vivo imaging (Fig. 5a) were further modified to extend the 

range of tissue sites that could be assessed (Materials and Methods). Total removal of the skin and fur from 

the carcass allowed the whole of the skeletal muscle system to be exposed and imaged (Fig. 5b and d). The 

skin could also be placed fur side down and imaged in its entirety after the removal of adipose tissue. All 

adipose tissue harvested during the dissection process was combined to be imaged separately.  

 

Each C3H/HeN mouse registered a bioluminescence signal in the skeletal muscle during chronic stage 

infections (n=16) (Fig. 5c). It could be inferred from the bioluminescence intensity that the parasite burden in 

this strain was significantly higher in skeletal muscle than in other organs or tissues, including the GI tract 

and lungs (p-value <0.001, Wilcoxon signed rank test) (Fig. 5b and c). As previously reported (22), parasite 

burden and dissemination during chronic stage infections is more extensive in C3H/HeN mice than in other 

mouse models. In line with this, we did not routinely detect highly bioluminescent foci in the skeletal muscle 

of BALB/c mice (Figure 5b and c). In addition, the adipose samples of the BALB/c mice were consistently 

close to background levels, whereas with the C3H/HeN mice, more than half displayed a detectable signal 
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(>2SDs above background radiance) (Fig. 5c). Following bioluminescence-guided excision (Fig. 5d), infected 

foci from C3H/HeN skeletal muscle were subjected to histological sectioning and examined by confocal 

microscopy, with parasites detected on the basis of green fluorescence. Consistent with the external colonic 

wall data (Fig. 1), strong bioluminescent foci corresponded with large mega-nests constituted by many 

hundreds of parasites (Fig. 5d). Co-staining of these skeletal muscle sections with anti-actin-α antibodies 

revealed that the mega-nests were internal to the muscle fibres. Therefore, skeletal muscle represents an 

important site of parasite persistence in chronically infected C3H/HeN mice, but not in BALB/c. 

 

Previous studies have shown evidence of T. cruzi infection foci localised to skin samples (20, 22). However, 

the extent to which the skin could act as a potential reservoir site has not been evaluated systematically. To 

investigate this, we infected C3H/HeN and BALB/c mice with the bioluminescent T. cruzi lines JR (DTU I) or 

CLBR (DTU VI), and employed a modified dissection protocol that allowed near-complete skins from infected 

mice to be subjected to ex vivo imaging after removal of subcutaneous adipose tissue (Materials and 

Methods) (Fig. 6a). Depending on the infection model, between 80% and 90% of mice had at least one 

discernible focus of skin infection (Fig. 6b). For all four parasite:mouse strain combinations, we observed a 

wide range of skin parasitism patterns, as judged by both the number and the intensity of the bioluminescent 

foci (Fig. 6a and b). There was some evidence that C3H/HeN mice had more CL Brener skin parasites than 

BALB/c mice (Fig. 6b and c). Infections with the CL Brener strain produced more discrete foci and a higher 

inferred parasite load than JR infections, although some of this effect could be attributed to lower luciferase 

expression levels in the JR strain (22). Skin imaging was conducted after removal of subcutaneous adipose 

tissue by dissection, strongly suggesting that the majority of parasites were resident in the dermis. To 

visualise parasites at the cellular level, bioluminescence positive biopsies were processed for thin section 

fluorescence imaging from infections with parasites expressing the bioluminescent:fluorescent fusion protein 

(n~300 sections from 5 mice). Visualisation of infected cells in the skin biopsies was more challenging than 

for other tissues because of technical difficulties in generating longitudinal sections. Only a single, apparently 

multinucleated infected cell was identified (Fig. 6d), containing approximately 30 parasites and located within 

150 µm of the epidermis. Parasites in this anatomical location could have a role in disease transmission.   

 

DISCUSSION 

Chronic Chagas disease in humans is characterised by long-term parasite persistence at levels that are 

difficult to monitor with accuracy, even using highly sensitive PCR-based techniques. This has been a 

complicating factor in diagnosis, and in monitoring therapeutic cure during clinical trials (29, 30). Additionally, 

it has not been possible to identify the main tissues and/or organs that function as sites of parasite persistence 

in an immunological environment that otherwise tightly controls the infection. Information on the systemic 

parasite load and location throughout the infection would provide a better understanding of disease 

progression and the determinants of the wide spectrum of symptoms that are characteristic of this chronic 

condition. Experimental animal models have proved to be invaluable experimental tools for providing data in 

these areas, particularly in combination with genetically modified parasite reporter strains. These systems 

can provide real-time readouts on infection dynamics (20, 22, 31), insights into tissue tropism (26), and 
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information on the influence of host and parasite genetics. The murine models used in the current study 

display a similar infection profile to that in humans, have proved to be predictive of drug efficacy, and display 

a spectrum of cardiac pathology that mirrors aspects of the human disease.  

 

Here, we exploited parasites that express fusion proteins containing bioluminescent and fluorescent domains. 

Together with improved tissue preparation techniques, this has enabled us to achieve a limit of detection by 

ex vivo imaging that is less than 20 parasites (Fig. 2d and e). By facilitating the routine detection of parasites 

in their tissue context, at the level of individual host cells, these approaches have overcome a major barrier 

that has restricted progress in the investigation of chronic T. cruzi infections. Previous reports using 

bioluminescent parasites identified the GI tract as a major site of parasite persistence during the chronic 

stage (20, 22). However, these studies, which involved several mouse:parasite strain combinations, revealed 

few details on the nature of host cells, or on their precise location within tissue. In the colon, we have now 

shown that the circular smooth muscle coat is the predominant site of parasite persistence (Fig. 3) and that 

smooth muscle myocytes are the main infected host cell type. Enteric neurons can also be parasitized, but 

these infections are much less common (Fig. 4). The extent to which this apparent tropism is determined by 

a metabolic preference for the corresponding regions/cells, or by the immunological microenvironment is not 

known. Interestingly, external colonic wall resident CD45+ve hematopoietic cells were rarely infected (Fig. 

4a), even though myeloid cells are well known targets during the acute stage infection in other sites such as 

the spleen or bone marrow. We also failed to find a single instance where parasites infected epithelial cells 

on the mucosal surface, suggesting that parasitized cells or trypomastigotes are unlikely to be shed into the 

lumen of the large intestine.  

 

Experiments have shown that parasite survival in the colon during chronic infections reflects crucial 

differences between the immune environment of certain GI tract regions and systemic sites (22). 

Immunosuppression of infected mice leads to widespread parasite dissemination to other less permissive 

organs and tissues, including the heart. There is clearly a host genetic component to this immune restriction 

since the same parasite strains display a wider tissue distribution in C3H/HeN mice than in the BALB/c strain 

(Fig. 5c), a phenomenon which is associated with increased cardiac pathology (22). In the human population, 

this highlights that genetic diversity affecting the functioning of the immune system and its ability to restrict 

the tissue range of T. cruzi to reservoir sites could be a major determinant of Chagas disease pathology. 

Within C3H/HeN mice, skeletal muscle was also found to be an important site of persistence during the 

chronic stage, whereas in the BALB/c strain, parasites were far less evident in this location (Fig. 5c). Some 

T. cruzi strains have been reported to be myotropic in mice, with pathological outcomes that include 

paralyzing myositis and skeletal muscle vasculitis (32). Myocyte infections could also provide the parasite 

with access to myoglobin, a source of haem or iron that may contribute to a nutritional environment that is 

favourable for replication. The ability of high numbers of parasites to survive long-term in the skeletal muscle, 

compared to other sites, indicates that this tissue can function as a more immunologically permissive niche 

in the genetic background of the C3H/HeN mouse. Strikingly, myocytes in this tissue could contain several 

hundred parasites (Fig. 5d). We have previously suggested that the existence of large mega-nests such as 
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these could have implications for drug efficacy (26), with parasites in the centre of the nest having reduced 

drug exposure compared to those on the periphery, possibly contributing to treatment failure. This form of 

“herd-protection” may not be captured in the type of high-throughput in vitro screening assays that are a 

common feature of the drug development process. It will also be interesting to explore whether some 

parasites within these mega-nests adopt a metabolically quiescent state, analogous to the dormant 

phenotype recently reported (14).  

 

Our study has also demonstrated that the skin is another location where T. cruzi can be frequently detected 

during chronic infections. In both C3H/HeN and BALB/c mice, infection levels of >80% were observed, 

although there was considerable variability in the level of infectivity in terms of the number of bioluminescent 

foci and the total parasite load. The extent of this only became apparent when the entire skin of the mouse 

was examined by ex vivo imaging with the fur side down (Fig. 6), presumably because bioluminescent signals 

at the levels displayed by the majority of foci are masked by the fur when monitored by in vivo imaging. Skin-

localised parasites are a common and well characterised feature of many Leishmania species infections. 

More recently, it has also been reported that Trypanosoma brucei, can also be detected in the skin of both 

mice and humans, and that these parasites could have important roles in persistence and transmission (33, 

34). Until now, descriptions of cutaneous T. cruzi have been restricted to intermittent (chagoma and 

Romaña's sign) or atypical manifestations of the acute stage (35), or to reactivation of chronic infections as 

a result of immunosuppression (36, 37). Parasites in the dermal layers (Fig. 6) have the potential to play a 

crucial role in transmission of Chagas disease since they would have ready access to the triatomine vector 

during a blood meal. The extent to which T. cruzi parasites are localised to the skin during human chronic 

infections will also be of interest, since this could impact on transmission dynamics, as has been suggested 

from the detailed spatial analysis of Leishmania donovani in the skin of infected mice (38). It will also be 

important to determine whether these skin-resident parasites are persistent at this location, or whether they 

represent a transient population that is constantly re-seeded from other permissive niches, such as the GI 

tract (13). Resolution of this question will help to inform drug-design by revealing whether the ability to access 

parasites in the dermal layers has to be a pre-requisite property of novel therapeutics. In murine models of 

T. brucei infection, adipose tissue also forms an important parasite reservoir (39). This was not the case with 

chronic T. cruzi infections of BALB/c mice (Fig. 5c), where parasites were largely absent from these tissue 

sites. Bioluminescent foci were detected in the adipose tissues in approximately half of the chronically 

infected C3H/HeN mice. However, rather than a specific tropism, this may simply reflect the immunological 

context in C3H/HeN mice, which allows more extensive parasite distribution than in other mouse models (22).  

  

In summary, we have provided new data on the sites of parasite persistence in murine models of chronic 

Chagas disease. This provides a framework for identifying the immunological parameters that determine 

whether a specific tissue site can act as a permissive niche, and for investigating the extent to which the 

parasite itself has a direct role in the process.   
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MATERIALS AND METHODS 

Ethics. Animal work was carried out under UK Home Office project licenses (PPL 70/8207 and P9AEE04E4) 

and approved by the LSHTM Animal Welfare and Ethical Review Board. Experiments were conducted in 

accordance with the UK Animals (Scientific Procedures) Act 1986. 

 

Parasites, mice and infections. Two parasite reporter strains were used; the bioluminescent:fluorescent T. 

cruzi CL-Luc::Neon, a CL Brener clone (DTU VI) which expresses a fusion protein containing red-shifted 

luciferase linked to mNeonGreen (20, 25), and a JR clone (DTU I), which expresses red-shifted luciferase 

(19, 22). Epimastigotes were grown at 28°C in RPMI‐1640 supplemented with 0.5% (w/v) tryptone, 20 mM 

HEPES pH 7.2, 30 mM haemin, 10% heat‐inactivated fetal bovine serum (FBS), 2 mM sodium glutamate, 

2 mM sodium pyruvate, 100 µg/ml streptomycin and 100 U/ml penicillin, with 150 μg/ml hygromycin (CL 

Brener) or 100 µg/ml G418 (JR) as selective drugs. Metacyclic trypomastigotes (MTs) were obtained by 

transfer to Graces‐IH transformation medium (40). MTs were harvested after 4–7 days, when 70–90% of 

parasites had differentiated. Tissue culture trypomastigotes were obtained from infected MA104 cells grown 

at 37°C using Minimal Eagles medium supplemented with 10% heat‐inactivated FBS.  

 

BALB/c and C3H/HeN mice were purchased from Charles River (UK), and CB17 SCID mice were bred in‐

house. Animals were maintained under pathogen‐free conditions in individually ventilated cages. They 

experienced a 12 h light/dark cycle and had access to food and water ad libitum. Female mice aged 8-

12 weeks were used. SCID mice were infected with 1×104 in vitro‐derived tissue culture trypomastigotes in 

0.2 ml PBS via i.p. injection. Other mice were infected by i.p injection with 1×103 bloodstream trypomastigotes 

derived from parasitemic SCID mouse blood. Infection by the intravenous, subcutaneous or oral routes does 

not result in a different parasite distribution profile in tissues or organs (20, 31). All SCID mice developed 

fulminant infections and were euthanized at, or before, humane end‐points by lethal injection with 0.1-0.2 ml 

Dolethal. 

 

Ex vivo bioluminescence imaging. For ex vivo imaging, mice were injected with 150 mg/kg d‐luciferin i.p., 

then sacrificed by lethal i.p. injection 5 min later (20, 21). Mice were perfused with 10 ml 0.3 mg/ml d‐luciferin 

in PBS via the heart. Organs and tissues were imaged using the IVIS Spectrum system (Caliper Life Science) 

and LivingImage 4.7.2 software.  Firstly, heart, lungs, spleen, liver, GI tract, GI mesenteric tissue, kidneys 

and all visceral adipose tissue were transferred to a Petri dish in a standardized arrangement, soaked in 

0.3 mg/ml d‐luciferin in PBS and imaged using maximum detection settings (2 min exposure, large binning). 

Then, the skin was removed from the carcass and subcutaneous adipose tissue recovered (41) and added 

to the visceral fat creating a whole ‘adipose tissue’ sample, which was imaged in the same way. The skin 

was placed fur down, soaked in 0.3 mg/ml d-luciferin and imaged under the same conditions as the internal 

organs. The skeletal muscle was placed dorsal side up and soaked in 0.3 mg/ml d-luciferin and imaged, as 

above. 
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To assess infection intensities in ex vivo tissues, regions of interest (ROIs) were drawn to quantify 

bioluminescence expressed as radiance (photons/s/cm2/sr). Because different tissue types have different 

background radiances, we normalized data from infected mice using matching tissues from uninfected 

controls (n=4) and used the fold‐change in radiance, compared with the tissue‐specific controls, as the final 

measure. Detection thresholds for ex vivo imaging were determined using the fold‐change in radiance for 

ROIs from infected mice compared with matching empty ROIs in control mice of comparable age.  

 

In some experiments, the colon was removed after standard imaging, an incision was made down the line of 

mesentery attachment, and the tissue pinned out under a dissection microscope. Using ultrafine tweezers, 

large sections of the smooth muscular coat from the other layers were peeled off, whilst the tissue remained 

bathed in 0.3 mg/ml d‐luciferin (41). After imaging, luciferin was removed by 2x washing with PBS. Tissue 

was fixed with 4% paraformaldehyde for 45 min, followed by 2x washes with PBS (41). External colonic wall 

tissue was then whole mounted in Vectashield antifade mounting medium with DAPI (Vector Laboratories) 

and imaged as below.  

 

Histological sections were created after bioluminescence-guided excision of infection foci from skeletal 

muscle and colon tissue (25, 26, 41). Biopsies were first incubated in 95% EtOH at 4oC overnight, and then 

washed in 100% EtOH (4x10 min), followed by xylene (2x12 min). Samples were embedded by placing in 

melted paraffin wax (2x12 min). The wax was allowed to set and the embedded pieces were sectioned into 

5-20 µm histological sections using a microtome. The sections were melted and paraffin dissolved in xylene 

for 30 s, then washed in 95% EtOH (3x1 min), followed by 3 washes in PBS. Sections were mounted in 

Vectashield and imaged using the Zeiss LSM880 confocal microscope. For precise counting of intracellular 

parasites, samples were imaged in 3-dimensions, with the appropriate scan zoom setting, and the files 

analysed using image J software (Fig. S1).  

 

Antibody staining. Deparaffinized sections were incubated at 4oC overnight in primary antibody diluted at 

1:200 in PBS/0.5% FBS. Antibodies against β-tubulin-3 (Biolegend, Cat#802001), CD45 (Tonbo Biosciences, 

Cat#70-0451), smooth muscle actin (Sigma, Cat#A2547), and skeletal muscle actin (Thermo Fisher, 

Cat#MA5-12542) were used to stain for neuronal, nucleated hematopoietic, smooth muscle and skeletal 

muscle cells, respectively. Secondary antibodies (Thermo Fisher) diluted 1:500 in PBS were incubated on 

sections for 3 h at room temperature before mounting. Both primary and secondary antibodies were removed 

by 3x2 min washes in PBS. For staining of whole colon external wall sections, the tissue was submerged in 

the primary antibody dilution for 48 h at 4oC, and then submerged in the secondary dilution at room 

temperature for 3 h before 3x2min washes in PBS.  

 

Statistics 

The Shapiro-Wilk test for normality, and the Wilcoxon rank sum non-parametric test were used to analyse 

the data presented in Fig. 4 and 5. Two-way ANOVA with Tukey’s post hoc correction testing was used for 

Fig. 6. All tests were performed in GraphPad Prism v.8. 



86 
 

ACKNOWLEDGEMENTS 

This work was supported by the following awards: UK Medical Research Council (MRC) Grants 

MR/T015969/1 to JMK and MR/R021430/1 to MDL, and MRC LID (DTP) Studentship MR/N013638/1 to AIW. 

The funders had no role in study design, data collection and interpretation, or the decision to submit the work 

for publication. 

 

 

 

FIG 1  The limit of detection by ex vivo bioluminescence imaging of the murine colon is less than 20 parasites. 

(a) Ex vivo bioluminescence imaging of a section of the colon from a C3H/HeN mouse chronically infected 

(155 days post-infection) with T. cruzi CL-Luc::Neon (25), pinned luminal side up. The bioluminescence signal 

is on a linear scale pseudocolour heat map (same for all bioluminescence images in this figure). (b) Schematic 

showing the distinct layers of the GI tract (see also Fig. 3a). The dashed red line and arrow indicates the 

position above which tissue can be peeled off to leave the external colonic wall layers. (c) Bioluminescence 

image of a colonic wall section after peeling. The insets show the fluorescent parasites (green) detected after 

exhaustive 3-dimensional imaging of the tissue section (Materials and Methods), and the numbers detected. 

Parasites corresponding to one bioluminescent focus (marked by ‘?’) could not subsequently be found, due 

to technical issues. (d) Upper image; an external colonic wall layer from a separate mouse showing the 

correlation of bioluminescence imaging and fluorescence (green), including an infection focus with 16 

parasites (left) (white scale bars=20 µm). A vertical line was introduced into the colon ex vivo image by the 

IVIS software due to a pixel defect. Lower image; staining with DAPI identifies the location of parasite (small) 

and host cell (large) DNA. (e) Determination of parasite number. Serial Z-sections of the external colonic wall 

tissue containing the parasite nest shown in (d) indicate how 3-dimensional imaging can be used to calculate 

the number of parasites on the basis of DNA staining. See Fig. S1 for more detail.  
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FIG 2  In the external colonic wall of chronic stage mice, cells infected with more than 200 parasites contain 

much of the T. cruzi population. (a) Bioluminescence imaging of peeled colon isolated from a C3H/HeN 

mouse 15 days post-infection (acute stage). After mounting, the region of interest (ROI) encompassed by the 

red line was exhaustively searched by confocal microscopy. 35 infected cells were found within the ROI, 3 of 

which are shown. Parasites, green. (b) Using the same approach, the external colonic wall from a chronically 

infected mouse (183 days post-infection) was assessed. The bioluminescent focus corresponded to a single 

highly infected host cell. White scale bars=20 µm. (c) Pooled data from T. cruzi infected cells in peeled colonic 

wall tissue muscle, isolated from 5 acutely and 16 chronically infected mice. Tissue was examined and the 

number of parasites per host cell established after the use of Z-stacking to provide a 3-dimensional image 

(Fig. S1). Each dot represents a single infected cell (acute stage, n=1198; chronic stage, n=140). Dots above 

the dashed red line indicate infected cells containing >200 parasites. (d) The same data set expressed as 

the % of the total parasites detected in the colons of mice in the acute (n=5) and chronic (n=16) stage of 

infection, by nest size category. (e) An infected cell in the peeled colon of a mouse in the acute stage (15 

days post-infection) of infection in which the parasites have differentiated to flagellated trypomastigotes. 
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FIG 3  The majority of parasites in the colon of a chronically infected mouse are located in the circular muscle 

section. (a) Depiction of the layers of the GI tract, correlated with the phase (left) and DNA stained (DAPI) 

(right) images of the same tissue section. (b) Examples of host cells infected with fluorescent parasites 

(green) detected in different layers of the GI tract (see also Fig. S2). Infection foci were located by confocal 

imaging of fixed histological sections. (c) Summary of parasite location data obtained using histological 

sections from chronically infected C3H/HeN and BALB/c mice. 
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FIG 4  Smooth muscle cells are the predominant infected cell type in the GI tract of chronically infected mice. 

(a) Bioluminescence image of the large intestine of a chronically infected C3H/HeN mouse indicating the 

proximal, mid and distal regions, defined as the first, second and third segments measured using image J 

software. Data were analysed as described (Materials and Methods) (n=14) and are presented in the bar 

chart as the average radiance (p/s/cm2/sr) minus the background. (b) Illustrative images taken with the 

mounted external colonic wall section, following staining with cell type specific antibodies (Materials and 

Methods). Upper, infected smooth muscle cell. Middle, infected neuronal cell. Lower, a large parasite nest, 

refractive to staining with any of the 3 markers. (c) Bar chart summarising distribution of infection by host cell 

type. External colonic wall sections were single-stained with  

cell type specific antibodies. For smooth muscle (SMA-α; n=4 mice, 24 infected cells, 20+ve); for neuronal 

cells (β-tubulin-3; n=3 mice, 14 infected cells, 2+ve); for immune cells (CD45, n=8 mice, 61 infected cells, 

1+ve).  
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FIG 5  Skeletal muscle is a major site of parasite persistence during chronic T. cruzi infections in C3H/HeN 

mice, but not BALB/c. (a) Ex vivo imaging of organs and tissues from a BALB/c mouse chronically infected 

with bioluminescent T. cruzi CL Brener. (b) Dorsal bioluminescence imaging of chronically infected BALB/c 

and C3H/HeN mice following removal of internal organs, fur, skin and major adipose depots (Material and 

Methods). (c) Fold change in radiance (photons/s/cm2/sr) established by ex vivo bioluminescence imaging of 

internal tissues and organs and skeletal muscle as imaged in (a) and (b). Dashed line indicates the detection 

threshold equal to the mean +2SDs of the bioluminescence background derived from corresponding empty 

regions of interest obtained in tissue from age-matched uninfected mice. For technical reasons, on a small 

number of occasions, data could not be acquired for tissue samples from some mice (eg adipose tissue). (d) 

Bioluminescent foci from skeletal muscle were excised, histological sections prepared, and then scanned by 

confocal microscopy (Materials and Methods). Sections were stained with specific markers for muscle (actin-

α; red) and DNA (DAPI; blue/turquoise). Parasites can be identified by green fluorescence. White scale 

bars=20 µm. 
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FIG 6  The skin is a major site of parasite persistence during chronic T. cruzi infections in mice. (a) Ex vivo 

bioluminescence imaging of skin (adipose tissue removed) from chronically infected BALB/c and C3H/HeN 

mice (>150 days post-infection) showing representative examples of low, medium and high parasite load. 

The bioluminescence signal is on a log10 scale pseudocolour heat map. (b and c) Quantification of the 

number of discrete infection foci (b) and the bioluminescence intensity for each skin (c). Data points are 

individual animals, with empty circles indicating skins having zero radiance above background. Mean values 

+SEM are shown. Percentages in grey boxes (b) refer to the number of animals with at least one focus above 

the bioluminescence threshold. Infections with both T. cruzi CL Brener and JR bioluminescent strains were 

assessed (n=12-26 animals per combination, 3-4 independent experiments). Groups were compared by 2-

way ANOVA. (d) Confocal micrographs showing fluorescent CL Brener parasites in an infected cell within the 

dermis of a BALB/c mouse 230 days post-infection (surface to the right). Upper image (200x). Asterisk 

indicates a gap resulting from a cutting artefact. Lower two images (630x) highlight the region in the white 

boxed area (above). White scale bars=100 µm.   
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SUPPLEMENTAL MATERIAL 

 

FIG S1  The determination of parasite numbers in highly infected host cells. (a) Bioluminescent image of a 

peeled large intestine from a C3H/HeN mouse chronically infected with T. cruzi CL-Luc::Neon. (b) The 

excised tissue was imaged by confocal microscopy (x100) to reveal a highly infected smooth muscle cell 

(parasites, green). (c) The same image showing DAPI staining (blue) to reveal DNA. (d) For Z-stack analysis, 

the image was split into grids using the ZEN software. Parasite load was determined from the number of 

discoid-shaped kinetoplasts. To facilitate accurate counting, the relatively faint staining of the nuclear genome 

can be reduced by adjusting the contrast. (e) A series of 4 representative Z-stacked images from a total of 

13 slices taken to assess parasite number across the infected cell. A total of 60 parasites were assigned to 

this 3-dimensional grid. The total number of parasites in the nest was 1969.  
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FIG S2  Location of parasites within the murine GI tract during chronic T. cruzi infection. C3H/HeN mice were 

chronically infected with T. cruzi CL-Luc::Neon and the colon was examined by confocal imaging of 

histological sections following DNA staining (DAPI - white) (Materials and Methods). Host cells infected with 

fluorescent parasites (green, indicated by white arrows) were detected in different layers of the GI tract, as 

indicated. White scale bars=20 µm. 
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4.6 Chapter summary 

As covered in the introduction to this chapter, prior to the development of bioluminescent-

fluorescent strains, technical challenges precluded a single-cell level analysis of parasite 

localisation post suppression of the acute stage. This first publication draws on data from the T. 

cruzi CL Brener background reporter and 2 murine host models, BALB/c and C3H/HeN. 

Occupation of myocytes in both the skeletal muscle (C3H/HeN) and the colon (BALB/c and C3H) 

confirms earlier studies employing more traditional methodology that proposed these cell types as 

important reservoirs. The systematic characterisation of the skin as a reservoir site is new but not 

surprising, considering the vectoral nature of transmission. The host cell types occupied in this 

organ remain undefined, although the dermis, particularly in hairy mammals, does have smooth 

muscle myocytes attached to hair follicles in abundance. Future work, with further refined tissue 

processing methodology will be needed to confirm cell type occupation. The generation of new 

bioluminescent-fluorescent stains, beyond the hybrid DTU VI line, and the utilisation of additional 

animal models (rats and hamsters), will allow a more complete answer to the crucial question, 

where does the parasite persist in the chronic stage?  
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5. Replication kinetics of Trypanosoma cruzi in vivo 

 

5.1 Evolution of the ‘persister’ phenotype  

Well established in prokaryotes, both pathogenic and environmental, including the archaea1,2,3, is 

the concept of a ‘persister’ phenotype linked to survival of cellular stress, including that induced by 

chemotherapeutic drugs4. Recently5, this concept has been associated with treatment failure in 

neoplastic disease. The persister state is phenotypic, and separate from drug resistance conferred 

by mutations of the genome6. Cues for entry into the persistence state are all inducers of 

metabolic stress; nutrient starvation, switching of carbon source7 and DNA damage8. An array of 

cellular sensors detect these stresses, TOR (target of rapamycin) and p53 orthologues, being the 

most famous signalling nodes for nutrient deficiency and genome damage, respectively. Why 

heterogeneity of the persistence phenotype exists within populations is unknown. Distinct 

microenvironments that are more ‘stressful’ than their surroundings and stochastic expression of 

persister promoting genes have been hypothesised9. The triggering of signalling pathways that 

promote the persister state, reviewed in Prax and Bertram 201410, lead to down regulation of 

protein synthesis, tRNA synthesis, DNA synthesis, Krebs cycle carbon flux and other biochemical 

pathways that produce reactive oxygen species (ROS). The reduction of these nutrient 

consuming-toxin releasing processes is combined with the up-regulation of protein misfolding 

chaperones11, DNA-repair machinery12, oxidative stress protective proteins13 and anabolic 

maintenance of amino acid levels14. The combined effect allows for survival for prolonged periods 

in adverse environmental conditions at the expense of reproduction. Persister cells cause 

significant complications in the frontline clinical management of both prokaryotic pathogens15 and 

tumours16. From a theoretic stand-point, all modern cellular life adopts ‘persister’-like 

characteristics when presented with cellular stress. The sensors, signalling pathways and effectors 

are among the most ancient and widespread molecular components of the cell17. 

 

5.2 Protozoan persisters and drug tolerance  

As recently reviewed18, all of the single-celled eukaryotic pathogens of man are well established to 

assume slow or no replication life-cycle stages. The infective stages of all are incapable of 

progressing through the cell cycle prior to contact with a suitable host. The terms ‘dormancy’, 

‘quiescence’ and ‘persister’ are often used interchangeably. Here, these pathogens are described 

in terms of their in vivo replication kinetics and its relevance to current drug treatment challenges.  
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5.3 Toxoplasma gondii, the master of ‘quiescence’  

Sexual stages of the T. gondii life-cycle occur in the gastrointestinal tract (GIT) of the cat. Shed in 

the faeces are replication arrested oocysts, or ‘sporocysts’, that contaminate the environment. 

These are highly resistant to physical and chemical insult19. Once consumed by any warm-

blooded animal, other than a Felidae (cat), the sporocysts rupture and release motile sporozoites 

in response to environmental change. Active invasion of the mucosal epithelium is followed by 

intracellular differentiation into the tachyozoite within a parasitophorous vacuole. Wide-spread 

dissemination is accomplished within circulating immune cells20 or as free vacuole bound 

tachyzoites21. Crossing of the blood-brain or placental barrier and subsequent exponential 

replication within CNS neurones leads to pathology in the immunosuppressed host and in the 

unborn foetus (WHO, 2020). In immunocompetent hosts the deployment of parasite specific IFN-

γ+ T-cells control tachyzoite numbers22. 

 
 
 

 

 

 

 

 

 

 

 

Figure 7 – Cartoon showing the link between translation and nuclear accumulation of the transcription factor 
bradyzoite formation deficient-1 (BFD-1) and the transition from the replicating tachyzoites to the dormant bradyzoites. 
While the tachyzoites are able to replicate intracellularly in multiple cell types23, persistent bradyzoites are routinely 
found in the CNS and skeletal muscle fibres. Taken from Waldman et al 202024. 

 

In direct response to oxidative stress directed and promoted by the adaptive immune response, 

parasites up-regulate translation of the ‘master switch’, Bradyzoite Formation Deficient-1 (BFD1) 

mRNA24. BFD1 nuclear translocation and binding to promotor targets up-regulates genes that 

transition metabolism into a definitively ‘persister’ state, the bradyzoite25. Secretion of an 

encapsulating cyst structure provides isolation away from, and protection from, the otherwise 

competent immune effectors26. Tissue cysts are found in both skeletal muscle cells and neurones, 

in which the parasite awaits consumption by a predatory cat. Whether cyst bradyzoites are slowly 

replicating or contain a sub-population that do not enter a new G1/S-phase of the cell cycle for 
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extended periods (months or years)27, is academic to the existence of a truly metabolically 

dormant in vivo T. gondii life-cycle stage. This well validated state is resistant to all clinically 

available compounds28 and perhaps represents one of the most extreme in vivo persisters.  

 

5.4 The Plasmodium species hypnozoite 

The morphological, metabolic and transcriptomic profile of the ‘hypnozoite’ life-cycle stage has 

been best characterised in P. vivax, but certainly exists in other species29. The evolutionary 

pressure for the development of this life-cycle stage almost invariably comes from the need, away 

from the territories on the equator, to persist in the host during dry periods in which mosquito 

numbers are low30. At the equator, where access to the vector and onward transmission 

opportunities are abundant all year-round P. falciparum, which does not enter a hypnozoite stage, 

is dominant31. The mechanism which decides whether individual sporozoites arriving in the liver 

differentiate into hypnozoites or amplify by replication through schizogony is unknown32. A master 

transcription factor that is sufficient and responsible for differentiation to the hypnozoite, analogous 

to BFD-1 in T. gondii, has not been identified33. The hypnozoite exhibits the hallmarks of the 

‘persister’ state with reduced transcription34, limited or no cell-cycling and up-regulation of genes 

involved in DNA-damage repair35. The hypnozoite expression profile is under epigenetic control of 

chromatin structure, which is key for long term maintenance of the transcriptome composition36. 

Although modulation of the hepatocyte does take place during the period of replicative inactivity37, 

a protective cyst structure has not been described. The currently available options in the clinic able 

to treat this dormant liver stage in Plasmodium infections are limited38.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Cartoon showing the developmental decision to either exist for extended time periods as a dormant or 
‘persister’ hypnozoite or to undergo schizogony and amplification through replication. Taken from Barrett et al 201918. 
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5.5 Persistent leishmaniasis, slow but not no replication? 

The various Leishmania species, kinetoplastids in the same class as T. cruzi and T. brucei, are 

transmitted between mammalian hosts by the bite of the sand-fly vector. At the bite site the 

recruitment of innate monocytes provides these parasites with their intracellular reservoir39. 

Clinically symptomatic cases range from localised lesions of the skin to visceral spread of the 

infection and mortality, depending on both parasite species and host genetic factors40. Many cases 

are asymptomatic41 but retain onward vector transmission potential42. Some evidence suggests 

that the acute stage of the infection is characterised by rapid replication of the parasite in 

macrophages43. Deployment of the adaptive immune effectors, principally CD4+ IFN-γ+ T-cells44 to 

the lesion site controls Leishmania growth by lengthening the parasite cell-cycle and promoting 

destruction within the phagolysosomal system. Whether this reduced replication includes a sub-

population of truly dormant non-replicating parasites, which has been suggested43,45, is unknown.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10 – The Leishmania species life-cycle. Included (top right) is the hypothesised existence of a dormant or 
persister form of the parasite that is more resistant to drug treatment but can reactivate once this cellular stress is 
removed. Taken from Barrett et al 201918. 
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When compared to in vitro axenically grown parasite cultures, in vivo Leishmania replication after 

deployment of T-cells is significantly reduced. Hallmarks of the persister phenotype have been 

described, including metabolic reprogramming triggered by amino acid restriction46, upregulation 

of the misfolded protein response47 and reduced flux through multiple biochemical pathways45. 

The poor quality of front-line drugs has been linked to their inability to kill chronic persister 

amastigotes48. 

 

5.6 Plasmodium falciparum: A drug treatment induced persister state? 

P. falciparum has been described to enter temporary cell cycle arrest after exposure to front-line 

artemisinin-based therapies49. These morphologically altered ring-stage schizonts have been 

imaged within red blood cells post treatment in vitro. Interestingly pyrimethamine, an alternative to 

artemisinin, causes cell cycle arrest and the persister phenotype only in the subsequent round of 

schizogony after exposure50, while some drugs fail to induce this arrested state. The metabolic 

status of these ‘persister’ cells is poorly defined, but reduced mRNA translation by cycloheximide 

antagonises the anti-malarial drug dihydroartemisinin (DHA)51, potentially indicating that reduced 

protein synthesis promotes drug resistance. Phosphorylation of the translation initiator eIF2α has 

been demonstrated to prevent cell cycling in the replication arrested sporozoite52, and could 

potentially be a molecular mechanism for entry into blood-stage dormancy. Outside of experiments 

exposing P. falciparum to anti-malarial drugs, no suggestion has yet been made for the 

spontaneous acquisition of this dormant life-cycle stage in natural in vivo infections. 

 

Beyond the replication arrested stumpy form, no data currently exists to suggest that T. brucei is 

capable of entering a dormant/quiescent state.  

 

5.7 Trypanosoma cruzi ‘dormancy’, an unresolved question  

T. cruzi is able to enter the canonical persister phenotype in response to nutrient starvation in both 

the amastigote53 and epimastigote54 life-cycle stages in vitro. This status includes growth slow-

down on nutrient withdrawal and accumulation in G1, but not death. On exposure to sub-lethal 

benznidazole (BZ) concentrations, classical features of the persister state are evident. Once 

nutrient starvation was ended a return to pre-starvation growth was rapid. In the case of sub-lethal 

BZ treatment, the stall in G1 continued for some time, the length being dependent on BZ 

concentration, until the resumption of pre-exposure growth rate. Since DNA damage is a key 

outcome of the downstream reduction of BZ, the time taken for repair pathways to complete their 

work may determine the prolongation of the persister phenotype.  
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The Sanchez-Valdez et al, 201855 study was the first to ascribe a definitively dormant phenotype 

to T. cruzi. This study injected the thymidine analogue EdU into an acute and chronic mouse 

model infected with fluorescent parasites and led to the inference that parasites that failed to 

incorporate the nucleotide were in a state of dormancy. Similar non-labelling cells were confirmed 

to be a feature of in vitro infections. Using a cytosolic labelling tracker dye, non-dividing (dye+) 

parasites were shown to differentiate, exit and then enter new host cells in vitro. These dye+ 

dormant parasites resisted 2-days of in vivo and up to 30-days in vitro treatment with BZ. In vitro 

survival was not associated with the acquisition of resistance mutations. This first report on in vivo 

replication kinetics in T. cruzi firmly ascribes the ability to spontaneously enter a ‘dormant’, 

‘quiescent’ or ‘persister’ phenotypic state that is pre-conditioned to be resistant to the front-line 

drug BZ. It is suggested that this is a major reason behind treatment failure in human cases.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 
 
Figure 11 – Cartoon showing the hypothesised mechanism behind drug treatment resistance in T. cruzi initially 
published in Sanchéz et al 201855. In the absence of drug treatment rare amastigotes spontaneously enter a non-
replicating dormant state. Amastigotes can remain in this state for prolonged periods of time and are tolerant to drug 
treatment. Post treatment, dormant amastigotes are able to re-enter S-phase and resume amplification of the 
infection. Taken from Barrett et al 201918. 
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5.8 Background work 

The rationale behind the work presented in this chapter was to further assess the existence of the 

dormant life-cycle stage using our in vivo infection model. This build on previous work that had 

already firmly established the asynchronous nature of T. cruzi replication in vivo56(Appendix 1).  

 

Optimisation of EdU incorporation – Before the publication of the Sanchez et al 201855 study, T. 

cruzi replication kinetics in vivo and the potential existence of a ‘dormant’ life cycle stage were 

purely speculative. Researchers working on other eukaryotic parasites had made significant 

progress in this area (above). The following pilot work was carried out in preparation for exploiting 

EdU (5-Ethynyl-2´-deoxyuridine)58 labelling as a marker for parasite replication in our T. cruzi CL 

Luc:mNeonGreen-C3H/HeN infection model. The aim was to assess whether the synthetic 

thymidine analogue EdU was able to be incorporated into in vivo replicating parasite DNA. For this 

piolet experiment, CB17-SCID mice were infected as described in Chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16 – A., Cartoon of pilot experiment protocol. A CB17-SCID animal infected with T. cruzi CLBr-
Luc::mNeonGreen was subjected to ex vivo analysis 15dpi, following injection with a single shot of 12.5 mg/Kg EdU 
i.p. 6 hrs prior to cull. B., A bioluminescent image, with adipose tissue removed, with the heart outlined by the white 
square (for organ identification see materials and methods, Chapter 3). C., Histological section from the heart 
developed for EdU incorporation. A single host cell and several of the parasites have clearly incorporated the 
thymidine analogue.  

 

This model allows quick imaging of many fluorescent parasites in fixed tissue sections. A single 

shot of 12.5 mg/Kg EdU was given 6 hrs before ex vivo analysis (Figure 16). The histological 

processing of tissue is described in Chapter 4. After Click-IT™-reaction development of 10 µm 
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thick sections, following the manufacturers protocol, EdU+ (red) parasites were easily detected 

within host cells that also contained EdU- cells. Host cell labelling was routinely identified in most 

tissues, particularly the mucosal barrier tissue of the GIT, and the spleen. This labelling provided 

validation that regions containing EdU- parasites had been exposed to the analogue in vivo and 

that the labelling reaction had been successful.  

 

A second pilot experiment was done with immunocompetent BALB/c mice, a strain that is used 

routinely to assay drug efficacy59. Mice were culled 21dpi after either a 1xi.p. 12.5 mg/Kg shot 3-

days prior to cull, or after 3xi.p. 12.5 mg/Kg shots administered each day over 3 days before ex 

vivo analysis (Figure 17).  

 

 
Figure 17 – A., Cartoon showing the acute stage (21dpi) BALB/c-T. cruzi CL Luc:mNeonGreen model injected with 
1xi.p. 12.5 mg/Kg EdU 3-days prior to ex vivo analysis. Bioluminescence image of the visceral organs (for organ 
identification see cartoon in Materials and Methods, Chapter 3). Histological sections taken from heart tissue 
developed for EdU incorporation and stained with DNA labelling DAPI. B., The same as in (A) for an animal that 
received 3xi.p. injections of 12.5 mg/Kg over the 3 days prior to ex vivo analysis. In this example the example 
histological section was taken from the colon. White scale bars = 10 μm.  

 

Neither EdU regimen caused an obvious impact on infection distribution or bioluminescence 

intensity relative to untreated controls (not shown). Like in the SCID model, host cell labelling was 

evident in all organs of BALB/c mice that were examined (spleen, heart and colon), particularly in 

the colon epithelium. Parasites found in the colon in both the 1x and 3x EdU injected mice were 

identifiable as EdU+ or EdU-.  
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Abstract 

Chronic Trypanosoma cruzi infections are typically life-long, with small numbers of parasites surviving in 

restricted tissue sites, which include the gastro-intestinal tract. There is considerable debate about the 

replicative status of these persistent parasites and whether there is a role for dormancy in long-term infection. 

Here, we investigated T. cruzi proliferation in the colon of chronically infected mice using 5-ethynyl-

2’deoxyuridine incorporation into DNA to provide “snapshots” of parasite replication status. Highly sensitive 

imaging of the extremely rare infection foci, at single cell resolution, revealed that parasites are three times 

more likely to be in S-phase during the acute stage than during the chronic stage. By implication, chronic 

infections of the colon are associated with a reduced rate of parasite replication. Despite this, very few host 

cells survived infection for more than 14 days, suggesting that T. cruzi persistence continues to involve 

regular cycles of replication, host cell lysis and re-infection. We could find no evidence for wide-spread 

dormancy in parasites that persist in this tissue reservoir.  
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1. Introduction 

Disease latency, mediated by a wide range of mechanisms, is a common feature of viral, bacterial and 

parasitic infections [1-3]. However, there can be long-term consequences for the host, which include relapse 

and/or inflammatory pathology. The terms “persistent”, “dormant” and “metabolically quiescent” are used, 

often interchangeably, to describe pathogens in this state. The phenomenon has evolved independently and 

frequently in different pathogen groups, presumably because it acts to enhance survival and transmission. 

The “persister” phenotype does not involve the acquisition of selected mutations, and is often associated with 

treatment failure, antibiotic tolerance being the best studied example [4,5]. In the case of Chagas disease, 

some form of dormancy or restricted replication has been widely postulated as a mechanism that might 

explain long-term parasite survival and the high rate of treatment failure [6].  

 

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, which infects 6-7 million people, 

mainly in Latin America. Better drugs and innovative immunological interventions are urgently required. 

Human infection is normally initiated when faeces of the triatomine insect vector, contaminated with 

metacyclic trypomastigote forms of the parasite, come into contact with the bite wound, or when they are 

rubbed into mucous membranes. An acute parasitaemia develops, which can be asymptomatic, or manifest 

as generalised symptoms such as fever, headache and muscle pain. Suppression of the infection is then 

mediated by a CD8+ T cell mediated response which reduces parasite numbers to extremely low levels [7,8]. 

A subset of infected individuals (~30%) eventually develop the classical Chagasic cardiac and/or digestive 

symptoms, although this can be decades after the acute stage infection. Dilated cardiac myopathy and 

digestive megasyndromes are the most common morbidities, and can often be fatal [9,10]. It remains to be 

established how the parasite is able to persist long-term, albeit at very low levels, in the face of a robust 

adaptive immune response [11]. Furthermore, the reasons why treatment failures are a common outcome 

needs to be better understood at a mechanistic level to guide the design of improved chemotherapy [12]. In 

this context, the recent report of a non-proliferative form of T. cruzi that is refractory to treatment with the 

front-line drug benznidazole [13], could have important implications.  

 

The ability of human parasites to enter a long-term quiescent state, in which both replication and metabolism 

are slowed, has been described in Toxoplasma gondii (the bradyzoite) [14] and some Plasmodium species 
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[3]. As with many prokaryotic pathogens [15,16], the ‘dormant’ state involves lower levels of DNA synthesis 

and transcription, down-regulation of energy catabolism, and activation of DNA damage/cellular stress 

responses. In T. gondii, a master transcription factor (BFD1), activated by stress response pathways, initiates 

the on-set of bradyzoite development [17]. The precise triggers that lead to differentiation into the quiescent 

hypnozoite liver stage in some Plasmodium spp. have been elusive [3]. Amongst eukaryotic pathogens, these 

examples represent one end of the “dormancy spectrum”, in which entry into a quiescent metabolic state is 

for extended periods. It has also been tentatively proposed that Leishmania donovani can enter a form of 

dormancy, although the mechanisms involved are unknown [18]. The situation in other Leishmania spp. is 

more definitive, with the identification of quiescent intracellular amastigotes which exhibit a slower metabolic 

flux and a reduced replication rate [19,20]. This stops short of full long-term dormancy in which parasites 

enter G0/G1 cell cycle arrest. Plasmodium falciparum blood stage schizonts can also enter a transient state 

of dormancy, induced by treatment with the front-line drug artemisinin [21,22]. This capacity to respond to 

stress by halting progress through the cell cycle exists in most cells that have DNA damage sensing 

machinery [23,24]. The existence of a dormant phenotype in the African trypanosome, Trypanosoma brucei, 

beyond the G0/G1 arrested stumpy form required for onward transmission [25] remains speculative.  

 

Observations of both in vitro and in vivo T. cruzi infections identified a sub-population of non-dividing 

intracellular amastigotes that retained the ability to differentiate into flagellated trypomastigotes, which were 

then able to propagate the infection [13]. This phenomenon was defined as spontaneous dormancy on the 

basis of experiments that involved monitoring incorporation of the thymidine analogue 5-ethynyl-

2’deoxyuridine (EdU) into replicating DNA, and use of the tracker dye CellTrace Violet (CTV) to mark non-

dividing parasites. Whether this represents long-term metabolic quiescence analogous to that in T. gondii 

and Plasmodium spp., a slow-replicating phenotype as in Leishmania spp., or temporary arrest induced by 

stress, as exhibited by P. falciparum and all non-tumorous mammalian cells, is unresolved. In this latter 

context, the report that T. cruzi amastigotes have an intrinsic ability to reduce their replication rate by 

temporary cell cycle arrest in G1, as a response to stress, nutrient availability and drug treatment, may be of 

relevance [26]. It is not known whether these represent overlapping or distinct mechanisms for entering a 

quiescent state. This could have implications for drug design, immunological interventions, and our 

understanding of T. cruzi persistence.  
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Using highly sensitive bioluminescence and fluorescence imaging [27-29], we demonstrated that the 

gastrointestinal tract, specifically the colon and stomach, is a key site of T. cruzi persistence during chronic 

murine infections. Smooth muscle myocytes in the circular muscle layer of the colonic gut wall are the 

predominant host cell type. In the chronic stage, the entire colon typically contains only a few hundred 

parasites, often concentrated in a small number of cells that can contain >100 parasites.  During the acute 

stage, however, when the parasite burden is considerably higher and many cells are infected, host cells 

containing >50 parasites are rarely found. Persistent parasites are also frequently detected in the skin during 

chronic infections, and in C3H/CeN mice, the skeletal muscle [29,30]. Further studies have also shown that 

parasite replication is asynchronous in individual host cells, a process that is independent of tissue location 

or disease stage, that replication of the nuclear and mitochondrial genomes is non-coordinated within the 

intracellular population, and that replicating amastigotes and non-replicating trypomastigotes can co-exist in 

the same cell [31].  

 

We have developed tissue processing protocols and imaging procedures that allow us to routinely detect T. 

cruzi persistence foci during chronic murine infections at single cell resolution [28,29]. Here, we describe 

experiments which provide new insights into parasite persistence, and indicate that chronic infections are 

associated with a reduced rate of parasite replication.    

 

2. Methods 

2.1. Ethics statement 

Animal work was performed under UK Home Office project licenses (PPL 70/8207 and P9AEE04E4) and 

approved by the LSHTM Animal Welfare and Ethical Review Board. All procedures were conducted in 

accordance with the UK Animals (Scientific Procedures) Act 1986 (ASPA). 

 

2.2. Parasites, mice and cell lines 

The T. cruzi bioluminescent:fluorescent lines CL Luc::mNeon or CL Luc::Scarlet  [28] were used throughout. 

Epimastigotes were grown in RPMI-1640, supplemented with 10% foetal bovine serum (FBS, BioSera), 

hemin (17 µg ml-1), trypticase (4.2 mg ml-1), penicillin (100 U ml-1) and streptomycin (100 μg ml-1), at 28°C. 

Metacyclic trypomastigotes were generated by culturing epimastigotes to stationary phase. In vitro studies 
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were performed with the MA104 and Vero African green monkey kidney cell lines. In vivo experiments were 

carried out using female C3H/HeN mice, initially aged 8-12 weeks, purchased from Charles River (UK). Mice 

were maintained under specific pathogen-free conditions in individually ventilated cages, with a 12-hour 

light/dark cycle. They had access to food and water ad libitum. 

 

2.3. CellTrace Violet in vitro assay 

T. cruzi trypomastigotes were isolated by centrifugation and allowed to recover for 2 hours at 37ºC in high-

glucose DMEM medium with 10% FBS, and then labelled with CTV fluorescent dye (Thermo Fisher 

Scientific), according to the manufacturer’s protocol. Briefly, 2x106 trypomastigotes were washed in PBS and 

then incubated for 20 minutes at 37°C in 10, 5, 2, or 1 µM CTV, protected from light. Unbound dye was 

quenched by the addition of one volume FBS and incubating for 5 minutes at 37°C. After washing (x2) in 

fresh complete medium, trypomastigotes were used for infection. Vero cells maintained in RPMI 10% FBS 

were trypsinized and seeded at 104 or 105 cells per well in 24-well plates containing cover slips, or in 8 well 

Ibidi µ-slides with a polymer coverslip, and allowed to attach for 6 hours before infection. Trypomastigotes 

were added at a multiplicity of infection (MOI) of 10:1 (parasite:host cell) and allowed to invade overnight (16-

18 hours). Cultures were then washed with PBS (x3) to remove non-invading parasites, and infected cultures 

incubated in RPMI with 2% FCS. Coverslips were fixed at different timepoints by transfer into a plate 

containing 4% paraformaldeyde for 30 minutes, then stained and mounted for microscopy using Vectashield® 

with DAPI, or with propidium iodide following RNase treatment. 

 

Images and videos were acquired using an inverted Nikon Eclipse microscope. The slide containing the 

infected cells was moved along the x-y plane through a 580 nm LED illumination. Images and videos were 

collected using a 16-bit, 1-megapixel Pike AVT (F-100B) CCD camera set in the detector plane. An Olympus 

LMPlanFLN 40x/1.20 objective was used to collect the exit wave leaving the specimen. Time-lapse imaging 

was performed by placing the chamber slide on the microscope surrounded by an environmental chamber 

(OKOLab cage incubator) maintaining the cells and the microscope at 37˚C and 5% CO2. Video projections 

and Z-stack sequences were created using the deconvolution app in the Nikon imaging software. 
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2.4. In vitro parasite culturing and EdU labelling 

Tissue culture trypomastigotes (TCTs) were derived after infecting MA104 cells with metacyclic 

trypomastigotes. MA104 cells were cultured in Minimum Essential Medium Eagle (MEM, Sigma-Aldrich.), 

supplemented with 5% FBS at 37oC, in 5% CO2. 24-well plates containing cover slips were seeded with 105 

cells per well and left for 48 hours. After reaching 95-100% confluency, they were infected with TCTs at an 

MOI of 5:1 (parasite:host cell). 18 hours later, external parasites were removed by washing (x3), fresh 

supplemented MEM was added, and the infections allowed to proceed. 

 

EdU (Sigma-Aldrich) in PBS was diluted to the appropriate concentration in supplemented MEM. The medium 

was removed, and the infected monolayer washed (x2), and fresh medium including EdU was added. After 

the appropriate incubation period, cells were washed (x3). For EdU toxicity studies, parasite growth in 

infected cells was assessed in 96-well plates, 3 days after EdU addition, by measuring mNeonGreen 

fluorescence in a FLUOstar Omega plate reader (BMG LABTECH). Background fluorescence was calculated 

using uninfected MA104 cells (n=6). For microscopy, cells in the 24-well plates were washed (x2) and 

incubated for 45 minutes in 4% paraformaldehyde diluted in PBS. Cover slips were then removed and washed 

(x2) in PBS. EdU incorporation was assessed using a Click-iT Plus EdU AlexaFluor 555 Imaging kit 

(Invitrogen), as per manufacturer’s instructions, followed by washing (x2) with PBS, with coverslips then 

mounted in Vectashield. To allow precise counting of amastigotes, cells were imaged in 3-dimensions with a 

Zeiss LSM880 confocal microscope, using the Image Browser overlay function to add scale bars. Images 

were exported as .TIF files to generate figures.  

 

2.5. In vivo infections 

CB17 SCID mice were infected with 1x104 T. cruzi CL Luc::mNeon TCTs and monitored by bioluminescence 

imaging [32]. At the peak of infection (approximately 18 days), when bloodstream trypomastigotes were 

visible by microscopy, the mouse was euthanised [33] and infected blood obtained by exsanguination. 

Trypomastigotes were washed in Dulbecco's Modified Eagle Medium, diluted to 5x103 ml-1, and CH3/HeN 

mice injected i.p. with 1x103 trypomastigotes.   
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2.6. In vivo EdU labelling 

The standard 1-day EdU treatment involved two i.p. injections (12.5 mg kg-1 EdU in PBS) delivered 6 hours 

apart. The second injection took place 18 hours prior to sacrifice. For the 3.5-day treatment, the daily injection 

protocol (above) was extended for 3 days, with a final single injection on day 4, followed 4 hours later with 

euthanisation and necropsy. For acute stage experiments, mice were 14-16 days post-infection when EdU 

was administered, and for the chronic stage, mice had been infected for >100 days. Organs and tissues were 

subjected to ex vivo imaging, bioluminescent foci from skeletal muscle and the colon were excised, and 

processed for histology [33]. Where indicated, whole colons were removed from the gastrointestinal tract, 

split longitudinally, pinned luminal side up, and the mucosal layer removed. Whole mounting of the entire 

external colonic gut wall was performed as described previously [29]. Parasites were identified by 

mNeonGreen fluorescence using confocal microscopy, and carefully removed, together with ~5mm2 of 

surrounding tissue. Prior to a second mounting, tissue pieces were processed for EdU detection by incubation 

overnight at 4oC in PBS containing 2.5% FBS and 0.5% triton-X (Sigma-Aldrich), and then washed in PBS 

(x2) [31]. Several tissue segments could be developed for visualisation using 500 l of Click-iT reaction mix. 

 

2.7. Statistics 

All statistical analyses were performed in GraphPad PRISM v8.0 and STATA v16.0., and the data expressed 

as the mean ± standard deviation of mean (SD), unless otherwise stated. In vitro EdU toxicity was calculated 

as % growth relative to non-treated controls. The data were fitted with a sigmoidal function with variable slope 

and the absolute IC50 value calculated by solving the function for X when Y= 50%. All data were tested for 

normality and homogeneity of variance using Shapiro-Wilk’s and Levene’s tests, respectively. Statistical 

comparisons between samples to analyse in situ EdU incorporation were performed using one-way ANOVA 

with post-hoc Tukey’s test for multiple comparisons. Data sets were analysed by non-parametric tests when 

variances were not homogenous. The % EdU incorporation in colon tissue sections vs. whole mount were 

compared using the Wilcoxon signed-rank test. The Kruskal-Wallis test was performed on the exposure data. 

Statistical significance was accepted where p ≤0.05 (* p ≤0.05, ** p ≤0.01, *** p ≤0.001, **** p ≤0.0001). 
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3. Results 

3.1. The CellTrace Violet tracker dye inhibits T. cruzi proliferation 

We sought to explore parasite replication by using CTV, a tracker dye that has been employed as a marker 

for spontaneous dormancy in T. cruzi amastigotes [13]. This succinimidyl ester dye diffuses into cells, binds 

covalently to the amine groups of proteins, and becomes fluorescent following cleavage by intracellular 

esterases [34]. CTV fluorescence undergoes serial dilution with each round of parasite cell division, resulting 

in an inverse correlation between dye retention and proliferation rate. However, reports that CTV itself can 

inhibit cell division [35] prompted us to first investigate toxicity towards T. cruzi. Trypomastigotes were 

labelled by incubation for 20 minutes in 5 or 10 µM CTV (Methods), conditions that had been used previously 

to monitor parasite proliferation [13]. When these parasites were added to the Vero cell monolayer, we found 

they were 60% less infectious than trypomastigotes that had been incubated in the DMSO solvent alone 

(figure 1a). In the first 48 hours post-infection, there was then limited division of intracellular CTV+ve 

parasites, with most trypanosomes in a state of growth arrest (figure 1b,c). By 72 hours, replication had been 

more widely initiated, although the average number of amastigotes per infected cell was still significantly 

below that of the controls (figure 1b). Microscopy also revealed extensive heterogeneity in the intensity of 

CTV-staining within the T. cruzi population, with many parasites failing to replicate, particularly in the first 36-

48 hours post-infection. At lower CTV concentrations (1 and 2 µM), growth inhibition was less evident and 

fewer parasites retained the dye at 5 days post-infection (figure 1d). Collectively, these experiments indicate 

that CTV is an inhibitor of trypomastigote infectivity and amastigote replication, and that the use of dye 

retention as a marker for dormancy and cell cycle arrest could lead to ambiguity. Furthermore, the 

heterogeneous nature of T. cruzi CTV-staining, even within individual host cells (figure 1c,d), could result in 

differential growth and development rates within the same intracellular parasite population. Prior to infection, 

we removed non-bound CTV by quenching with addition of bovine serum (Methods). Despite this, some dye 

was taken up by mammalian cells and retained in stained vesicles for several days (figure 1d, electronic 

supplementary material, Video 1). It was important to ensure co-localisation of blue (CTV), red (fluorescent 

parasites) and/or green (DAPI - DNA) staining to avoid the risk of confusing amastigotes and spherical CTV-

containing vesicles, both of which appear motile in the highly dynamic cytoplasmic environment.    
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3.2. Continuous EdU exposure can inhibit amastigote replication in vitro 

We then used the thymidine analogue EdU to monitor parasite proliferation. In T. cruzi, incorporation of EdU 

provides a readout on the replicative status of both nuclear and mitochondrial DNA (kDNA) [28,31]. However, 

the procedure has to be used with caution, since EdU exposure in vitro can be associated with toxicity. In 

cultured mammalian cells, this is characterised by genome instability, DNA damage and cell cycle arrest [36-

38]. Short-term exposure at lower concentrations (<12 hours, <10 µM) appears to have less impact, and does 

not perturb cell cycle kinetics [39]. Toxicity against T. cruzi in vitro has also been shown to be dependent on 

exposure time; 4 hours had only minor inhibitory effects on intracellular amastigotes, even at 70 µM, whereas 

with 24 hours continuous exposure, the IC50 dropped to 70 nM [40]. In contrast, when infected cells were 

cultured for 72 hours in presence of 100 µM EdU, there was no reported inhibition of amastigote replication 

[13].  Given these conflicting observations, as a preliminary to in vivo studies, we assessed the in vitro kinetics 

and growth inhibitory effects of EdU on intracellular amastigotes of T. cruzi CL-Luc::Neon (a derivative of the 

CL Brener strain). This parasite reporter line expresses a fusion protein that is both bioluminescent and 

fluorescent [28]. After only 10 minutes exposure, amastigotes were clearly labelled, and it was possible to 

distinguish those that were EdU+ve from those that were EdU-ve (figure 2a). Similar heterogeneity, including 

differential labelling of nuclear and kDNA, was observed when infected cells were labelled for 1 or 6 hours at 

different EdU concentrations (figure 2b,c). This pattern results from asynchronous amastigote replication [31], 

with EdU negativity/positivity determined by the position of individual parasites within the cell cycle during the 

period of exposure. When we assessed the extent of EdU growth inhibition after 6 hours exposure, washing, 

and examination 3 days later, we established an IC50 of 1.67 µM, although the level of inhibition plateaued at 

70% (figure 2d). These outcomes are therefore consistent with those reported by Sykes et al. [40].  

 

3.3. Reduced numbers of T. cruzi in S-phase during chronic stage of infections  

We next compared the dynamics of EdU incorporation by parasites during acute and chronic murine 

infections with the T. cruzi CL-Luc::Neon strain. The elimination half-life (T1/2) of EdU in mice has not been 

determined, but with other thymidine analogues, the period is relatively short. For example, the bioavailability 

of bromodeoxyuridine (BrdU), a thymidine analogue also used in DNA labelling experiments, is less than 15 

minutes [41]. Infected C3H/HeN mice were therefore given two EdU injections (each of 12.5 mg kg-1), 6 hours 

apart (figure 3a), in an attempt to highlight a greater number of parasites where DNA replication was 
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underway. At any one time, as judged by in vitro experiments, approximately 25-30% of amastigotes will be 

in S-phase [26]. In the majority of cases, the external gut wall mount methodology [29] was used to process 

the resulting tissue samples. The protocol enables the muscular coat, including the longitudinal and circular 

smooth muscle layers, which contain the majority of colon-localised parasites during chronic stage infections, 

to be visualised in their entirety at a 3-dimensional level with single-cell resolution (Methods). Intracellular 

parasite numbers can be determined with accuracy by confocal microscopy using serial Z-stacking (electronic 

supplementary material, figure S1). On occasions, infected host cells in colonic tissue were also investigated 

by coupling ex vivo bioluminescence-guided excision and confocal microscopy (Methods) [31].  

 

Colon samples were excised 18 hours after the second injection, and the incorporated EdU visualised 

(Methods). We observed significantly greater levels of parasite labelling in tissue obtained from acute stage 

mice than from those that were chronically infected (70% vs 20%) (figures 3,4; electronic supplementary 

material, figure S2). Therefore, during the acute stage, a greater fraction of the parasite population is 

replicating their nuclear and/or mitochondrial DNA at any specific time point. By inference, the amastigote 

replication rate must be slower during chronic infections, at least in this tissue location. There were no 

differences in the data derived from colonic tissue processed by the two differing methodologies (grey and 

yellow dots, figure 3b). We further observed that during the acute stage, there was a positive correlation 

between the number of parasites per infected cell and the percentage of parasites where DNA synthesis was 

ongoing (figure 4a,b,c). Large parasites nests were less common during the acute stage, with few instances 

where infected cells contained more than 50 parasites (figure 4). We did attempt to quantify, for comparative 

purposes, the relative level of EdU labelling in each parasite. However, since most images were taken with 

whole mounted tissue sections, the variable depths of parasites from the surface made this technically 

challenging. As judged by visual inspection, the majority of EdU+ve parasites in any one cell were labelled 

to a similar extent (figure 3c,d,e; electronic supplementary material, figure S2). Since smooth muscle cells, 

the most frequently infected cell type in the colon [29], are typically in a state of cell cycle arrest, the nuclei 

of host cells were generally unlabelled.   

 

In chronically infected mice, only a minority of parasites incorporated EdU when the 1-day protocol was used 

(figure 3, electronic supplementary material, figure S2), and in ~20% of infected cells, none of the parasites 
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were labelled (figure 5a,b). A similar level of heterogeneous incorporation was observed in skeletal muscle, 

another site of parasite persistence in chronically infected C3H/HeN mice, and a tissue where parasites are 

often found in large nests (electronic supplementary material, figure S3, as example). When labelling was 

extended over 3.5 days (a total of 7 injections) (figure 3a), there was a 2.3-fold increase in the number of 

labelled parasites, with approximately half of those in the colon being EdU+ve (figures 3b,5c; electronic 

supplementary material, figure S2). With this more prolonged protocol, every infected host cell that we 

examined contained at least one labelled parasite (figure 5c). However, the percentage of EdU+ve parasites 

within the population was still significantly lower than during the acute stage, when the 1-day labelling protocol 

was used (figure 3). In combination, these data indicate that during chronic infection of the colon, there is a 

general reduction in the number of parasites in S-phase. As judged by bioluminescence ex vivo imaging of 

organs and tissues, neither the 1-day nor the 3.5-day EdU injection protocols had any detectable effect on 

the levels of infection or on tissue-specific parasite dissemination (electronic supplementary material; figure 

S4).  

 

3.4. Long-term infection of individual colonic smooth muscle cells is not common during the chronic 

stage 

To further investigate parasite replication during chronic stage infections, we undertook experiments to 

assess the extent and stability of parasite labelling 7 and 14 days after EdU injection using the 1-day labelling 

protocol (figure 6a). When mice were examined by ex vivo bioluminescence imaging after 14 days, there had 

been no measurable impact on the parasite burden or tissue distribution (electronic supplementary material, 

figure S4). At 7-day post-injection point, EdU+ve parasites were still readily detectable, although there was a 

4-fold decrease in their relative abundance within the population, and only ~40% of infected cells contained 

any labelled parasites (figure 6b,c,e,f). By 14 days post-injection, out of the 87 infected cells detected in the 

colons of 8 mice, just 1 contained EdU+ve amastigotes (figure 6d,e,g). Using serial Z-stacking, we 

established that this infected cell contained 82 parasites, 42 of which were labelled. Given this profile, the 

most likely explanation is that this host cell had remained infected for at least 14 days, with the parasites in 

a state of low proliferation. The EdU+ve parasites cannot have undergone many replication cycles during this 

period, since the labelling intensity was similar to that in parasites examined 1 day post-injection. 

Furthermore, in dividing cells, incorporated nucleosides become undetectable after 2 to 5 generations, 
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assuming random segregation of daughter chromosomes [42,43]. It can be further inferred from the rarity of 

cells containing EdU+ve parasites (figure 6d,g), that long-term occupancy of individual colonic smooth muscle 

cells by T. cruzi is not a common feature of chronic stage infections, even though this tissue is a site of 

parasite persistence. In the vast majority of cases therefore, the normal infection cycle of parasite replication, 

host cell lysis, and re-infection appears to continue during the chronic stage, albeit at a reduced rate. Finally, 

the observation of multiple labelled amastigotes within a single host cell 14 days after injection (figure 6d) 

demonstrates that EdU is stable once it has been incorporated into the T. cruzi genome, and that it is not 

readily susceptible to removal by metabolic or DNA repair pathways. This stability has similarities with the 

situation in mice, where Merkel cells labelled during pregnancy remained EdU+ve in off-spring 9 months after 

birth [44].  

 

4. Discussion 

The report that T. cruzi can undergo a form of spontaneous dormancy has highlighted the possibility that the 

proliferation status of the parasite could have a role in long-term persistence and contribute to the high rate 

of treatment failure [13]. Improvements in tissue processing and imaging procedures [29] have allowed us to 

explore this further by providing a platform to investigate parasite replication in the colon of chronically 

infected mice, a tissue that supports long-term T. cruzi persistence at extremely low levels [27]. Our major 

finding is that during chronic infections, the proportion of intracellular parasites in S-phase is significantly 

lower than it is during the acute stage. In acute infections, 70% of parasites were EdU+ve after using the 1-

day protocol, compared with 20% during the chronic stage (figure 3, 4; electronic supplementary material, 

figure S2). This is unlikely to reflect reduced EdU uptake or bioavailability during chronic infections, as the 

staining intensity of individual EdU+ve parasites was similar during both stages of the disease, with the only 

apparent difference being the proportion of amastigotes that were positive. The most parsimonious 

explanation is that T. cruzi amastigotes proliferate at a slower rate in the chronic stage, at least in this tissue 

location, and were therefore less likely to be replicating their DNA during the period of EdU exposure. It is 

implicit from this that T. cruzi amastigotes have the capability of responding to environmental signals that are 

specific to chronic and/or acute stage disease, such as nutrient availability or indicators of the immune 

response. In the latter case, the observation that immunosuppression rapidly reactivates the infection [30], 

suggests that the host response could be a driver for slow replication, either directly or indirectly. These 
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observations are in line with previous reports that amastigote replication and cell cycle kinetics can be subject 

to reversible stress-induced inhibition in vitro [26]. A response mechanism of this type could also account for 

the correlation between amastigote growth rate and nest size during acute infections (figure 4).  

 

The heterogeneous nature of labelling during the chronic stage, with many parasites being EdU-ve (figure 3; 

electronic supplementary material, figure S2), should not be interpreted as being indicative of spontaneous 

dormancy. Rather, it provides further evidence that parasite replication within individual host cells is 

asynchronous [31]. The observation that some intracellular parasites do not incorporate EdU reflects that 

amastigotes exist in a range of replicative states within individual infected cells, an inference supported by 

the cumulative nature of EdU labelling. There are several possible fates for parasites labelled with EdU during 

chronic stage infections, as outlined in figure 7. Given our data, which show a steady reduction in the % 

EdU+ve parasites per infected cell over time (figure 6), continued growth of these amastigotes and dilution 

of the label below the level of detection (figure 7c) would appear to be the most likely outcome.  

 

Although incorporation of EdU into replicating DNA is widely used in proliferation studies, it can lead to a 

DNA damage response and cell cycle arrest, [36-38]. With T. cruzi, the measurable effect of EdU toxicity is 

time-dependent [40], and here we showed that 6 hours exposure in vitro at 1-2 µM is sufficient to inhibit 

amastigote replication (figure 2d). Therefore, studies on T. cruzi proliferation, dormancy and persistence 

could be confounded if EdU exposure is continuous. In the case of in vivo administration, EdU toxicity should 

be less problematic, because of the short clearance time of thymidine analogues [41]. Consistent with this, 

we found no detectable impact of EdU exposure on parasite burden or tissue tropism in chronically infected 

mice (electronic supplementary material, figure S4). In these infection experiments, where incorporation was 

employed as an end-point assay, providing snapshots of DNA replication within the parasite population, EdU 

toxicity would not be expected to compromise the outcome. This contrasts with in vitro experiments where 

EdU exposure can be continuous, resulting in inter-strand cross-linking and double-strand breaks, which 

trigger DNA damage signalling and cell cycle arrest [37]. This is a ubiquitous response in all cells with DNA 

damage sensing machinery [45,46]. Spontaneous dormancy has been proposed as a mechanism that could 

account for parasite persistence after therapy [13,47]. However, in T. cruzi, the front-line drug benznidazole 

can cause mutagenesis, disruption to DNA-repair pathways, and chromosome instability [48,49]. Therefore, 
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an alternative explanation could be that benznidazole-induced DNA damage responses trigger cell cycle 

arrest and a transient dormant-like state, which protects some parasites from further drug-induced toxicity, 

ultimately leading to relapse after the successful completion of DNA repair.  

 

Our findings do not exclude the possibility that some parasites might have the potential to enter a canonical 

dormant state at specific points in the life cycle. However, they more strongly suggest, that rather than being 

a discrete biological stage, a dormancy-like phenotype in T. cruzi might be better described as representing 

one end of the normal proliferation spectrum. The cell cycle plasticity necessary for this has already been 

reported in amastigotes [26]. Therefore, the reduced rate of T. cruzi replication during the chronic stage could 

be a phenomenon more analogous to the biochemical quiescence and reduced proliferation exhibited by 

Leishmania [19,20], than to the more definitive dormant state displayed by T. gondii and some Plasmodium 

species [3]. Resolving this question and understanding the mechanisms involved has particular importance 

for Chagas disease drug development strategies. As described in this paper (figures 1,2), there are limitations 

to the cell tracker dye and DNA labelling methodologies that have previously been applied to investigate T. 

cruzi proliferation and quiescence. Therefore, new approaches are urgently required. 
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Figure 1. CellTrace Violet (CTV) reduces T. cruzi infectivity and inhibits intracellular proliferation. (a) T. cruzi 

CLBr-Luc::Scarlet trypomastigotes were incubated with either 5 or 10 µM CTV for 20 minutes and used to 

infect Vero cell monolayers at an MOI of 10:1 (Methods). 18 hours later, infection efficiency was determined 

by inspecting a total of 2,203 (control), 3781 (5 µM), and 3,840 (10 µM) Vero cells (>300 infected cells in 

each case). Each data point corresponds a randomly acquired image and represents the mean percentage 

of cells infected. Differences between columns were analysed using a parametric one-way ANOVA with 

Tukey's post-hoc pair wise comparisons. **** p ≤0.0001. (b) Vero cells infected with CTV-ve or CTV+ve 

trypomastigotes (as above) were incubated for the time periods indicated. The numbers of amastigotes per 

infected cell were then determined by analysing >300 infected cells per treatment. Error bars represent the 

standard deviation from the mean. Data were analysed using a Wilcoxon rank sum test. (c) Images of Vero 

cells 36 hours after infection with CTV-ve (control) or CTV+ve trypomastigotes. Red, fluorescent T. cruzi 

amastigotes. Fluorescent parasites containing the CTV tracer dye appear as purple on a red fluorescent 

background. Size bars=20 µM. (d) Images of Vero cells 5 days after infection with trypomastigotes that had 

been incubated with various concentrations of CTV, as indicated. Blue, intracellular vesicles containing CTV. 

See also electronic supplementary material, Video 1. Size bars=20 µM; those with *=50 µM 
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Figure 2. EdU incorporation by T. cruzi amastigotes in vitro is rapid, heterogeneous within the population, 

and can inhibit parasite growth. (a) T. cruzi CL-Luc::Neon trypomastigotes were used to infect MA104 cells 

at an MOI of 5:1 (Methods). 2 days later, cultures were exposed to EdU (50 µM) for 10 minutes, and then 

examined by confocal microscopy. The image shows adjacent infected cells where in one instance, all 8 

amastigotes are EdU+ve, whereas in the other, 2/8 are EdU-ve (indicated by white arrowhead). N, host cell 

nucleus. (b) EdU labelling of amastigotes after 1 hour exposure (40 µM). kDNA, kinetoplast DNA; n, parasite 

nucleus. (c) EdU labelling of amastigotes after 6 hours exposure (10 µM). Scale bars=10 µm in all cases. (d) 

MA104 cells were infected with trypomastigotes, and 2 days later, the cultures were exposed for 6 hours to 

EdU at a range of concentrations, and then washed thoroughly. After a further 3 days incubation, amastigote 

growth was determined by assessing expression of the mNeonGreen reporter (Methods). The inhibition curve 

was plotted using PRISM graphpad to establish the concentration of EdU that conferred 50% growth inhibition 

compared to untreated controls. Data were derived from 5 replicates (CI
95

 0.98 µM-4.83 µM).  
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Figure 3. Intracellular T. cruzi replication, as inferred by EdU incorporation, is slower in the chronic stage 

than during acute infections. (a) Schematic showing experimental outline. C3H/HeN mice infected with T. 

cruzi CL-Luc::Neon were injected with EdU as indicated during the acute (15 days post-infection; dpi) or 

chronic stage (>100 dpi).  Each larger red arrow indicates 2 i.p. injections separated by 6 hours. (b) 

Percentage of parasites that were EdU+ve under each treatment protocol. Colonic tissue was extracted from 

mice 18 hours after the second injection (1-day treatment) or 4 hours after the final injection (3.5-days 

treatment), and infected cells detected by ex vivo imaging and confocal microscopy (Methods) (electronic 

supplementary material, figure S1) [29]. Each data point represents a single mouse. Blue data points indicate 

mice aged ~150 days at the start of acute infection, and act as age-matched controls. In the chronically 

infected mice, yellow data points indicate colons processed by standard histological sectioning, and grey 

points highlight those processed through peeling away of the mucosal layer and whole mounting the 

remaining colonic gut wall (Methods). No significant differences were observed in the % EdU+ve parasites in 

colonic sections processed by each method (Wilcoxon rank sum test). For comparison of treatment 

conditions, statistical analysis was performed as described (Methods); **** p <0.0001 and ** p <0.01. (c) 

Representative images of infected colonic muscle cells from an acute stage mouse. Labelling: parasites, 

green; DNA, blue (DAPI staining); EdU, red. EdU labelling on a green background appears yellow. (d and e) 
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Images of infected colonic muscle tissue from chronically infected mice after EdU labelling using the 1-day 

and 3.5-day protocols, respectively (see also electronic supplementary material, figure S2). Scale bars=20 

µm, except where indicated; *=10 µm.  

Figure 4. The inferred parasite replication rate is higher during the acute stage and correlates positively with 

nest size at this phase of the infection. (a) The number of infected cells (nests) detected in colonic gut wall 

tissue from mice in the acute (n=5) and chronic (n=7) stage, and the number of parasites found in each 

category. Tissue was processed using the colon peeling procedure (Methods). (b) Percentage EdU+ve 

parasites in infected cells during acute and chronic infections in relation to nest size. (c) Relating nest size to 

the % EdU+ve parasites during acute stage infection. Each point corresponds to a specific nest size (x-axis), 

and the corresponding %EdU+ve mean percentage value across all animals (y-axis). The R2 value was 

determined by linear regression. 
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Figure 5. Increased chronic stage EdU incorporation by parasites with the 3.5-day protocol. (a) Level of EdU 

incorporation in the 55 infected cells detected in the whole mounted colonic gut walls from 7 chronic stage 

mice treated with the 1-day labelling protocol. The total parasite content (grey) and the number that were 

EdU+ve (red) are indicated. (b) Upper images; an infected cell containing no EdU+ve parasites after labelling 

with the 1-day protocol. Lower images; an infected cell from the same colonic tissue that contained EdU+ve 

parasites (see also electronic supplementary material, figure S2). Parasites, green. (c) EdU incorporation in 

52 infected cells detected in 6 chronically infected mice treated with the 3.5-day labelling protocol. Every 

infected cell in the colonic gut walls of these mice contained at least 1 EdU+ve parasite. Raw data are 

available in Table S1. 
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Figure 6. EdU labelling experiments reveal that parasite occupation of colonic host cells during chronic stage 

infections is not long-term. (a) Schematic of the labelling protocol. EdU was injected in two 12.5 mg kg-1 

doses, 6 hours apart (as in figure 3a). After 1, 7, or 14 days, mice were sacrificed, colonic tissue excised, 

and infected cells detected by ex vivo imaging and confocal microscopy (Methods). (b) Representative 

images of parasite EdU incorporation following the 1-day labelling protocol (see also Figure 3d). (c) EdU 

incorporation assessed 7 days post-injection. (d) Left-hand image; EdU incorporation assessed 14 days post-

injection. Typically, infected cells contained no EdU+ve parasites. Right-hand image; the single example of 

an infected host containing EdU+ve parasites after an exhaustive search of colon mounts from 8 mice. Scale 

bars=20 m. (e) Mean % EdU+ve parasites found in infected colonic cells. Each data point represents a 

single mouse; 1-day post-injection, n=10; 7-days post-injection, n=6; 14-days post-injection, n=8. The total 

number of parasites detected, imaged and designated as EdU+ve or EdU-ve in each mouse varied from 47 

to 2468, with an average of 608. The green data points indicate colons processed by standard histological 

sectioning, and grey data points highlight those processed through peeling away of the mucosal layer and 

whole mounting of the remaining colonic gut wall (Methods). Statistical analysis of treatment conditions was 

performed as described (Methods); **** p <0.0001. There was no significant difference (ns) between the 7- 

and 14-days post-injection groups. (f) Percentage parasites that were EdU+ve in infected colonic cells from 

mice sacrificed 7-days post-injection (n=3). Grey bar indicates total parasite number in each infected cell; red 
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bar indicates the percentage EdU+ve. (g) Similar analysis of EdU positivity in infected cells found in mice 14-

days post-injection (n=8). 

 

 

Figure 7. Schematic highlighting the possible fates of host cells and parasites following EdU labelling. The 

image shows a colon smooth muscle section from a chronically infected mouse following treatment with the 

1-day labelling protocol (figure 3). EdU labelling (red) appears as yellow against the green background of 

parasite fluorescence. (a) Following EdU exposure, the infected cell and parasites could be cleared by the 

host immune response. (b) There could be outgrowth of EdU-ve parasites in an infected cell. The EdU+ve 

subset, which would have been in S-phase during exposure, might enter cell cycle arrest after incorporation. 

(c) If EdU incorporation is below the toxicity threshold for cell cycle arrest, amastigote proliferation will lead 

to serial dilution of the label. (d) After EdU incorporation by a subset of parasites, all the amastigotes in the 

cell might enter a slow proliferative state. This appears to be a rare event (see figure 6d,g).  
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Electronic Supplementary Material 

 

Figure S1. Determination of parasite numbers and EdU incorporation status in infected mouse cells using 3-

D confocal imaging. (a) T. cruzi infected cell in the colonic gut wall of a chronic stage C3H/HeN mouse, 

following treatment using the standard 3.5-day EdU labelling protocol (figure 3a). All scale bars=20μm. (b) 

Assessment of EdU+ve parasites using a series of Z-stacked image slices from across the infected cell. 28 

EdU+ve parasites were detected. The total number of parasites was determined in the same manner by 

visualising DAPI staining. 
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Figure S2. Further images demonstrating that, inferred from EdU incorporation, T. cruzi replication is slower 

in the chronic stage than in the acute (see also figure 3). C3H/HeN mice infected with T. cruzi CL-Luc::Neon 

were injected with EdU during the acute or chronic stage.  Colonic tissue was extracted from mice 18 hours 

after the second injection with 12.5 mg kg-1 EdU (1-day treatment, acute and chronic stage) or 4 hours after 

the final injection (3.5-days treatment, chronic stage), and infected cells detected by ex vivo imaging and 

confocal microscopy (Methods). Labelling: parasites, green; DNA, blue (DAPI staining); EdU, red. EdU 

labelling on a green background appears yellow. For reference, scale bars=20 µm. These images form part 

of the data set collated to produce figure 3b. 
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Figure S3.  EdU incorporation by parasites in skeletal muscle during a chronic stage infection. (a) C3H/HeN 

mice, chronically infected with T. cruzi CL-Luc::Neon, were injected twice with EdU (12.5 mg kg-1; 6 hours 

apart). Skeletal muscle was excised 18 hours later and infected cells detected by ex vivo imaging and 

confocal microscopy (Methods). (b) Enlarged images of nest showing fluorescent parasites (green), DNA 

staining (blue), and EdU incorporation (red).  
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Figure S4. (a) Ex vivo bioluminescence imaging of organs and tissues from a C3H/HeN mouse chronically 

infected with T. cruzi CL-Luc::Neon, sacrificed after EdU labelling using the 1-day and 3.5-day protocol (figure 

3a). (b) Schematic showing the arrangement of organs. (c) Comparison of the fold increase in radiance 

(p/s/cm2/sr) above background associated with organs and tissues from chronically infected mice subjected 

to 1-day EdU labelling (n=4), 3.5-days EdU labelling (n=3), and 1-day EdU labelling, followed by assessment 

14 days later (n=3) (as in figures 3 and 6). The dashed line indicates 2xSD above the background established 

from uninfected mice (n=4). 

 

Table S1. Raw data which indicate increased chronic stage EdU incorporation by parasites with the 3.5-day 

protocol. These data were used to generate figures 5a and 5c. *Available on-line* 

 

Supplementary Video 1. 3-D video projection and rotation after Z-stack capture of a Vero cell 5 days post-

infection with T. cruzi CLBr-Luc::Scarlet (red) (see also figure 1d). Infective trypomastigotes had been pre-

incubated with 10 µM CTV (Methods). The asynchronous parasite population contains amastigotes 

displaying different sizes and shapes suggesting variability in their cell and/or developmental cycles. Within 
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individual parasites, there was considerable heterogeneity in the intensity and location of CTV-staining. 

Similarly, in the host cell, CTV is widely dispersed (blue), frequently sequestered in vesicle-like structures 

that can be mistaken for amastigotes unless co-localising red fluorescence is confirmed. N=host cell nucleus. 

Size bars=20 µM. *Available on-line* 
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5.10 Chapter summary 

The current debate concerning the existence of dormancy in T. cruzi, and its significance in clinical 

treatment failure, could be improved by a consensus on language. At present, the literature on this 

topic for the protozoal pathogens uses the terms ‘persister’, ‘dormant’ and ‘quiescent’ 

interchangeably. These terms are applied to the full range of slow replicative states, from sub-

optimal growth due to reduced access to nutrients, to the genetic programme initiated in T. gondii 

by BFD1 leading to a near complete cell-cycle shutdown. A consensus on which terms apply in 

which situation is urgently required to allow clearer discussion between researchers involved in the 

subject across multiple human pathogens.  

 

There are potential flaws in the interpretation of the data presented by the paper ascribing 

‘spontaneous dormancy’ in T. cruzi. As outlined above, these relate to the growth inhibitory 

properties of the tracker dye CellTrace Violet (CTV) and to the cell cycle arrest that can be 

induced by exposing parasites to EdU at high concentrations for long periods. The collective 

interpretation derived from all the data published on this topic is best described as being 

consistent with a general slow-down in parasite growth rate post-deployment of adaptive effectors. 

A definitive ‘dormant’ life-cycle stage remains speculative. The contribution that this metabolic 

slow-down makes to treatment failure is unknown. Replication kinetics will certainly have an 

impact on drug treatment outcomes, although its importance remains to be determined. Despite 

the slower rate of parasite replication during chronic stage infection in the colon, and the potential 

for ‘herd-protection’ within mega-nests (Taylor et al 2020, see Appendix 1), it appears that 

infections are easier to clear in the chronic rather than acute stage (see chapter 1, Drugs and 

Clinical Trials). Whilst this may simply reflect parasite numbers, reaching a satisfactory answer to 

why this is the case will be a key next step in establishing the influence of replication kinetics on 

treatment outcomes. New models, in which replication status can be assessed without the 

incorporation of synthetic nucleotides or cytotoxic tracker dyes are essential.  
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Chapter 6 – A hypothesis to explain life-long 

persistence of Trypanosoma cruzi infection  

 

6.1 Immune evasion strategies and chronicity of infection with eukaryotic 

pathogens 

T. cruzi infection, leads to chronic, often life-long, persistence in both mice and humans. As 

outlined in Chapter 2, in contrast to other protozoal human pathogens (below), the mechanisms of 

immune evasion that allow T. cruzi persistence have not been well established. Here, I will briefly 

review progress in understanding mechanisms of infection persistence in some of the better 

understood examples: Leishmania major (in mice and humans), Trypanosoma brucei species (in 

mice and humans) and Plasmodium falciparum (in humans).  

 

6.2 Leishmania major and the phenotype of the adaptive response 

Contact with the innate immune system and occupation of the macrophage – The interaction 

between mice, which act as natural hosts, and L. major has been well investigated1. Inoculation of 

all hosts takes place via the bite of the sand fly vector into the skin. PAMP/DAMP promoted 

expression of inflammatory chemokines recruit circulating monocytes into the tissue2,3. 

Phagocytosis of parasites by macrophages and dendritic cells (D.C.) allows occupation of the 

phagolysosomal compartment by replication competent amastigotes. Down regulation of 

ROS/RNS producing pathways4,5 and up-regulation of anti-oxidant defences6 prevents parasite 

destruction. In SCID mice, that lack functional T-cells, L. major replication is uncontrolled, with 

animals reproducibly succumbing to disseminated infection of macrophages in the spleen, liver, 

lymph nodes and skin7.  

 

Resistance is based on deployment of IFN-γ+ CD4+ Th1 T-cells – In the majority of human 

infections (WHO, 2020), and those of most immunocompetent inbred mouse strains7, parasite 

numbers are controlled, and the associated skin lesions are resolved. In these cases, activation of 

naïve CD4+ T-cells in the lymph nodes draining the skin takes place in the presence of a cocktail 

of cytokines generated by innate recognition, principally IL-128, with TNF-α, IL-1α, IL-18 and IFN-

α/β important in some models9,10. This inflammatory environment and recognition of L. major 

antigen by clonal TCRs polarises the developing CD4+ helper cells towards the pro-inflammatory 

Th1 phenotype capable of high-level IFN-γ expression11. Deployment of these Th1 antigen-

specific T-cells to the lesion12 provides high local concentrations of IFN-γ, prompting macrophages 

to up-regulate the expression of ROS/NOS4. This overrides the modulation of the phagocytes by 
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L. major and results in the destruction of most parasites13. Backed up by human data14, promotion 

of this pathway is the goal of prospective vaccine candidates15.  

 

Th2 T-cells and IL-10 in susceptibility – While the pathways of protective immunity have been 

well established, the alternative pathways that lead to susceptibility continue to be debated. 

Initially it was thought that susceptible mouse strains activated T cells under the polarising effect of 

IL-416. This cytokine suppresses Th1 polarisation and promotes the antagonistic Th2 phenotype. 

IL-4 is secreted by naïve T-cells after relatively weak recognition of specific L. major antigens17. 

However, early and transient IL-4 expression also takes place in resistant animals18. The lack of 

suppression of IL-4 synthesis, rather than lack of its induction, is now considered the main 

determinant of poor parasite control. Differences in expression of IL-129, the major Th1 polarising 

cytokine, the kinetics of early parasite dissemination1 and higher expression of anti-inflammatory 

IL-1019 have all been suggested as mechanistic explanations. Depletion of IL-10 in resistant 

models has been shown to generate a sterile outcome, rather than canonical low-level persistence 

in the skin20.  

 

6.3 Trypanosoma brucei and perpetual antigen switching  

Parasite outgrowth in the blood stream – Inoculation with Trypanosoma brucei occurs via the 

bite of the teste fly vector. Unlike most other protozoal pathogens of man, T. brucei exists as an 

extracellular parasite in the blood stream and tissue fluids of the solid organs. Non-canonical 

enzymatic cleavage of complement components21 and molecular counters to innate trypanolytic 

factors22, at least in the human infective species, prevent innate clearance. SCID mice universally 

succumb to uncontrolled infections23.  

 

α-VSG (variable surface glycoprotein) antibody mediated clearance of infection – The T. 

brucei genome is organised into 11 pairs of megabase chromosomes and 50-100 mini-

chromosomes. The internal regions of the megabase chromosomes contain the conserved core 

housekeeping genes, while the subtelomeric domains and the mini-chromosomes contain ~2500 

copies of the highly polymorphic, surface expressed, VSG genes and pseudogenes24. At any one 

time, a single VSG gene is expressed mono-allelically and forms a layer of ~107 protein molecules 

arranged as dimers, covering the entire plasma membrane of the trypomastigote. The most 

immunodominant B-cell epitopes on the intact parasite are on the hyper-variable loops at N-

terminus of the VSG molecule25. Recognition of these leads to the production of IgM and later 

IgG26 against the specific VSG type. Rapid turnover of the VSG coat, and any bound antibody, 

through the endocytic pathway ensures that elimination of parasites only occurs when a high 

concentration of anti-VSG antibody is achieved27. Once this threshold titre is reached, efficient 
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opsonisation of parasites and phagocytosis via FcγR on splenic macrophages rapidly clears 

infection28. The centrality of VSG-specific antibody in the control of T. brucei infection is 

demonstrated by the infection of B-cell deficient mice29, which mirror the SCID model in outcome.  

 

VSG genetic switch and chronic infection – The strict expression of only a single VSG variant 

and the stochastic genetic switching of this highly expressed antigen promotes T. brucei 

persistence in its host. A switch in the VSG gene expressed takes place at a frequency of 10-2 – 

10-6 per generation30, and is sufficient to outpace the generation of antibody against the new coat. 

This stochastic switch is accomplished through the genomic architecture of the ~15 blood stream 

VSG expression sites in the telomeres. Homology of the DNA sequence surrounding the VSG 

genes (5’ 70bp repeats and conserved elements in the 3’ untranslated regions) promotes 

homologous recombination31. Exchange of the VSG coding sequence results in the rapid 

replacement of the surface coat. In addition, during S-phase DNA replication the molecular 

machinery responsible for high-level expression can switch between the available expression sites 

providing a new VSG coat in the absence of DNA rearrangement. The precise details of how this 

is achieved is still being resolved32. Later in infection segmental recombination allows the use of 

information encoded in pseudogenes to generate entirely novel VSG sequences, thus ensuring 

the repertoire is much greater than the number of intact VSG genes in any single parasite33.  

 

6.4 Plasmodium falciparum, a complex persistent parasite 

Limits of natural pre-erythrocytic immunity – Infective P. falciparum sporozoites are deposited 

in the skin during blood feeding by female Anopheles mosquitos. Surface expressed 

circumsporozoite protein (CSP) prevents complement mediated lysis34 and, after circulatory 

dissemination, interacts with hepatocytes in the liver promoting cellular invasion35. Replication 

within the liver amplifies P. falciparum numbers ~10,000-fold per invaded hepatocyte36, releasing 

merozoites into the blood stream after 6-7 days. During natural infections, these pre-erythrocytic 

stages are poorly immunogenic, with low numbers of infecting parasites and the relatively short 

time periods in which they exist extracellularly suggested as explanations37. The protection 

generated by the only licenced malaria vaccine (RTS,S) is mediated through the induction of 

antibodies against CSP38. Protection is incomplete and short lived, due to the decline in the serum 

titre of these antibodies over the months following vaccination39. Significant effort has, and 

continues to, go into vaccine candidates that promote antibody targeting the sporozoite, CD4+ 

promotion of Kupfer cell (liver resident) phagocytosis and CD8+ cytotoxicity against infected 

hepatocytes40. At present a sterilising pre-erythrocytic vaccine offering long-term protection (years) 

does not exist.  
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Suppression of blood-stage infection and natural immunity –The major target of the host 

response is the blood-stage infection, which is responsible for the pathology of malaria. During this 

stage replication via schizogony takes place in the erythrocyte, amplifying parasite numbers ~24-

fold in each infected cell. Immunogenic exposure of parasite antigens expressed and exported to 

the erythrocyte surface takes place during the 48hrs replication cycle. Egress of merozoites and 

re-invasion of new host cells is rapid (seconds), briefly exposing large numbers of parasite 

antigens to host serum. At higher densities of blood parasite load, merozoite invasion leads to cell-

cycle arrest and differentiation into the gametocyte. Up-take of this life-cycle stage by a mosquito 

in a blood meal completes the parasites life-cycle. Gametocyte specific antigen, even those 

expressed on the RBC surface are poorly immunogenic, and are increasingly the focus of 

transmission blocking vaccine candidates41. Immunity to severe disease is acquired rapidly, even 

after a single infection42. Immunity to clinical disease is usually acquired by age 543 and 

increasingly effective suppression of blood parasite density, and even sterility, are possible in 

older cohorts44. Defining the adaptive mechanisms behind this natural resistance at the molecular 

level remains an urgent priority45.  

  

Multiple strategies of immune evasion by blood-stage P. falciparum – Splenic P. falciparum 

specific CD4+ Th1 T-cells secreting IFN-γ activate local macrophages and are required for optimal 

suppression of parasite loads46. Preventing passage of infected erythrocytes through this organ is 

a major persistence promoting mechanism. Parasite encoded erythrocyte surface structures, 

centred on the PfEMP-1 molecule, are required for attachment to endothelial receptors in the 

brain, bone marrow and for a single PfEMP-1 variant, the placenta47. Other erythrocyte surface 

parasite encoded products have been confirmed to mimic the action of the immune checkpoints of 

the host48, potentially accounting for the observed immunosuppression associated with malaria 

infection49. Antibodies reactive against erythrocyte surface antigens are a major focus of the host 

response and are required for natural immunity, with PfEMP-1 the best characterized50. This 

protein is encoded by the multicopy (~60 per nucleus) var gene family, mostly found within 

heterochromatin at the chromosome telomeres51. The stochastic expression of a single gene is 

strictly maintained, with transcriptional switching occurring in ~2% of parasites per generation52. 

Var gene polymorphism is further increased through genetic recombination events during mitosis53 

in the human host and meiosis54 in the mosquito. Similar mechanisms vary the other erythrocyte 

surface exposed antigens, such as STEVORs and RIFINs55. Natural immunity is thought to be the 

result of exposure, and generation of antibodies to, the wide variety of variable antigens present in 

the local circulating P. falciparum parasites in a certain region. The limit to the diversity of these 

antigens is likely imposed by the structural requirements to maintain the ability to bind to host 

endothelial ligands. Natural immunity is not maintained on movement between geographically 
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distant endemic areas56, which is hypothesised to be due to differences in circulating variable 

antigens between clones in these regions.   

 

6.5 Trypanosoma cruzi, persistence alongside the systemic correlates of 

protection 

Unlike experimental L. major infection, T. cruzi inoculation results in a protective Th1 response 

centred on CD8+ IFN-γ+ T-cells in all immunocompetent murine models analysed. A mechanism 

of antigenic switching analogous to T. brucei has not been demonstrated, and unlike P. 

falciparum, primary infection can lead to long-term immunity to secondary parasitaemia, even if 

the initial challenge is drug-cured57. The rationale for the work presented in the manuscript below 

was to exploit the CL Luc::mNeonGreen reporter and tissue processing methodology developed 

for the earlier chapters to characterise the ‘hyper-local’ immunological environment of persistent 

parasites. The data generated would better allow us to understand how T. cruzi is able to evade 

such an effective adaptive response to persist long-term in its host.   
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Abstract 

Trypanosoma cruzi is the etiological agent of Chagas disease. Following T-cell mediated 

suppression of the acute phase infection, this intracellular eukaryotic pathogen persists in a limited 

sub-set of tissues at extremely low-levels. The reasons for this tissue-specific chronicity are not 

understood. Using a dual bioluminescent:fluorescent reporter strain, which allows experimental 

infections to be imaged at single-cell resolution, we have characterised the ‘hyper-local’ 

immunological microenvironment of rare parasitized cells in the mouse colon, a key site of 

persistence. We demonstrate that incomplete recruitment of T-cells to infection foci permits repeated 

cycles of intracellular parasite replication and differentiation to motile trypomastigotes to occur at a 

frequency sufficient to perpetuate chronic infections. The life-long persistence of parasites in this 

immunotolerant site continues despite the presence, at a systemic level, of a highly effective T-cell 

response. Overcoming this low-level dynamic equilibrium between host and parasite represents a 

major challenge for vaccine development.  
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Indroduction 

The insect-transmitted protozoan parasite Trypanosoma cruzi is the causative agent of Chagas 

disease, and infects 5-7 million people in Latin America1. Despite decades of effort, only limited 

progress has been made in developing a vaccine, and doubts remain about the feasibility of 

vaccination as a method of disease control2,3. In humans, T. cruzi infection passes through an acute 

stage that lasts 2-8 weeks, during which parasitaemia is readily detectable, although symptoms are 

generally mild and non-specific. With the induction of the adaptive immune response, in which CD8+ 

IFN-+ T-cells play a key role4,5, there is a significant reduction in the parasite burden. However, 

sterile clearance is not achieved and parasites persist as a chronic life-long infection. One-third of 

those infected with T. cruzi eventually develop Chagasic pathology, although symptoms can take 

decades to become apparent. Cardiomyopathy is the most common clinical outcome6-8, followed by 

digestive tract megasyndromes, which are reported in about 10% of infected individuals, often in 

parallel with cardiac disease.  

 

Although the innate immune system is able to detect the parasite9,10, there is a delay in the 

subsequent induction of an adaptive response relative to other pathogens5,11. This, together with a 

rapid rate of parasite division12, allows T. cruzi to disseminate widely during the acute stage, with 

most organs and tissues becoming highly infected13. The CD8+ T-cell response generated, which 

predominantly targets a sub-set of immunodominant epitopes in members of the trans-sialidase 

surface antigen family14,15, is critical for controlling the infection in mice. The parasite burden is 

reduced by 2-3 orders of magnitude as the disease transitions to a chronic dynamic equilibrium13. 

Understanding why the immune system then fails to eliminate the remaining parasites is a central 

question in Chagas disease research. This information is crucial to underpin rational vaccine design 

and immunotherapeutic interventions.  

 

Because of the complexity and long-term nature of Chagas disease in humans, mice have been 

important experimental models for research on interactions between parasite and host. They display 
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a similar infection profile to humans, exhibit chronic cardiac pathology, and are widely used in drug 

and vaccine development16. Imaging studies have revealed that the GI tract is a major parasite 

reservoir during chronic infections and that the degree of containment to this region is determined 

by both host and parasite genetics13,17. Parasites are also frequently detectable in the skin, and in 

some mouse models, skeletal muscle can be an additional site of persistence4,18. In the colon, the 

most frequently infected cells are myocytes located in the gut wall. However, the extent of infection 

is low, and in most cases, this entire organ contains only a few hundred parasites, concentrated in 

a small number of host cells18. After transition to the chronic stage, T. cruzi also exhibits a reduced 

proliferation rate at this site, although the cycle of replication, host cell lysis and re-infection appears 

to continue, with little evidence for wide-spread parasite dormancy12.  

 

Multiple studies have shown that experimental T. cruzi vaccines have protective efficacy and can 

reduce both parasitaemia and disease severity19-24. However, unambiguous evidence of complete 

parasite elimination after challenge, is lacking. In contrast, drug-cured infections can confer sterile 

long-lasting protection against re-challenge with a homologous parasite strain3, although this level 

of protection was only achieved in ~50% of animals. Re-challenge with a heterologous strain did not 

result in sterile protection, although there was >99% reduction in the parasite burden. All unprotected 

animals that displayed re-infection, transitioned to the canonical chronic stage equilibrium and organ 

distribution, without passing through an elevated acute stage parasitaemia. Once established in 

permissive sites, such as the GI tract, parasites appear to survive the systemic T. cruzi-specific IFN-

+ T-cell response generated by the primary challenge. In the absence of information on the 

immunological micro-environment of these persistent parasites, the reasons for this are unclear. 

Resolving this question will have a major strategic impact on the development of an effective 

vaccine. 

 

Progress in this area has been limited by technical difficulties in locating and analysing the rare 

infection foci in permissive tissue sites, such as the colon. Here, we describe the application of a T. 
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cruzi bioluminescent:fluorescent dual reporter strain and enhanced imaging procedures that have 

allowed us to show that incomplete ‘hyper-local’ homing of T-cells to foci of intracellular infection is 

associated with the ability of the parasite to persist in the colon.  

 

Results 

CD4+ and CD8+ T-cells have non-redundant roles in suppression of the colonic parasite load 

during chronic T. cruzi infection. Myocytes in the colonic gut wall are an important site of T. cruzi 

persistence in murine models of chronic Chagas disease. However, infected host cells are extremely 

rare and unevenly distributed18. To assess the role of the cellular immune response in controlling 

infection in this tissue compartment, we infected C3H/HeN mice with T. cruzi CL Luc::mNeon, a 

parasite line that constitutively expresses a bioluminescent:fluorescent fusion protein25. This 

reporter strain can be used in combination with ex vivo imaging and confocal microscopy of peeled 

whole colonic wall mounts to detect persistent infection foci at single cell resolution (Methods). When 

infections had reached the chronic stage (>100 days post-infection), one cohort of mice was 

immunosuppressed with cyclophosphamide, an alkylating agent that is generally suppressive of the 

lymphocyte population26, and which has been widely used to drive the relapse of low-level T. cruzi 

infections27,28. Treatment led to a reduction in peripheral blood mononuclear cells (PBMCs) close to 

basal levels within 5-10 days (Fig. 1a, b). In parallel, other groups of mice were subjected to 

antibody-mediated depletion of the circulating CD4+ or CD8+ T-cell populations. This was achieved, 

with high specificity, on a similar time-scale (Fig. 1c; Supplementary Fig. 1). Circulating anti-T. cruzi 

serum antibody levels were not significantly altered by cyclophosphamide treatment, or by depletion 

of the CD4+ or CD8+ T-cell subtypes (Fig. 1d).  

 

Examination of mouse colons by ex vivo bioluminescence imaging >12 days after the initiation of 

treatment, revealed that cyclophosphamide-induced immunosuppression had resulted in wider 

dissemination and intensity of the infection (Fig. 2a). Further analysis of peeled external gut walls 

by confocal microscopy (Methods), which allows the full length of the longitudinal and circular 
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smooth muscle layers of the colon to be assessed at a 3-dimensional level18, confirmed that there 

had been a substantial increase in the number of infected cells (Fig. 2b, c, d). Therefore, reduction 

of the PMBC population perturbs the ability of the immune system to control the proliferation of 

persistent parasites within the colon. However, specific depletion of either the CD4+ or the CD8+ T-

cell repertoires by themselves, did not have a significant effect (Fig. 2d). Furthermore, in the absence 

of PBMCs, it is implicit from the resulting parasite dissemination that the circulating serum antibodies 

are unable to suppress the infection during the chronic stage (Fig. 1d).   

 

Parasites persisting in the colon can induce effective hyper-local T-cell recruitment. At any 

one time, the majority of the parasite population that persists in the colon is found in a small number 

of ‘mega-nests’, infected cells that typically contain several hundred replicating amastigotes, or 

occasionally, differentiated non-dividing trypomastigotes12. The remainder of the population is more 

widely distributed, with considerably lower numbers of parasites per infected cell.  To better 

understand the process of long-term parasite survival, we investigated the cellular microenvironment 

of persistent infection foci. When infections had advanced to the chronic stage, peeled whole colonic 

wall mounts were examined by confocal microscopy (Methods), and compared to those of naïve 

age-matched mice. In non-infected tissue, using DAPI staining to highlight nuclei, an average of 55 

host cells were identified in 200 M diameter circles positioned around randomly selected nuclei 

within the whole mounted gut wall (Fig. 3a). Most cells had elongated nuclei typical of smooth muscle 

myocytes. In the infected group, parasitized cells were identified by green fluorescence (Methods). 

Scanning revealed that total cellularity in the immediate locality of infection foci was similar in most 

cases to that in non-infected colon tissue; 95% were within 3 x S.D. of the background mean, 

compared with 98% around randomly selected cells from naïve control regions (Fig. 3a, b). However, 

in other instances, there was evidence of highly localised cellular infiltration, with 3.4% of infection 

foci surrounded by a local cellularity that was >4 x S.D. above the background mean. Within these 

intense infiltrates, host cells with more rounded nuclei predominated. In contrast to the majority of 

parasitized cells that had not triggered a major response (Fig. 3c), amastigotes in these infiltrates 
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frequently displayed a morphology that suggested immune-mediated damage, as judged by the 

diffuse pattern of green fluorescence (compare Fig. 3c, d and e).  

 

We investigated the nature of these cellular infiltrates, by staining whole colon sections from 

chronically infected mice with specific immune cell markers (Methods). This revealed that leukocytes 

(as identified by anti-CD45 antibodies) constituted close to 100% of the infiltrate population (Fig. 

4a). A major proportion of the recruited cells were also positive when stained with anti-CD3 

antibodies, specific markers for the T-cell receptor complex (Fig. 4b, c), with both CD4+ and CD8+ 

T-cells represented within this population (Fig. 4d). To assess the local density of stained immune 

cells, we examined 200 M diameter circular tissue sections centred on each infection focus using 

Z-stack confocal microscopy. A series of imaged sections starting 5 µm above and 5 µm below the 

centre of the parasite nest (a total volume of 314 m3) were generated, and the number of stained 

cells in the infection microenvironment determined in 3-dimensions (Supplementary Fig. 2). In 

sections of colonic smooth muscle from non-infected mice, leukocytes were dispersed and rare, with 

an average of ~1 CD45+ve cell per 314 m3, although they were more numerous in the sub-mucosal 

tissue (Supplementary Fig. 3). Using a cut-off value of 3 x S.D. above the respective background 

level, 40 - 45% of infection foci displayed evidence of leukocyte infiltration (Fig. 4e). Therefore, 

despite being a site of parasite persistence, dynamic hyper-local homing of T-cells to the sites of 

infection in the murine colon is a characteristic of chronic stage disease, although at any one point 

in time, not all parasite nests will have triggered this type of recruitment response. Given the 

‘snapshot’ nature of imaging, our data therefore suggest that in the majority of cases, the most likely 

outcome of colonic cell invasion will be infiltration of leukocytes, and the presumptive destruction of 

the parasites (Fig. 3d, e).  

 

Incomplete homing of protective T-cells allows a subset of intracellular colonic infections to 

complete their replication cycle. Evidence indicates that T. cruzi rarely occupies individual colonic 

myocytes for extended periods (>2 weeks)12, implying that parasites are either efficiently eliminated 
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by the immune response, or that they complete a cycle of replication and host cell lysis within this 

period. In addition, there is considerable diversity in the level of infection within individual colonic 

cells, with parasite numbers that can range from 1 to >100012. We therefore investigated whether 

the immune response induced against infected cells increased in line with the intra-cellular parasite 

burden. When the levels of infiltrating leukocytes in the local environment of infected cells were 

compared with the number of intracellular T. cruzi parasites, we found no apparent correlation (Fig. 

5a-c). This was the case irrespective of whether anti-CD45, anti-CD4 or anti-CD8 antibodies were 

used to assess the nature of the cellular infiltrate. It is implicit therefore, that the time-length of an 

individual intracellular infection, as inferred from the extent of parasite proliferation, is not a 

determinant of the likelihood of detection and targeting by the host immune system.  

 

Of 237 infected colonic cells detected in 13 animals, only 4 (~1.7%) contained parasites that had 

clearly differentiated into flagellated trypomastigotes, the life-cycle stage that disseminates the 

infection by re-invasion of other host cells, or via transmission to the blood-sucking triatomine vector. 

Three of the infected cells contained very large numbers of parasites (>1,000), while the fourth 

contained 128. In each case, the leukocyte densities in the local microenvironment were within a 

range similar to host cells where the infection was less advanced, as judged by the number of 

intracellular parasites and the lack of differentiation into trypomastigotes. In the example shown (Fig. 

6a, b), Z-stack imaging was used to serially section a mega-nest containing >1000 parasites, and 

shows mature trypomastigotes in the act of egress, despite the recruitment of a small number of 

CD45+ leukocytes, including CD8+ T-cells (Fig. 6c, d). Although the precise signals that trigger 

differentiation to the trypomastigote stage are unknown, it can be inferred from our data that the 

differentiation process itself, does not act to promote rapid infiltration of leukocytes to the site of 

infection, at least in the colon. Therefore, in a proportion of cases, the host immune system is either 

not triggered by an infection, is too slow to respond, or is in some way blocked. As a result, at least 

in the colon, the entire cycle of parasite proliferation, differentiation and egress can occur in the 
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absence of intervention by a cellular immune response, leading to the invasion of new host cells 

and prolongation of the chronic infection.     

 

Discussion    

Despite the generation of a vigorous and specific CD8+ T-cell response4,14,29,30, T. cruzi infections in 

mice are rarely cleared to sterility, even in vaccinated animals. Instead, the parasite persists in a 

small number of immunotolerant tissue sites, typically for the life-time of the host10. Intermittent 

dissemination from these locations to less permissive organs, such as the heart, may promote 

repeated episodes of infection, resulting in localised inflammatory responses that contribute to 

disease pathology in a cumulative manner31. Understanding why the immune system fails to 

eliminate T. cruzi infections is one of the key challenges in Chagas disease research. Here, using 

techniques that allow the immunological microenvironment of infection sites to be assessed at single 

cell resolution, we demonstrate that both CD4+ and CD8+ T-cells are frequently recruited to chronic 

infection foci in the colon, and that parasites in this site of persistence are subject to immune-

mediated destruction. However, for a sub-set of infected cells, recruitment is not efficiently executed, 

and the intracellular cycle of parasite proliferation and differentiation to the trypomastigote stage can 

be completed (Fig. 6). Thus, chronic T. cruzi infections in the colon are not characterised by a 

generalised tissue-specific latency, but by a dynamic equilibrium between host and pathogen.   

 

T-cell recruitment during T. cruzi infection is driven by secretion of chemokines from infected cells. 

For example, the CXCR3 ligands CXCL9 and CXCL10 have been implicated in cardiac infiltration32. 

IFN- and TNF- expression by antigen specific CD8+ T cells4, and subsequent iNOS expression33-

35, potentially from recruited innate monocytes or from somatic cells of the infected tissue, then 

increases the local concentration of reactive nitrogen species. In Chagas disease, the resulting 

inflammatory environment tightly controls the number of infected cells, but can also act as the key 

driver of chronic immunopathology7, 14, 36, 37. An important observation from our study is that the 

likelihood of T-cell recruitment is not linked with the maturity of individual infections, as judged by 



161 
 

the intracellular parasite load (Fig. 5). In addition, the process of differentiation to the flagellated 

trypomastigote form, which occurs in highly parasitized cells, does not appear to be a key trigger 

that enhances infiltration of leukocytes, including CD8+ cells, to the site of infection (Fig. 6). 

 

The reasons why protective T-cells are not recruited to a small set of infection foci are unclear. 

Hypothesised mechanisms to account for T. cruzi immune evasion include a general absence of 

pathogen associated molecular patterns (PAMPs)38, the extensive antigenic diversity expressed by 

the large families of trans-sialidase and mucin genes39-41, stress-induced cell-cycle arrest and 

dormancy42. However, none of these explanations obviously correspond with our observation that 

there is a lack of association between the extent or longevity of an individual infection and the 

magnitude of hyper-local leukocyte recruitment (Fig. 5). Some highly infected mega-nests appear 

to be invisible to the immune system, whereas other low-level infections trigger massive cellular 

infiltration. In the majority of cases, infections are detected, presumably through innate detection 

pathways, as yet poorly defined, or through the generation of damage associated molecular patterns 

(DAMPs). Despite a diverse and complex antigenic repertoire, induction of the T-cell response in 

draining lymph nodes is known to be highly focussed40, and once T-cell recruitment has been 

triggered, parasite destruction can be initiated (Fig. 3d and e). Widespread parasite dormancy was 

not evident in colonic tissue, and did not appear to be necessary for immune evasion.  

 

Success or failure of the immune system in eliminating the rare chronic infection foci may be a 

largely stochastic process resulting from the dynamic interplay between the host and pathogen at a 

single cell level. If parasites were able to universally suppress innate detection pathways, with 

concomitant reduction in localised chemokine output, this would have a negative impact on both 

host survival and long-term T. cruzi transmission. Conversely, if infections were always detected by 

the immune system before completion of the replication cycle, the parasite would risk host-wide 

elimination. The ability of T. cruzi to persist in some organs/tissues, may therefore be dependent on 

the propensity, or otherwise, of these tissues to amplify the low-level chemokine signals triggered 
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by infection of an individual host cell. In mice, there are strain-specific differences in the extent of 

such tissue-restriction during chronic infections. This could have parallels in humans, and account 

for the heterogeneous profile of disease progression.    

 

T. cruzi infection induces a high titre polyclonal B-cell/antibody response during the acute stage of 

infection, which although delayed43, does contribute to parasite control and can protect against 

virulent infections. In the chronic stage, a role for the humoral response in suppressing the 

dissemination of persistent parasites has not been well defined10, and the general consensus is that 

B-cells are not key components. In line with this, we show that in the absence of PBMCs, circulating 

antibodies are unable to maintain tissue-specific repression of the parasite burden (Fig. 1d, 2d).  If 

the humoral response has a significant protective role during the chronic stage, for example, 

involving opsonisation of the parasite through FcR-antibody binding, then this function is lost on 

depletion of key cellular effectors. The central role of CD8+ T-cells in controlling T. cruzi infections 

is well established, and in various parasite:mouse strain combinations, depletion of circulating CD8+ 

T-cells leads to partial recrudescence, at least in skeletal muscle and adipose tissue4,5,15,30. When 

we examined the effect of CD8+ T-cell depletion at a cellular level in colonic tissue, we found no 

significant increase in the number of infected cells, in contrast to the major rebound observed with 

cyclophosphamide-mediated reduction of the entire PMBC population (Fig. 1, 2). A non-redundant 

function for CD4+ T-cells is less well established in murine models of Chagas disease44-46, although 

in humans with untreated HIV co-infections, parasitaemia becomes easily detectable in the 

bloodstream47. Since depletion of either CD4+ or CD8+ T-cells by themselves did not promote the 

level of relapse observed with cyclophosphamide treatment (Fig. 2), our results therefore suggest 

that both lymphocyte sub-types contribute to the suppression of chronic stage infections, at least in 

the colon. Furthermore, innate leukocytes, which are unable to control the infection alone, could 

also be required to mediate and enhance T cell effector functions.  
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Our findings have important implications for anti-T.cruzi vaccine development. Vaccines protect by 

presenting non-tolerised antigens in the correct immunological context, to expand small numbers of 

naïve T and B cells. The expanded memory populations then allow more rapid deployment of 

adaptive effectors on future contact with the pathogen. However, T. cruzi is able to persist indefinitely 

in hosts that already have expansive systemic populations of effective T-cells. Unless vaccines can 

prevent parasites from accessing sites of persistence after the initial infection, or they are able to 

enhance successful homing of adaptive effector cells, it will be difficult to achieve sterilising 

immunity. Drug-cured infections can confer complete protection against re-challenge with a 

homologous strain, but with heterologous strains, despite the prevention of an acute stage peak, 

the infection proceeds directly to a status that is analogous to the chronic stage in terms of parasite 

burden and tissue distribution3. Therefore, it seems that successful anti-T. cruzi vaccines will require 

an ability to eliminate parasites at the initial site of infection during the first intracellular replication 

cycle. This will be a considerable challenge.     

 

Methods 

Mice and parasites. All experiments were performed using female C3H/HeN mice, purchased from 

Charles River (UK). They were maintained in individually ventilated cages, under specific pathogen-

free conditions, with a 12-hour light/dark cycle, and provided with food and water ad libitum. 

Research was carried out under UK Home Office project licenses PPL 70/8207 and P9AEE04E4, 

with approval of the LSHTM Animal Welfare and Ethical Review Board, and in accordance with the 

UK Animals (Scientific Procedures) Act 1986 (ASPA). The T. cruzi line CL Luc::mNeon, a derivative 

of the CL Brener strain (discrete typing unit VI), was used in all experiments. It had been genetically 

modified to express a bioluminescent:fluorescent fusion protein containing red-shifted luciferase and 

mNeonGreen fluorescent domains25,48. For infections, C3H/HeN mice, aged 6-8 weeks, were 

inoculated i.p. with 1x103 bloodstream trypomastigotes obtained from immunodeficient CB17-SCID 

mice, as described previously28. Mice were then monitored by in vivo bioluminescence imaging17 
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which indicated that they had transitioned to the chronic stage by 50-60 days post-infection. 

Experiments were performed when on mice that had been infected for at least 100 days.  

 

Suppression of the murine immune response. General immunosuppression was achieved by 

injecting mice i.p. with cyclophosphamide (200 mg/kg) at 4-day intervals, up to a maximum of 3 

injections, in accordance with animal welfare17,28. Circulating CD8+ T-cells were depleted by i.p. 

injection of 400 g of the YTS 169.4 monoclonal anti-CD8 (2BScientific), diluted in PBS, at 4-day 

intervals, up to a maximum of 4 times. The same regimen was applied for depletion of CD4+ T-cells, 

using the GK1.5 monoclonal antibody (2BScientific).  

 

Tissue processing and imaging. When mice were sacrificed, organs and tissues were removed 

and examined by ex vivo bioluminescence imaging using the IVIS Spectrum system (Caliper Life 

Science) and the LivingImage 4.7.2 software49. Colonic gut walls were peeled, whole mounted as 

described previously18, and then exhaustively searched for parasites (green fluorescence) with a 

Zeiss LSM880 confocal microscope. Small tissue sections (~5 mm2) around parasite nests were 

excised from the whole mount by scalpel, washed twice in PBS and incubated for 2 days in 1:300 

primary antibody diluted in 5% PBS / 5% fetal calf serum / 1% Triton-X at 4oC. Following 2 further 

washes in PBS, secondary antibody diluted in 1:500 in the same blocking/permeabilising solution 

was added to the tissue sections, and incubated for 3 hours at room temperature. Sections were 

then mounted in Vectashield, containing the DNA stain DAPI, and imaged by confocal microscopy. 

Colonic gut walls from naïve aged-matched mice were similarly prepared as controls, with and 

without the primary antibody.  

 

For accurate determination of intracellular parasite and surrounding host cell numbers, tissue 

samples were imaged in 3-dimensions (Z-stacking), with the appropriate scan zoom setting18. The 

Image Browser overlay function was used to add scale bars, and images were exported as .TIF files 

to generate figures. Primary antibodies used were as follows: anti-luciferase (G7451, Promega), 
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CD45 (Tonbo Biosciences, 30-F11), CD3 (Abcam, ab11089), CD4 (Abcam, ab25475), CD8 (Abcam, 

ab25478). The secondary antibodies were Invitrogen A-11055, Invitrogen A-21434, Invitrogen A-

11007.  

 

Flow cytometry. At each time-point, mice were placed in a “hot box” and left at 38oC for 10 minutes. 

They were then placed in a restrainer and the lateral tail vein punctured using a 0.5M EDTA (pH 

7.4) soaked 21G needle. A single drop of blood was transferred to a 2 ml Eppendorf tube and 10μl 

0.5M EDTA added to prevent clotting. Each sample was then mixed with 400 l ice-cold PBS and 

placed onto 300 l Histopaque 1083 (Sigma-Aldrich), and spun at 400 g for 30 minutes in a 

microcentrifuge. The separated monocytic layer was aspirated using a pipette, mixed with 1 ml ice-

cold PBS, pelleted and resuspended in 200 l flow cytometry buffer (PBS, 5% fetal bovine serum, 

0.05% sodium azide), and 1 l of the cocktail of conjugated antibodies added (1:200 dilution in each 

case). After 1 hour incubation in the dark, cells were pelleted and re-suspended in 2% 

paraformaldehyde in PBS, followed by a further 45 minutes incubation in the dark. The stained/fixed 

cells were then pelleted, re-suspended in filtered flow cytometry buffer and transferred to standard 

flow cytometry tubes. Samples were analysed using a BD Bioscience LSRII flow cytometer, with 

plots created and analysed in FlowJo V.10.6.1. The following antibodies were used: CD45 

(ThermoFisher, 30-F11, Super Bright 600), CD3 (ThermoFisher, 17A2, FITC), CD4 (ThermoFisher, 

RM4-5, eFluor 450), and CD8 (ThermoFisher, SK1, Alexa Fluor 780). 

 

α-T. cruzi antibody ELISA. 96-well plates were coated with sonicated T. cruzi CL Luc::mNeon 

trypomastigote lysate; 100 l (0.5 g) per well diluted in 15 mM Na2CO3, 34.8 mM NaHCO3. The 

plates were incubated at 4oC overnight to allow antigen binding, washed 3x with PBS / 0.05% Tween 

20, and then blocked with PBS / 2% milk powder. Diluted murine serum samples, collected from 

each Histopaque separation, were further diluted to 1:1600. These were aliquoted in triplicate (100 

l per well) and incubated for 1 hour at 37oC. Horse radish peroxidase (HRP) conjugated anti-mouse 

IgG secondary antibody (Abcam, ab99774) was then added (1:5000; 100 l per well), and the plates 
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incubated for a further 1 hour. After the addition of HRP substrate (80 l per well) (Stabilised TMB, 

Life Technologies), the plates were incubated at room temperature in the dark for 5 minutes and 

read using a FLUOstar Omega plate reader (BMG LABTECH), after the addition of 40 l 1M HCl. 

 

Statistics. Analyses were performed in GraphPad PRISM v8.0. S.D. Background cellularity and 

CD45+, CD4+ and CD8+ cut-offs were set as mean + 3 x S.D. Data sets were compared using a 2-

sample t-test with Welch correction. If data were not normally distributed, as assessed using a 

Shapiro-Wilk test, a Mann-Whitney rank sum test was used.  
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Fig. 1 Suppression of cellular immunity in mice chronically infected with T. cruzi. a C3H/HeN 

mice chronically infected (>100 days) with T. cruzi CL Luc::mNeon (n=6) were immunosuppressed 

by i.p. inoculation with cyclophosphamide (200 mg/kg) at 4-day intervals, up to a maximum of 3 

injections (Methods). The % events recorded as peripheral blood mononuclear cells (PBMCs) at 

different time points after the initiation of treatment for individual mice are shown (Methods). Also 

included in the day 1 values are additional data points (n=24) from immunocompetent chronically 

infected mice. b Flow cytometry plots showing the loss of detectable events in the PBMC gate (black 

oval) over the course of cyclophosphamide treatment (see also Supplementary Fig. 1) PBMCs were 

identified based on the spectral forward (FFC) and side (SSC) scatter. c Effective depletion of T-cell 

subsets by treatment of mice with specific anti-CD4 or anti-CD8 antibodies (Methods). The graphs 

show the CD4+ and CD8+ flow cytometry events of individual mice as a % of the total CD3+ 

population over the treatment periods. d ELISA mean absorbance readings for chronically infected 

mice treated with cyclophosphamide at different time-points after treatment initiation, or treated with 

anti-CD4 or anti-CD8 antibodies. Microtitre plates containing T. cruzi lysates were prepared as 

described (Methods). Dashed red lines identify the mean, 1 x S.D. and 2 x S.D. values, determined 
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from immunocompetent chronic stage controls (n=28). One of the anti-CD8 antibody treated mice 

died between day 5 and 9. 

 

Fig. 2 Control of persistent parasites in the colon of chronically infected mice is lost on 

suppression of cellular immunity, with CD8+ and CD4+ T-cells playing non-redundant roles. 

a Colon sections from C3H/HeN mice chronically infected with T. cruzi CL-Luc::mNeon were pinned 

luminal side up and examined by ex vivo bioluminescence imaging. Radiance (p/s/cm2/sr) is on a 

linear-scale pseudo-colour heat map. Upper inset, colonic sections from non-treated infected mice; 

lower inset, section from mice immunosuppressed by cyclophosphamide treatment (Methods). b 

Schematic highlighting the distinct layers of the GI tract. The dashed red line and arrow indicate the 

position above which tissue can be peeled off to leave the external colonic wall layers18. c External 

gut wall mounts were examined in their entirety at a 3-dimensional level by confocal microscopy. 

Examples of parasite infected cells and their locations, detected by green fluorescence (mNeon). 

DAPI staining (blue) identifies host cell nuclei. Scale bars=20m. d The total number of parasitized 

cells counted in each whole mounted colonic gut wall for the control and the immune-depleted 

groups. Each dot represents a single mouse, with the colons examined >12 days post treatment 

initiation. **** = p≤0.0001. Differences between control values and those obtained from mice that 

had been treated with anti-CD4 and anti-CD8 antibodies were non-significant.  
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Fig. 3 Defining the hyper-local cellularity of T. cruzi infected host cells in the colonic gut wall. 

a Images of whole mounted colonic gut wall from C3H/HeN mice chronically infected with T. cruzi 

CL-Luc::mNeon (Methods). When infection foci were identified, 200 M diameter circles were drawn 

centred on each parasite cluster or ‘nest’. Circles were placed by centering on randomly selected 

cells in the case of non-infected age-matched controls (top left). DAPI-stained nuclei (blue) that fell 

within this disc (highlighted by white dots) were counted as a measure of cellularity. Intracellular 

parasites can be identified by green fluorescence. These are indicated by white arrows in the lower 

images. b Background cellularity around randomly selected cells (n=48) on whole mounted colonic 

gut walls from naïve age-matched C3H/HeN mice was established as above. With tissue from 

chronically infected mice, hyper-local cellularity was calculated using circles centred on parasite foci 

(green) (n=247). Individual values are indicated by blue (non-infected) and green (infected) dots. 

The dashed lines indicate 3 x S.D. and 4 x S.D. above the background mean. c An infected myocyte 

where the local cellularity is equivalent to the background level and the intracellular amastigotes 

(green) are structurally intact. Scale bar=20 m. d Image of an intense cellular infiltrate (nuclei, blue) 
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in which the T. cruzi parasites (green) display a diffuse morphology. e Zoomed-in views of two 

regions of the same cellular infiltrate. Many discrete disc-like kDNA structures (the parasite 

mitochondrial genome network) are detectable by DAPI-staining throughout this inflammatory focus 

(examples indicated by white arrows). They often co-localise with diffuse green fluorescence of 

parasite origin (right-hand images).  

 

Fig. 4 T-cells are major constituents of the leukocyte population recruited to chronic stage 

infection foci. a Confocal images of colonic gut wall sections from chronically infected mice 

(Methods). Rare infection foci were identified by mNeonGreen fluorescence (parasites) after 

exhaustive searching of whole mounted gut walls. Staining with anti-CD45 (orange) reveals that 

hematopoietic cells constitute the vast majority of the infiltrate population. Host cell nuclei were 

identified by DAPI staining (blue). b Anti-CD3 staining of cellular infiltrates shows that T-cells 

constitute a majority of the population. Blue, host cell nuclei; red, CD3 staining; green, parasite 

fluorescence. c Serial Z-stack imaging (Methods) through the same cellular infiltrate as in b, showing 

selected sections through the infiltrate. d Histological sections containing cellular infiltrates and 

associated infection foci (parasites, green; indicated by white arrows in right-hand image) stained 

https://en.wikipedia.org/wiki/Hematopoietic
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with either anti-CD4 (purple) or anti-CD8 (yellow) antibodies. Scale bars=20 m. e Whole mounts 

containing infection foci were stained with anti-CD45, anti-CD4, or anti-CD8 antibodies and the 

number of positive host cells in the immediate vicinity (314 m3 volume) was determined by serial 

Z-stack confocal imaging (see also Fig. 2). Each dot corresponds to a single infection focus. The 

horizontal dashed line is 3 x above the S.D. of the mean background level in non-infected tissue. In 

the case of anti-CD45 staining, none of the 50 tissue sections examined from non-infected mice 

contained CD45+ve positive cell numbers above this value. 41%, 45% and 42% of infection foci 

identified by CD45, CD4 and CD8 staining, respectively, were above this cut-off.  

 

Fig. 5 Lack of correlation between intracellular parasite load and hyper-local T-cell infiltration 

during chronic infections. a Comparison of the parasite numbers in infected colonic gut wall cells 

with the local leukocyte cell density. Infection foci were identified in whole mounts of colonic tissue, 

which were then stained with anti-CD45 antibody (Methods). The parasite and cell numbers in a 

tissue volume of 314 m3 were determined using serial Z-stack imaging, with leukocytes identified 

by orange staining and parasites by green fluorescence.  The horizontal dashed line is 3 x above 
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the SD of the mean background level in non-infected tissue. Each dot identifies a single infection 

focus, with tissue samples derived from 6 mice (71 infection foci). The confocal images show 

representative infection foci used to generate the data, and illustrate the varying extents of leukocyte 

infiltration. b Similar analysis of infection foci using anti-CD4 staining (purple). Tissue samples were 

derived from 3 mice (54 infection foci). c Analysis of infection foci using anti-CD8 staining (yellow). 

Tissue derived from 4 mice (116 infection foci). 

 

Fig. 6 Incomplete recruitment of leukocytes allows progression of T. cruzi through the full 

intracellular infection cycle. a An intense bioluminescent focus in a chronic stage distal colon 

viewed by ex vivo imaging (Methods). Radiance (p/s/cm2/sr) is on a linear-scale pseudocolour 

heatmap. b Confocal imaging of the corresponding parasite mega-nest showing representative 

serial Z-stack images taken along the depth of the infected cell. The Z-axis position relative to the 

centre of the nest is indicated above each of the images. Parasite numbers >1000 were determined 

from green fluorescence and the characteristic DAPI staining of the parasite kinetoplast DNA (the 

mitochondrial genome)18 (blue). Infiltrating leukocytes (orange) were identified by staining with anti-

CD45 antibodies (Methods). Scale bar=20 m. c Enlarged images of a small cluster of infiltrating 

CD45+ (orange) and CD8+ (yellow) cells in close vicinity to the nest. White arrows indicate leukocytes 
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corresponding to CD8+ T-cells. d Egress of differentiated trypomastigotes into the extracellular 

environment. 

 

Supplementary Fig. 1 Flow cytometry gating strategy. a PBMCs isolated in the black oval based 

on forward (FSC) and side (SSC) scatter spectral properties. b Singlets isolated. c Population 

staining +ve with anti-CD45 antibody. d CD45+ population separated by CD3 positivity. e Both CD3+ 

and CD3- populations separated by CD4 and CD8 markers 
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Supplementary Fig. 2 Establishing the extent of CD8+ T-cell recruitment to infection foci 

using 3-dimensional serial Z-stack confocal imaging. a A parasite nest detected in the whole 

mounted colonic gut wall of a mouse chronically infected with T. cruzi CL Luc::mNeon (Methods). 

Parasites, green; DNA, blue (DAPI); CD8+ T-cells, yellow (stained with antibody prior to mounting). 

The area selected for Z-stack imaging is identified by a 200 m diameter circle, centred on the 

parasite nest. b The local density of CD8+ host cells was determined by counting the number of 

stained cells (yellow) in a series of Z-stack images acquired with a Zeiss LSM880 confocal 

microscope from 5 m above and below the centre of the parasite nest on the Z-axis, a cylinder 

volume of 314 m3. Any cells that fell within the 200 m diameter circle were included. The number 

of hyper-local CD8+ T-cells was calculated to be 44.  
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Supplementary Fig. 3 The longitudinal and transverse smooth muscle layers of the colon are 

largely devoid of CD45+ leukocytes in non-infected C3H/HeN mice. a Serial Z-stack images of 

a whole mounted colonic gut wall from an age-matched non-infected C3H/HeN mouse. DNA, blue 

(DAPI); CD45+ (a pan-leukocyte marker), orange. Scale bars=20 m. The images correspond to the 

cross-sectional regions of the colon indicated in the schematic (1-5). CD45+ can be readily detected 

in the sub-mucosal layer (inset).  b Rare example of a CD45+ cell within the longitudinal and 

transverse smooth muscle layers. A 200 m diameter circle is superimposed on the image. 
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6.5 Chapter summary 

 

Relative to the other parasitic infections described in the introduction, post-acute stage T. cruzi 

appears to be unable to survive contact with the systemic immune system. Instead, as outlined in 

the above manuscript, the pathogen is a ‘true evader’, able to invade, differentiate, replicate and 

re-differentiate within specific host cells at specific tissue sites, in the local absence of T cells. 

These host myocytes represent a single-cell level immune-permissive niche, which appear unable 

to signal effectively for external cellular help. If such a mechanism of immune evasion is in 

operation in humans, the prospects for a sterilizing vaccine are poor. Since the systemic adaptive 

response is already highly effective, there might be little to be gained from further boosting.  
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Chapter 7 – General discussion, future work and concluding 

remarks 

 

7.1 General Discussion 

 

T. cruzi infection remains a major threat to human health in Latin America, and is a rising concern 

for health systems in other regions. At present, a practical vaccine does not exist and vector 

control measures have not eliminated transmission, despite significant effort. Three major 

research questions currently impede progress towards better drugs and management of T. cruzi 

infection and associated symptomatic Chagas disease.  

 

1. Why do only ~30% of human infections result in clinically observable pathology? 

2. Why are the outcomes of current chemotherapeutic treatments so variable? 

3. Is an effective Chagas disease vaccine theoretically achievable?  

 

In this thesis, highly-sensitive bioluminescent-fluorescent parasite reporters1 were employed in 

mouse models to better understand these questions. As a first aim, we sought to better clarify the 

tissues and host cell types that harbour rare infection foci at late infection time-points. This 

information is of great value in ensuring drug candidates reach threshold bioavailability at the sites 

at which T. cruzi persists. In addition, as recently established2,3, the chronic stage distribution of 

parasites and the dynamics of persistence in different tissues can be predictive of cardiac fibrosis. 

The hypothesis stated in Lewis and Kelly, 20164 suggests that development of cardiac pathology 

correlates with the ability, or otherwise, of the host immune response to restrict infection foci to 

specific ‘sites of persistence’. Parasite genetics also determine propensity to disseminate, with the 

interaction between the two responsible for the progression of cardiac pathology. Whether human 

infections that result in pathology are of the more ‘disseminated’ type is currently unknown.  

 

Here, for the first time, we demonstrate that the smooth muscle cells of the gastrointestinal tract 

(GIT) are a key reservoir of chronic infection in two mouse strains. Outside the GIT, the skin is 

also routinely infected in both models, while the skeletal muscle is an additional site of particularly 

high parasite load in the C3H/HeN model. These findings support the previously suggested 

propensity for T. cruzi to persist in muscle cells5, and suggest that good bioavailability of anti-

chagasic compounds in these cells is a requirement for a curative outcome.  
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The role of the ‘persister’ state in treatment failure of T. cruzi infections has been hotly debated, 

but a clear link has yet to be established. Here, we report an absence of evidence to support the 

recently reported hypothesis that rare T. cruzi amastigotes stochastically enter a definitively 

‘dormant’ state in the absence of drug treatment6, at least in chronic stage infections of the colon. 

This hypothesis suggests that parasites in this state in vivo are resistant to drug treatment but 

remain replication competent. Using the best current experimental methodology available, in vivo 

injection of the thymidine analogue EdU, we show that there is a ~3-fold slow-down in parasite 

replication after the generation and deployment of the adaptive immune response. We stop short 

of describing this state as ‘dormant’ since even at late infection time-points, regular cycles of 

intracellular growth, host cell lysis and reinfection are ongoing. Its currently unknown if this inferred 

slow-down in replication impacts the dynamics of drug treatment.  

 

Despite decades of effort7,8,9,10, the prospect of an anti-T. cruzi vaccine in the near future is 

remote. This feeds into the broader debate over why eukaryotic pathogens have been so 

intractable to vaccination as a method of infection control. This is in sharp contrast to many viral11 

and prokaryotic12 pathogens. Certainly, one explanation is that the basic biology and immunology 

of complex parasitic organisms has been poorly characterised, making rational design of vaccine 

candidates and adjuvants challenging. Another is that these organisms are capable of long-term 

persistence in immunocompetent hosts, meaning a successful vaccine would have to out-perform 

a natural infection. Whether this is possible, will determine if creating a sterilizing T. cruzi vaccine 

is a realistic goal.  

 

The final part of this thesis sought to exploit the optimization of the reporter systems and the 

technical progress described in the first two papers to generate data that would help answer this 

question. We were able to assemble a large catalogue of images of chronic infection foci and to 

characterize their immunological context. We used these data to generate a new hypothesis 

explaining T. cruzi persistence. This states that of the population of host cells infected during the 

chronic stage, the majority will become the target of intra-tissue T-cells. However, a minority are 

permitted to complete multiple cycles of intracellular replication, followed by differentiation and 

dissemination, without obvious recruitment of immune effectors. If this hypothesis holds for human 

infections, it is difficult to envisage what advantage further boosting of the adaptive effectors, T 

cells and antibody, would have for infection outcomes.  
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7.2 Future work and concluding remarks 

 

Here I provide comment on the future directions that the research presented in this thesis should 

take for maximum front-line benefit. These comments are ordered to correspond to the above 

chapter order. 

 

1. Infection dynamics and Chagasic pathology (Chapter 4) 

2. Towards a mechanistic understanding of drug treatment failure (Chapter 5) 

3. Prospects for a sterilising Chagas disease vaccine (Chapter 6) 

 

Infection dynamics and Chagas pathology – Work aimed at further clarifying the chronic stage 

localisation and infection dynamics of T. cruzi infection is crucial to underpin the rest of our 

biological and immunological understanding of this important persistent parasite. Why only a 

minority of infected humans develop clinical pathologies is not understood, with a clear answer 

required to better target current and future drugs to patients who will develop pathology. The 

hypothesis proposed in Lewis and Kelly, 20164, that cardiac damage is dependent on the 

frequency of periodic invasion from more permissive sites, followed by local inflammation, is 

supported by robust data from murine models. The next step will be to characterise the 

mechanistic basis of trypomastigote dissemination from immune-permissive sites. Crucially, this 

will involve identification of polymorphisms in immunological genes of the host, and those in the 

genome of the parasite, associated with the dissemination of infection and increased cardiac 

damage. Identifying these in the outbred human populations at the highest risk will be a significant 

undertaking, but could offer a novel approach to targeting even poor-quality drugs for maximum 

benefit.   

 

Towards a mechanistic understanding of drug treatment failure – With the prospects of a 

sterilising or disease limiting vaccine remote in the short/medium term, accelerating progress 

towards less toxic and more efficacious drugs is paramount. Improvements, that could be 

introduced in the short-term, may include altered dosing regimens of current front-line compounds, 

either reducing the toxicity of side-effects or increasing cure rate. To better inform both efforts, the 

mechanics of drug treatment success and failure need to be better understood at the cellular and 

molecular level. The fierce debate around whether a dormant life-cycle stage exists in natural T. 

cruzi infection has intrigued researchers in the field, and has implications for chemotherapeutic 

outcomes. The Bustamante et al 202013 study suggests that more infrequent higher dosing of BZ, 

relative to current guidance, is more effective at curing infections in mice. The suggested 

mechanism is that short-term exposure to high BZ concentrations overcomes the ability of the 
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parasite to survive in a dormant or persister metabolic state. In light of the data presented here, an 

alternative explanation could be that short-sharp drug treatment maybe more effective against 

slowly replicating chronic stage parasites. If confirmed in humans, this altered regimen could offer 

better curative outcomes. It would still however, leave clinicians with the difficult choice of treating 

potentially benign infections with high doses of a toxic drug. Further information on why current 

frontline drugs often fail to cure human infections is essential to accelerate progress in Chagas 

disease management and the development of better candidate compounds.  

 

Prospects for a sterilising Chagas disease vaccine – In my view, T. cruzi represents a zoonotic 

parasitic threat that will exist in endemic countries indefinitely, due to its successful parasitization 

of most mammals and unlikely elimination of the vector species. International migration is likely to 

increase in future decades, resulting in increased presentation of Chagas disease cases in non-

endemic countries. Triatomine species are widespread across the tropics, giving potential for new 

foci of endemicity in previously non-endemic nations. Vector control remains incomplete and 

requires continued investment to maintain high standards of housing stock and regular spraying. 

An effective and practical vaccine, able to prevent infection or prevent the development of 

pathology in those vaccinated and subsequently infected, would be of great value. If the results 

presented in chapter 6 hold as a major mechanism of immune evasion in humans, as well as 

mice, the prospects for such a vaccine are poor. Preventing infectious metacyclic trypomastigotes 

from initiating the acute phase parasitaemia could prevent parasite access to the sites in which 

they can best avoid immunological destruction. The obstacles to this are highlighted by the large-

scale trial of the anti-malaria RTS,S vaccine14. Antibodies targeting the short-lived infective stage 

sporozoites offer a measure of short-term protection from clinical disease, but this wanes rapidly 

over time as serum titres fall. Similar problems can be expected in candidates designed to 

eliminate T. cruzi metacyclic trypomastigotes soon after inoculation. Arguably, the most important 

question in T. cruzi vaccine research is what impact inflammatory damage has during the acute 

stage, and whether this is linked to future chronic pathologies. The development of vaccine 

candidates that significantly reduce acute phase parasite load, is at present outpacing progress 

towards establishing whether they can be used to improve outcomes for those who become 

infected. Due to the long-time spans between infection and Chagas disease pathology in humans, 

murine models offer a practical platform to investigate this.  
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 See https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0008007 for the on-line 

version. 
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ABSTRACT  

Investigations into intracellular replication and differentiation of Trypanosoma cruzi within the mammalian 

host have been restricted by limitations in our ability to detect parasitized cells throughout the course of 

infection. We have overcome this problem by generating genetically modified parasites that express a 

bioluminescent/fluorescent fusion protein. By combining in vivo imaging and confocal microscopy, this has 

enabled us to routinely visualise murine infections at the level of individual host cells. These studies reveal 

that intracellular parasite replication is an asynchronous process, irrespective of tissue location or disease 

stage. Furthermore, using TUNEL assays and EdU labelling, we demonstrate that within individual infected 

cells, replication of both mitochondrial (kDNA) and nuclear genomes is not co-ordinated within the parasite 

population, and that replicating amastigotes and non-replicating trypomastigotes can co-exist in the same 

cell. Finally, we report the presence of distinct non-canonical morphological forms of T. cruzi in the 

mammalian host. These appear to represent transitional forms in the amastigote to trypomastigote 

differentiation process. Therefore, the intracellular life-cycle of T. cruzi in vivo is more complex than previously 

realised, with potential implications for our understanding of disease pathogenesis, immune evasion and drug 

development. Dissecting the mechanisms involved will be an important experimental challenge.          

 

AUTHOR SUMMARY 

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is becoming an emerging threat in 

non-endemic countries and establishing new foci in endemic countries. The treatment available has not 

changed significantly in over 40 years. Therefore, there is an urgent need for a greater understanding of 

parasite biology and disease pathogenesis to identify new therapeutic targets and to maximise the efficient 

use of existing drugs. We have used genetically modified strains of T. cruzi carrying a 

bioluminescence/fluorescence dual reporter fusion gene to monitor parasite replication in vivo during both 

acute and chronic infections in a mouse model. Utilising TUNEL assays for mitochondrial DNA replication 

and EdU incorporation for total DNA replication, we have found that parasite division within infected cells is 

asynchronous in all phases of infection. Differentiation also appears to be uncoordinated, with replicating 

amastigotes co-existing with non-dividing trypomastigotes in the same host cell.   
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INTRODUCTION 

The obligate intracellular parasite Trypanosoma cruzi is responsible for Chagas disease, a debilitating 

infection that is widespread in Latin America. There are an estimated 6-7 million people infected [1]. In 

addition, due to migration, cases are increasingly being detected outside endemic regions [2, 3]. T. cruzi is 

spread by blood-sucking triatomine bugs, although oral transmission via contaminated food or drink, and the 

congenital route are also important. The parasite has a wide mammalian host range and can infect most 

nucleated cells. During its life-cycle, the major features of which were established more than a century ago 

[4], T. cruzi passes through a number of differentiation stages involving both replicative and non-replicative 

forms. Infections are initiated by insect transmitted metacyclic trypomastigotes, which are flagellated and 

non-replicating. Once these have invaded host cells, they escape from the parasitophorous vacuole into the 

cytosol, differentiate into ovoid non-motile amastigotes, and divide by binary fission. After a period of 

approximately 4-7 days, by which time parasite numbers can have reached several hundred per infected cell, 

they differentiate into non-replicating flagellated motile trypomastigotes. This eventually promotes host cell 

lysis, and the released parasites then invade other cells, spread systemically through blood and tissue fluids, 

or can be taken up by triatomine bugs during a bloodmeal. Within the insect vector, they differentiate into 

replicating epimastigotes, and finally metacyclic trypomastigotes, to complete the cycle.   

 

More recently, in vitro studies have suggested that the parasite life-cycle may be more complex than outlined 

above. These reports include the identification of an intracellular epimastigote-like form [5], and amastigote-

like forms with short flagella, termed sphaeromastigotes [6]. Whether these parasite forms represent 

intermediate transitional types, or correspond to intracellular stages with a specific role, remains to be 

determined. Adding to the complexity, trypomastigotes can also differentiate into an epimastigote-like stage, 

via an amastigote-like transitional form [7]. These recently differentiated epimastigotes have a distinct 

proteomic profile, display complement-resistance, can invade phagocytic and cardiac cells, and are infectious 

to mice. In addition, it has been reported that when bloodstream trypomastigotes invade mammalian cells, 

they can undergo a differentiation step in which asymmetric cell division results in the generation of an 

amastigote, together with a second, defective parasite cell termed a zoid, which contains a kinetoplast, but 

lacks a nucleus [8]. This has not, as yet, been demonstrated for the metacyclic trypomastigote which initiates 

natural mammalian infection. Most recently, it has been observed that infrequent spontaneous dormancy can 
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occur in intracellular amastigotes, a phenomenon that may be linked to increased drug tolerance [9]. These 

non-proliferating intracellular amastigotes, which have been identified both in vivo and in vitro, retain the 

ability to differentiate into trypomastigotes. Their metabolic status is unknown. To date, a lack of sufficiently 

sensitive in vivo parasite detection methods has meant that it has not been possible to investigate the 

biological role of these and the other non-classical parasite forms during either acute or chronic stage 

infections. 

 

There are three distinct stages to Chagas disease. In humans, the acute stage occurs in the first 4-6 weeks, 

and is characterised by a widely disseminated infection, together with patent parasitemia. This results in the 

induction of a robust CD8+ T cell-mediated response [10], with infected individuals then progressing to the 

asymptomatic chronic stage, where the parasite burden is extremely low and difficult to detect. Around 30-

40% of those infected eventually develop chronic disease pathology, predominantly cardiomyopathy and/or 

digestive tract megasyndromes [11, 12]. In humans, infections with T. cruzi are considered to be life-long, 

however our understanding of parasite biology and tropism during the chronic stage, and their relationship to 

disease outcome are limited [13]. To address these issues, we developed an experimental murine model 

based on highly sensitive bioluminescence imaging of T. cruzi genetically modified to express a red-shifted 

luciferase [14, 15]. This system allows chronic infections to be followed in real time for periods of longer than 

a year, and enables endpoint assessment of parasite location by ex vivo imaging. In this mouse model, the 

infection is pan-tropic during the acute stage and parasites are readily detectable in almost all organs and 

tissues. During the chronic stage however, the parasite burden is very low and restricted mainly to the colon 

and/or stomach, with other organs/tissues infected only sporadically [14, 16].  

 

Although bioluminescence can be widely used for in vivo testing of drugs and vaccines, and as a technique 

for exploring infection kinetics and dynamics, it does not easily allow the identification or study of single 

parasites at a cellular level [16-19]. To overcome this limitation, we re-engineered the T. cruzi strain to 

express a bioluminescent/fluorescent fusion protein [20]. The aim was to enable infection dynamics to be 

monitored at a whole animal level using bioluminescence, followed by investigation of host-parasite 

interactions at a single cell level using fluorescence. With this approach, we have been able to routinely 

image individual parasites in murine tissues during chronic stage infections. This has allowed us to readily 
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visualise parasites residing within individual host cells in chronically infected animals. Here, we describe the 

exploitation of this dual imaging procedure to gain new insights into parasite biology in experimental models 

of acute and chronic Chagas disease.   

 

METHODS 

Parasite culture  

T. cruzi CL-Luc::Neon epimastigotes were cultured in supplemented RPMI-1640 as described previously [21]. 

Genetically manipulated lines were routinely maintained on their selective agent (hygromycin, 150 μg ml-1; 

puromycin, 5 μg ml-1; blasticidin, 10 μg ml-1; G418, 100 μg ml-1). MA-104 (fetal African green monkey kidney 

epithelial) cells (ATCC CRL-2378.1) were cultivated to 95–100% confluency in Minimum Essential Medium 

Eagle (MEM, Sigma.), supplemented with 5 % Foetal Bovine Serum (FBS), 100 U/ml of penicillin, and 100 

μg ml-1 streptomycin at 37°C and 5% CO2. Tissue culture trypomastigotes (TCTs) were derived by infecting 

MA104 cells with stationary phase metacyclic trypomastigotes. Cell cultures were infected for 18 hours. 

External parasites were then removed by washing in Hank’s Balanced Salt Solution (Sigma-Aldrich), and the 

flasks incubated with fresh medium (Minimum Essential Medium (Sigma-Aldrich) supplemented with 5% 

FBS) for a further 5-7 days. Extracellular TCTs were isolated by centrifugation at 1600 g. Pellets were re-

suspended in Dulbecco’s PBS and motile trypomastigotes counted using a haemocytometer. In vitro 

infections for microscopy were carried out as above, but on coverslips incubated in 24-well plates using an 

MOI of 5:1 (host cell:parasite). Coverslips were fixed with 2% paraformaldehyde at 72 hours post infection. 

Cells were then labelled with TUNEL (section 4.6).  

 

Ethics statement 

All animal work was performed under UK Home Office licence 70/8207 and approved by the London School 

of Hygiene and Tropical Medicine Animal Welfare and Ethical Review Board. All protocols and procedures 

were conducted in accordance with the UK Animals (Scientific Procedures) Act 1986. 

 

Mouse infection and necropsy 

Mice were maintained under specific pathogen-free conditions in individually ventilated cages. They 

experienced a 12 hour light/dark cycle and had access to food and water ad libitum. Female mice aged 8-12 
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weeks were used. CB17 SCID mice were infected with 1x104 tissue culture trypomastigotes, and monitored 

by bioluminescence imaging (BLI), as previously reported [14]. At the peak of the bioluminescence signal, 

when trypomastigotes were visible in the bloodstream, the mouse was culled by an overdose of pentobarbital 

sodium, and the infected blood obtained by exsanguination. The trypomastigotes were washed in Dulbecco’s 

PBS and diluted to 5x103 ml-1. 1x103 trypomastigotes were injected i.p. into each mouse (BALB/c or C3H/HeN) 

and the course of infection followed by BLI. At specific time-points, the mice were euthanised by an overdose 

of pentobarbital sodium and necropsied (for detailed description of the necropsy method, see Taylor et al., 

2019). Their organs were subject to post mortem BLI. We excised those segments that were 

bioluminescence-positive and placed them into histology cassettes. BLI images from living animals and post-

mortem tissues were analysed using Living Image 4.5.4 (PerkinElmer Inc.) 

 

Tissue embedding and sectioning 

Tissue sections were produced as described previously [20, 22]. Briefly, excised tissue was fixed in pre-

chilled 95% ethanol for 20-24 hours in histology cassettes. The tissues were dehydrated in 100% ethanol, 

cleared in xylene, and then embedded in paraffin at 56°C. Sections were cut with a microtome and mounted 

on glass slides, then dried overnight. Slides were stored in the dark at room temperature until required. 

 

TUNEL assay for kDNA replication 

For in vitro studies, logarithmically growing epimastigotes and infected mammalian cells on coverslips were 

fixed with 2% paraformaldehyde in PBS. Fixed epimastigotes were air-dried onto glass 8-well slides. Cells 

were washed once in PBS and permeabilized in 0.1% TritonX-100/PBS for 5 min and washed 3 times with 

PBS. 20 µL TUNEL reaction mixture (In situ Cell Death Detection Kit, TMR-red, Roche) was added to each 

well or coverslip and the reaction incubated for 1 hour at 37°C. For tissue sections, slides were deparaffinised 

in 2 changes (30 s each) of xylene, 3 changes (1 min each) of pre-chilled 95% ethanol, and 3 changes (1 

min each) of pre-chilled Tris-buffered saline (TBS). Sections were outlined with a hydrophobic pen then 

permeabilized in 0.1% TritonX-100/PBS for 5 min and washed 3 times with PBS. 20 µL TUNEL reaction 

mixture was added to each section and the slide was overlaid with a coverslip to ensure that the reaction mix 

was evenly distributed. The reaction was incubated for 20 min to 2 hours at 37°C. Coverslips and slides were 
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mounted in VECTASHIELD® with DAPI (Vector Laboratories, Inc.) before observation on a Zeiss Axioplan 

LSM510 confocal microscope. 

 

EdU assay for DNA replication 

Mice were injected intraperitoneally with 12.5 mg kg-1 EdU (Sigma-Aldrich) in PBS at specific time points (as 

detailed in Results) prior to euthanasia. Tissues were fixed and sectioned as above. Labelling of the 

incorporated EdU was carried out using the Click-iT Plus EdU AlexaFluor 555 Imaging kit (Invitrogen), 

following a similar method as used for TUNEL labelling, but substituting the Click-iT reagent for the TUNEL 

reaction mix. For sections which had been in paraffin for extended time periods (> 6 months), the slides were 

immersed in 100 mM EDTA for 16 hours (on manufacturer’s recommendation), then washed extensively with 

TBS prior to the Click-iT reaction. 

 

Confocal microscopy 

Slides and sections were examined using a Zeiss LSM510 Axioplan confocal laser scanning microscope. 

Cells containing multiple parasites were imaged in three dimensions to allow precise counting of amastigotes 

(using the 63x or 100x objectives with appropriate scan zoom for the particular cell/number of parasites). 

Phase images were obtained at lower magnification (40x) to allow orientation of the tissue section and 

identification of specific layers/structures. All images were acquired using Zeiss LSM510 software. Scale bars 

were added using the Zeiss LSM Image Browser overlay function and the images were then exported as .TIF 

files to generate the figures.  

 

Live imaging of infected cells.  

Videos were acquired using an inverted Nikon Eclipse microscope. The chamber containing the specimen 

was moved in the x-y plane through the 580 nm LED illumination. Images were collected using a 16-bit, 1-

megapixel Pike AVT (F-100B) CCD camera set in the detector plane. An Olympus LMPlanFLN 20x/0.40 

objective was used to collect the exit wave leaving the specimen. Time-lapse imaging was performed by 

placing the chamber slide on the microscope surrounded by an environmental chamber (Solent Scientific 

Limited, UK) maintaining the cells and the microscope at 37°C / 5% CO2. Time-lapse video sequences were 

created using the deconvolution app in the Nikon imaging software. 
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RESULTS 

Parasite kinetoplast DNA replication is not synchronised within individual infected cells.  

The text book view of the T. cruzi intracellular cycle is that invading trypomastigotes differentiate into 

amastigotes, which then begin to divide by binary fission within the cytoplasm of the host cell. These then 

differentiate into trypomastigotes and the host cell lyses releasing the trypanosomes, see for example Figure 

1a in [23]. However, the degree to which amastigote division and differentiation are co-ordinated within single 

cells, and the potential for this to be influenced by host cell type and/or tissue-specific location are poorly 

understood. 

  

During trypanosomatid cell division there are two distinct DNA replication events that result in duplication of 

the mitochondrial (kinetoplast or kDNA) and then the nuclear genomes. However, at early stages of kDNA or 

nuclear DNA replication, it is not feasible to assign parasites to a particular cell-cycle phase by morphology 

or total DNA staining, as many parasites appear similar. To identify the replication status of the mitochondrial 

genome in intracellular amastigotes we took advantage of the TUNEL assay (terminal deoxynucleotidyl 

transferase dUTP nick end labelling), a procedure normally used to quantify apoptotic cell death in 

mammalian cells [24]. In T. cruzi, this assay can be utilised to monitor kDNA replication [20], a genome that 

consists of thousands of catenated circular double-stranded DNA molecules. The majority of these are the 

mini-circles that encode the guide RNAs that mediate RNA editing [25]. To maintain functional RNA editing, 

daughter cells must each inherit copies of the entire mini-circle repertoire. During replication, mini-circles are 

first detached from the catenated network and the new strands are then synthesised. However, some of the 

single-strand breaks that result from removal of RNA primers in the newly synthesised DNA are maintained 

until the whole mini-circle network has been replicated. This enables newly duplicated circles to be 

distinguished from non-replicated circles and ensure each daughter network is complete [26, 27]. Therefore, 

during the S-phase of kDNA replication, the free 3’ hydroxyl groups at the nicks on the newly synthesised 

strands can be labelled with a fluorescent analogue by terminal uridylyl transferase [20, 26, 28]. This means 

that the TUNEL assay enables specific labelling of parasites that have commenced cell division. 

 

We first applied TUNEL assays to asynchronous, exponentially growing epimastigote cultures to confirm that 

this method was applicable to T. cruzi. Parasites in the early phase of kDNA synthesis displayed TUNEL 
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positivity in antipodal sites on either side of the kDNA disk, indicative of the two replication factories (Figure 

1a). Later in replication, the entire disk was labelled (Figure 1b). Nuclear DNA did not exhibit a positive signal 

at any stage (Figure 1a and b).  

 

To quantify the replication of kDNA in intracellular amastigotes, the parasites in 200 infected cells were 

assessed for TUNEL positivity in vitro 72 hours post-infection. These cultures were infected with a low 

multiplicity of infection (1 parasite per 5 host cells) to minimise the chance of individual cells being infected 

twice. It was apparent that kDNA replication within single infected cells was largely asynchronous, since most 

infected cells contained both TUNEL+ve and –ve amastigotes (Figure 1c and d). Most TUNEL+ve parasites 

displayed antipodal staining, indicative of early phase replication (see examples in Figure 1c). The number 

of amastigotes displaying whole disk staining was low suggesting that kDNA nick repair may occur more 

rapidly than in epimastigotes. The few amastigotes that displayed a 2K1N morphology showed no TUNEL 

staining on either kinetoplast, indicating that nicks are repaired prior to segregation, as expected (example 

shown in Figure S1) [26].  

 

Total amastigote numbers within infected cells were also consistent with asynchronous replication; they did 

not follow a geometric progression as would be expected if growth was co-ordinated (Figure 1d, red line). 

There were no cases where a specific number of amastigotes within a cell was always associated with 100% 

TUNEL labelling (Figure S2). Intracellular populations of 2, 4 or 8 amastigotes were equally as likely to be 

asynchronous as populations containing non-geometric numbers (Figure 1d, black bars, Figure S2). In the 

minority of infected cells where every amastigote was TUNEL+ve (14.5% of cells that contained more than 

one parasite), there were differences in the degree of labelling between the parasites in 24% of the host cells 

(Figure 1c inset, for example, white arrows indicate faint TUNEL labelling of one amastigote in earlier phase 

of kDNA replication). Collectively, these results therefore show that within a single infected cell in vitro, 

amastigote kDNA replication is not synchronised within the population.  

 

We then applied the TUNEL assay to mouse tissues obtained from acute experimental infections with the 

dual bioluminescent/fluorescent T. cruzi cell line CL-Luc::Neon [20]. The acute phase in mice is characterised 

by widespread dissemination of infection with amastigotes in diverse cell and tissue types. We sampled a 



197 
 

range of organs and tissues (Figure 2; Figure S3). This revealed that within any given infected host cell, the 

extent of kDNA labelling varied between parasites. We quantified the frequency of TUNEL positivity amongst 

amastigotes in sections from various organs in a single mouse (Figure 3). The majority of amastigotes in the 

acute phase had TUNEL+ve kDNA, showing that they were undergoing replication. However, there was no 

evidence for programmed synchronicity, and in each tissue, individual cells could contain both TUNEL+ve 

and TUNEL-ve parasites.  Moreover, all of the different organs that were analysed showed similar profiles 

with respect to parasite replication states (Figure 3).   

 

Replication of parasite nuclear DNA is not synchronised within individual infected host cells. 

TUNEL assays identify parasites where kDNA replication has initiated, but do not provide information on 

those where it has terminated and the parasite has progressed to nuclear DNA synthesis. To get a more 

quantitative picture of both nuclear and kinetoplast replication, we injected T. cruzi-infected mice with the 

nucleoside analogue 5-ethynyl-2’-deoxyuridine (EdU) at specific time points prior to necropsy [29]. We chose 

EdU rather than BrdU, since this analogue can be fluorescently labelled directly in double stranded DNA and 

does not require harsh denaturing conditions. This preserves the mNeonGreen fluorescence used to locate 

T. cruzi in situ. EdU is incorporated into newly synthesised DNA molecules and identifies parasites 

undergoing nuclear or kDNA replication during the time period of the EdU pulse. It also labels mammalian 

cells that enter S-phase during this period. EdU distribution in murine tissues is extensive and incorporation 

is stable. For example, Merkel cells from mice whose mothers were injected with EdU during pregnancy 

remain labelled nine months after birth, suggesting that the analogue is not removed during DNA repair [30-

32]. Labelling of replicating host cells within a given tissue section can therefore be used as an internal control 

for EdU tissue penetration to sites of T. cruzi infection. Fixed tissue sections containing host cells and/or 

parasites that incorporate EdU are fluorescently labelled by click chemistry and can be examined by confocal 

microscopy [33] (Experimental procedures). 

 

We assessed a range of bioluminescence positive tissues excised from mice in the acute stage of infection 

(Figure 4). In cardiac sections, there was negligible labelling of host cell nuclei, as expected, since heart 

muscle consists predominantly of terminally differentiated non-replicative cells. However, labelled 

intracellular parasites were easily detected. Within host cells containing multiple parasites, EdU labelling was 
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heterogeneous across the population and many parasites had not incorporated EdU (Figure 4a) during the 

time of exposure. Similarly, in adipose tissue, parasites within the same infected cells displayed a wide range 

of EdU specific fluorescence intensity (Figure 4b). This heterogeneity was dispersed throughout the infected 

cell, with replicating and non-replicating organisms being interspersed.  

 

In gut sections obtained from chronically infected mice, EdU labelling of host cells in the mucosal epithelium 

was readily apparent, since these cells are continually shed into the gut lumen and replaced from stem cells 

(Figure 4c, white arrowheads). As in the acute stage, the labelling pattern within amastigote “nests” was 

consistent with asynchronous replication of nuclear DNA, with many parasites showing no detectable EdU 

incorporation (Figure 4c; Figure S4a and b). We also analysed sections taken from tissue samples that 

contained all of the detectable bioluminescent foci in the gastrointestinal tract of three individual chronically 

infected C3H/HeN mice (M275-17, M277-17 and M279-17). We injected these animals with two pulses of 

EdU at 18 and 28 hours before euthanasia. The number of parasites and infected cells was consistent with 

the strength of the bioluminescent signal visible on ex-vivo organ sections (Figure 5a). Some of the nests 

were very large (“mega-nests”), containing hundreds of parasites, and in some cases, they clearly extended 

beyond the limits of the tissue section (indicated by asterisks, Figure 5b, c). However, examination of serial 

sections of a single large nest indicated that the asynchronous nature of EdU incorporation was sustained 

throughout the nest (Figure 6), since in each section there were both EdU+ve and Edu-ve amastigotes. The 

extent of EdU labelling within amastigotes in an infected cell was variable as had been observed with the 

TUNEL assay. This would be expected if parasites were sampled at different stages within S-phase. It was 

clear that many parasites had not replicated during the period of EdU exposure because most amastigotes 

(77% in the GI tract, 62% in the peritoneal muscle) were negative for EdU labelling in either kinetoplast or 

nucleus. Therefore, both TUNEL assays and EdU incorporation demonstrate that in vivo, the timing of DNA 

replication is autonomous to individual parasites within an infected host cell, with no evident synchronisation 

of the process between different amastigotes. 

 

Both replicating and differentiating parasites co-exist in the same host cell   

The final step in the intracellular development of T. cruzi is differentiation of replicating amastigotes into non-

dividing flagellated trypomastigotes, prior to their escape from the host cell. The mechanisms that regulate 
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this process in vivo, from a temporal and organisational perspective, are unknown. In mammalian cell 

monolayers infected in vitro, we observed that amastigotes could be detected in the same cells as 

differentiated trypomastigotes (Figure 7a). We used the TUNEL assay to examine whether amastigotes in 

this environment were undergoing replication or were about to differentiate. Antipodal TUNEL staining was 

observed in the kinetoplasts of some amastigotes present in cells with trypomastigotes indicating ongoing 

kDNA replication (Figure 7b). Co-existence of replicating parasites with trypomastigotes was confirmed by 

live-cell imaging of infected cells in vitro (Figure S5, Movie S1). This suggested asynchronicity in the process 

of both differentiation and cell division. Amastigotes can therefore initiate a new replicative phase while in the 

same host cell as parasites that have differentiated to trypomastigotes as judged by morphology and flagellar 

position. It remains possible that some amastigotes initiate replication but then “pause”, leading to TUNEL+ve 

parasites co-existing with flagellated trypomastigotes.  

 

Multiple morphological forms of T. cruzi are present in deep tissues of infected mice 

Classically, the T. cruzi life-cycle in mammals involves two distinct morphological stages, the intracellular 

replicative amastigote, which lacks an external flagellum, and the non-replicating extracellular flagellated 

trypomastigote. However, other forms of the parasite have been observed under in vitro conditions (for 

review, [34]). These observations normally involve only one host cell type, and lack environmental signals 

and a tissue milieu. Therefore, it has not been possible to be assess if these non-classical forms are 

physiologically relevant during host infections, or whether they are artefacts of in vitro culture.  

 

We observed a number of distinct T. cruzi morphological forms during murine infections that do not conform 

to the standard amastigote/trypomastigote dichotomy. In both acute and chronic infections, we frequently 

visualised amastigote-like forms with a protruding flagellum (Figure 8). This flagellum extended from the 

anterior of the parasite, based on the relative position of the kinetoplast and nucleus (Figure 8a-c). The 

kinetoplast and nucleus displayed the forms associated with the replicative stages of the parasite. The length 

of the visible flagellum was highly variable with the majority of amastigotes having no protruding flagellum. 

(Figure 8d). The length of the amastigote cell body varied between 3 and 7 µm (mean 4.2 ± 0.8 µm) with the 

flagellar length being independent of cell body length (Figure 8c and e). The flagellated amastigote-like 
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parasites have similarities to sphaeromastigotes (Tyler & Engman, 2001), a form that has been observed in 

vitro.  

 

In addition to the flagellated amastigote-like parasites, we also observed a second non-standard form that 

displays an epimastigote-like morphology (Figure 8c, orange box and inset). Similar forms have been 

reported once before in a very early stage of infection (day 8) [35]. These epimastigote-like forms, which we 

detected repeatedly in tissue samples, often co-existed with dividing amastigotes and differentiating 

trypomastigotes in the same infected cell, and could be observed by live cell imaging in vitro (Figure S5). 

Whether these forms are simply morphological intermediates, or have a distinct role in infection or 

transmission remains unknown. 

 

DISCUSSION 

The broad outline of T. cruzi replication and stage-specific differentiation during mammalian infection has 

been known for more than a century. However, it is clear that this part of the life-cycle is more complex than 

previously described, with possible implications for our understanding of pathogenesis, immune evasion and 

transmission [34]. Unravelling the biology of T. cruzi within the host is also crucial from a drug development 

perspective, since some life-cycle stages may be less sensitive to treatment [9], and the ability of the parasite 

to reside in metabolically distinct tissue compartments may have significant effects on drug exposure and 

pharmacodynamics. To date, most research on T. cruzi replication and differentiation has utilised in vitro 

systems. Although these are informative, they may not capture the full developmental range, and could give 

rise to artefactual observations that are not relevant to these processes within the mammalian host. In 

addition, in vitro cultures often use immortalised mammalian cell lines, whereas in vivo T. cruzi is usually 

found in non-replicating terminally differentiated cells such as muscle fibres. 

 

One of the major unknowns in T. cruzi biology is the extent to which parasite growth is co-ordinated within 

individual host cells during a mammalian infection, and how it is influenced by tissue/organ location and 

disease status. This issue has been highlighted by recent reports of spontaneous dormancy during 

intracellular infection (Sánchez-Valdéz et al., 2018). Here, using a bioluminescent/fluorescent dual reporter 

strain that significantly enhances our ability to identify and visualise infected host cells in vivo, we provide 
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evidence that intracellular replication is largely asynchronous. From observation, it is apparent that the 

number of parasites per host cell does not follow a predictable or tightly regulated pattern in vitro (Figure 1, 

Figure S2), or in vivo, at any phase of the infection, or in any specific tissues (Figures 2-6). Consistent with 

this, two separate assays indicate that, within individual infected cells, DNA replication is not synchronised 

between parasites at either nuclear or kinetoplast genome levels (Figures 2-6, S3, S4). In the case of EdU 

labelling, this was not a reflection of differential tissue penetration, since replicating amastigotes were 

interspersed with non-labelled parasites in a wide range of tissues types, during both acute and chronic 

infections. TUNEL labelling is not dependent on incorporation of nucleoside analogues in a living mouse and 

is therefore an orthogonal assay for mitochondrial DNA replication. 

 

The finding that extremely large nests of asynchronously dividing or differentiating parasites can exist in 

chronically infected animals (Figure 6 and Figure S4) could have therapeutic implications. Infected cells such 

as these may contain parasites in a range of metabolic states (including dormancy) that exhibit heterogeneity 

in terms of drug susceptibility. In addition, the possibility that these in vivo mega-nests could result in some 

form of intracellular “herd-protection” may give rise to an environment that is difficult to replicate in the 

standard in vitro assays used in the drug development pipeline. 

 

 Single infected cells can contain both replicating amastigotes and non-replicating, differentiated 

trypomastigotes (Figure 7). Therefore, whatever the signal(s) that trigger differentiation and/or replication, 

they are not perceived and/or acted on in concert by every parasite within the nest. This contrasts with the 

related extracellular parasite T. brucei in which a well-characterised quorum sensing pathway initiates 

differentiation from the replicative long slender bloodstream form to the non-replicating short stumpy form, 

preadapted for transmission to the tsetse fly vector [36-39]. The lack of synchrony in differentiation between 

amastigote, intracellular “epimastigote” and trypomastigote, during T. cruzi infection, indicates that either a 

ubiquitous quorum sensing mechanism of this kind does not operate within single infected host cells, or that 

some parasites remain refractory to the trigger signal, as exemplified by the quiescent amastigotes identified 

recently [9].     
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The dual reporter parasite strain also enabled us to identify a number of non-standard parasite forms in 

tissues of infected mice, sometimes co-existing within the same host cell (Figure 5, Figure S5). The role of 

the intracellular and extracellular epimastigote-like, and flagellated amastigote-like forms in the parasite life-

cycle remains to be determined. Their relative scarcity suggests that they could be transient forms which 

occur during the differentiation from amastigote to trypomastigote. Importantly, detection of these 

morphological forms in vivo excludes the possibility that they represent laboratory culture artefacts. 

Intriguingly, in this context, it has been established that in the opossum, an ancient natural host of T. cruzi, 

there is an insect stage-like epimastigote cycle within the anal glands. This appears to exist independently of 

the intracellular pathogenic cycle found in other tissues [40]. It has also been demonstrated that 

trypomastigotes can exist in two distinct populations (TS+ and TS-, referring to trans-sialidase surface 

expression). TS- parasites are poorly infective to mammalian cells and significantly less virulent in mice [41]. 

This suggests that the two populations may have distinct roles, one perhaps preadapted for invasion of the 

insect vector, and the other for propagation of infection within the mammalian host, analogous to the slender 

and stumpy forms of T. brucei.  

 

In conclusion, this study reports the first detailed analysis of T. cruzi replication in animals at the level of 

single infected cells within a range of tissue types. The data reveal the complexity of parasite replication and 

differentiation cycles, and confirm the existence in vivo of parasites with a non-classical morphology. The 

presence of even transient non-canonical forms in infected animals highlights important questions about their 

susceptibility to trypanocidal drugs, compared with standard amastigotes. Similarly, it is unknown whether 

these forms express the same surface protein repertoire as amastigotes and/or trypomastigotes, if they are 

equally targeted by anti-parasite antibodies in the bloodstream and tissue fluids, or if they retain the ability to 

infect other cells and disseminate the infection. It will now be important to develop procedures to isolate these 

non-classical parasite types in sufficient numbers to allow their biochemical and biological characterisation. 
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Figure Legends 

 

 

FIGURE 1 Kinetoplast replication of T. cruzi amastigotes is asynchronous in vitro. (a) Epimastigote at early 

stage of kDNA replication with TUNEL labelling of antipodal sites. (b) Epimastigotes at late stage of kDNA 

replication showing TUNEL labelling of entire kDNA disk. (c) MA104 cells infected with T. cruzi CL-Luc::Neon 

amastigotes for 72 hours then fixed and labelled with the TUNEL reagent. Left hand panel: cell containing 11 

amastigotes with non-replicating kDNA (all TUNEL-ve); central panel: cell with parasites in which kDNA 

replication is asynchronous (mix of TUNEL+ve and TUNEL-ve); right hand panel: cell where all amastigotes 

are TUNEL+ve, but at different stages of kDNA replication (7 of 8 amastigotes display bright antipodal 

staining, the eighth is faintly TUNEL+ve, as shown by white arrows in the inset). (d) TUNEL data from 200 

infected cells pooled from 3 replicate wells. The red line represents the number of infected cells assessed 

that contained the specified number of resident amastigotes. The black bars represent the percentage of 

amastigotes per cell that label as TUNEL+ve. Bar = 5 μm. 
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FIGURE 2 Asynchronous replication of parasite mitochondrial DNA within single infected host cells in vivo 

revealed by TUNEL assays. (a) Asynchronous replication of kDNA in intracellular parasites infecting mouse 

spleen cells during an acute stage infection (day 19). BALB/c mice were infected with T. cruzi CL-Luc::Neon 

and histological sections prepared from bioluminescent tissue (Experimental procedures). Parasites were 

detected by green fluorescence (mNeon), and the tissue sections subjected to TUNEL assays to highlight 

replicating kDNA (red). (b) Asynchronous replication of kDNA in an amastigote nest detected in the smooth 

muscle layer of stomach tissue during a chronic stage infection (day 117). Bar = 10 μm. 
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FIGURE 3 Quantification of TUNEL in BALB/c mice during the acute stage of infection with T. cruzi CL-

Luc::Neon. Tissue sections from mice sacrificed on day 19 post-infection were processed for imaging and 

subjected to TUNEL staining (Experimental procedures). The graphs show the number of amastigotes that 

were TUNEL+ve (red) or TUNEL-ve (blue) in individual infected cells within the specified tissues. The x-axis 

refers to individual host cells. Bars containing both TUNEL-ve and +ve amastigotes were present in all tissues 

examined. Note that the level of TUNEL signal may vary between amastigotes within a given cell, so even 

bars that are red only may represent parasites at different stages of kDNA replication (c.f. differential levels 

of TUNEL staining in Figure 2a and b, DAPI/TUNEL panels).   
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FIGURE 4 Asynchronous parasite DNA replication within single infected host cells in vivo revealed by EdU-

labelling. Replication of parasite DNA within mice infected by T. cruzi clone CL-Luc::Neon was assessed after 

inoculating EdU (for (a) and (b), one pulse 6 hours prior to tissue sampling; for (c), two pulses 18 and 28 

hours prior to tissue sampling (Experimental procedures). Parasite location in histological sections was 

detected by green fluorescence (mNeon). (a) DNA replication (EdU, red) in a parasite nest during an acute 

stage infection (heart tissue, day 15 post-infection). In the DAPI stained image, the white arrow indicates 

parasite nest, and red arrow the host cell nucleus. The merged DAPI/EdU image, bottom left, illustrates the 

heterogeneity in the DNA replication status of parasites within the nest. (b) DNA replication in parasites within 

adipose tissue (day 15 post-infection). Red and white arrows in the DAPI image identify host and parasite 

DNA, respectively. Combined EdU and DAPI image shows replicating parasites interspersed with non-

replicating parasites. (c) Section from GI tract of mouse, upper panel shows image at low magnification – 

note the presence of some EdU+ve mammalian cells within the mucosal layer due to epithelial cell 

replacement (indicated by white arrowheads). Lower panels show magnified view of parasite nest. EdU signal 

in magenta box is shown in higher magnification to the right; note a single amastigote with EdU labelling at 

antipodal sites of kDNA replication. All other parasites in this nest are negative. Bars = 10 μm. 
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FIGURE 5 EdU labelling reveals that cells infected with small numbers of amastigotes have a lower 

percentage of actively replicating parasites in a chronic infection. (a) Ex vivo imaging of organs. 

Bioluminescent foci were removed from the GI tract of three chronically infected C3H/HeN mice (day 211 

post-infection) that had been injected with two pulses of EdU 18 and 28 hours prior to necropsy (Experimental 

procedures). (b) Each infected cell in the GI tract foci was imaged and the number of amastigotes that were 

positive or negative for EdU incorporation was quantified. The graphs show the total number of amastigotes 

in each cell (blue bars) and the number that were labelled with EdU (red bars). (c) Bioluminescent foci from 

the peritoneal muscle were also dissected, stained for EdU and quantified as above. Asterisks above bars 

indicate cells were the number of parasites represents a minimum due to the infected nest being larger than 

the z-dimension of the section. 

 

FIGURE 6 Large nests are present in the chronic stage of infection (C3H/HeN mouse, day 211) and show 

asynchronous EdU incorporation throughout. Images of the same nest taken from different sections through 

the tissue. The top row shows DAPI, EdU and mNeonGreen merged channels, whilst the lower row shows 

DAPI and EdU channels (for clarity). Bar = 10 μm. Note that sections are from the same infection focus but 

not all sections of this nest are included due to loss in processing. 
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FIGURE 7 TUNEL assays indicate that amastigote replication and amastigote-to-trypomastigote 

differentiation can occur concurrently within single infected host cells in vitro and in vivo. (a) MA104 cells 

infected in vitro with T. cruzi. Two amastigotes (1 and 2) are visible within a cell full of trypomastigotes. The 

two lower right-hand panels show the two amastigotes at a higher magnification for clarity. (b) MA104 cells 

infected in vitro with T. cruzi. The cells were fixed 72 hours post-infection and subjected to a TUNEL assay.  

Two replicating amastigotes can be identified by antipodal TUNEL labelling on the kinetoplast, amongst a 

population of differentiated trypomastigotes. Bar = 10 μm. 
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FIGURE 8 T. cruzi parasites display a wide range of morphologies during murine infections. BALB/c mice 

were inoculated with parasites expressing a fluorescent/bioluminescent fusion protein and infected tissues 

identified by in vivo bioluminescence imaging (Experimental procedures). Fluorescent (green) flagellated 

“amastigote” forms detected in (a) adipose tissue (day 13 post-infection) (DNA stained red – appears yellow 

where mNeon fluorescence overlaps DNA), and (b) cardiac tissue (day 19 post-infection). (c) Parasite nests 

in the rectum (day 19 post-infection) containing a variety of morphological forms. Note that none of the 

flagellated forms displays the posterior rounded kinetoplast characteristic of trypomastigotes. Bar = 5 μm. (d 

and e) The flagellar length was measured in 100 amastigote-like cells from various tissue sites, where 

parasites were distinct enough to measure both flagellum and cell body. (d) Graph showing the flagellar 

length (μm) measured in each individual amastigote. (e) Graph showing the flagellar length (μm) plotted 

against parasite body length (μm). 
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Figure S1 MA104 cells infected with T. cruzi CL-Luc::Neon amastigotes for 72 hours, fixed, then labelled 

with the TUNEL reagent. The parasite in the red box has completed kDNA replication and segregation, but 

not nuclear replication, and clearly shows that the segregated kinetoplasts no longer display TUNEL positivity. 
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Figure S2 Plot of TUNEL+ve amastigote numbers as a function of total amastigotes present in an infected 

cell, for each infected cell used to derive Figure 1d. Each circle represents a single infected host cell. (a) All 

200 infected cells from Figure 1d. (b) An expanded view of the area indicated by the box to allow clear 

visualisation of the host cell numbers. For cells infected with 1 amastigote, n=28. 
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Figure S3 Asynchronous parasite kDNA replication within single infected host cells in vivo in acutely infected 

(19 days post infection) BALB/c mice revealed by TUNEL reactivity. (a) caecum, (b) rectum, (c) heart, (d) 

spleen and (e) lung.  Images are from two individual mice. Bar = 10 μm 
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Figure S4 Asynchronous parasite DNA replication within single infected host cells in chronically infected (211 

days post infection) C3H/HeN mice revealed by EdU-labelling. Replication of parasite DNA within mice 

infected by T. cruzi clone CL-Luc::Neon (Costa et al., 2018) was assessed after inoculating two EdU pulses 

18 and 28 hours prior to tissue sampling (Experimental procedures). Parasites were located in histological 

sections by fluorescence (mNeon, green). a) DNA replication (red) in a chronic phase parasite nest (colon). 

The combined DAPI/EdU image illustrates the heterogeneity of parasite replication within the nest. Bar = 10 

μm. b) Section from colon of mouse showing parasite nest. Upper panels show individual channels and a 

merged image. The lower panel shows DAPI and EdU channels only, allowing visualisation of the 

interspersed nature of EdU+ve amongst EdU-ve parasites. (a) and (b) are from different mice. Bars indicate 

10 μm. 
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Fig S5 Multiple morphological forms within single infected cells. Each image shows an M104 cell (blue, 

nucleus) 6 days after infection with T. cruzi (green) showing dividing amastigotes (arrow a), epimastigote-like 

forms (arrow e) and trypomastigotes (arrow t) within the same cell. (a-d) sequential still images from Movie 

S1, (e-h) sequential still images from Movie S2 

 

Movie S1 Multiple morphological forms within a single infected cell. Live cell imaging of an M104 cell 6 days 

after infection with T. cruzi showing dividing amastigotes, epimastigote-like forms and differentiating 

trypomastigotes within the same cell. See Figure S5 for locations of representative parasites for each 

morphotype. *Available on-line* 

 

Movie S2 Multiple morphological forms within a single infected cell. Live cell imaging of an M104 cell 6 days 

after infection with T. cruzi showing dividing amastigotes, epimastigote-like forms and differentiating 

trypomastigotes within the same cell. See Figure S5 e-h for locations of representative parasites for each 

morphotype. *Available on-line* 
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