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Abstract

Antimicrobial resistance (AMR) in bacteria has been a global threat to public health

for decades. A well-known driving force for the emergence, evolution and dissem-

ination of genetic AMR determinants in bacterial populations is horizontal gene

transfer, which is frequently mediated by mobile genetic elements (MGEs). Some

MGEs can capture, maintain, and rearrange multiple AMR genes in a donor bac-

terium before moving them into recipients, giving rise to a phenomenon called hor-

izontal gene co-transfer (HGcoT). This physical linkage or co-localisation between

mobile AMR genes is of particular concern because it facilitates rapid dissemi-

nation of multidrug resistance within and across bacterial populations, providing

opportunities for co-selection of AMR genes and limiting our therapeutic options.

The study of HGcoT can be benefited from large-scale whole-genome sequencing

(WGS) data, however, by far most published studies of HGcoT only consider sim-

ple co-occurrence measures, which can be confounded by strong bacterial population

structure due to clonal reproduction, leading to spurious associations. To address

this issue, we present GeneMates, an R package implementing a network approach

to identification of HGcoT using WGS data. The package enables users to test

for associations between presence-absence of bacterial genes using univariate linear

mixed models controlling for population structure based on core-genome variation.

Furthermore, when physical distances between genes of interest are measurable in

bacterial genomes, users can evaluate distance consistency to further support their

inference of putative horizontally co-transferred genes, whose co-occurrence can-

not be completely explained by the population structure. We demonstrate how

this package can be used to identify co-transferred AMR genes and recover known

MGEs from Escherichia coli and Salmonella Typhimurium WGS data. GeneMates

is accessible at github.com/wanyuac/GeneMates.
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1 Background

Horizontal gene transfer (HGT) accelerates bacterial genome innovation and evolution

[1]. It facilitates intra- and interspecies gene flow, dividing each species gene pool (“pan-

genome”) into core and accessory genes [2]. Mobile genetic elements (MGEs), such as

plasmids, bacteriophages and transposons, are common vectors for HGT [3]. It is well-

known that when genes are physically linked (namely, co-localised in an MGE or otherwise

physically close in DNA molecules), they can be horizontally co-transferred between bac-

teria, leading to positive gene-gene associations known as genetic linkage [4, 5].

The rapid accumulation of bacterial whole-genome sequencing (WGS) data in the

most recent two decades [6] enables us to study horizontal gene co-transfer (HGcoT)

at the population level. Since bacteria reproduce asexually and HGT can occur across

different levels of taxonomic boundaries [7], gene-gene associations that cannot be com-

pletely explained by bacterial population structure (which determines the distribution

of co-inherited genes) suggests HGcoT [8]. Consequently, it is usually trivial to identify

candidates of interspecies HGcoT using simple association tests (such as chi-squared tests

and simple logistic regression), whereas for detecting intraspecies HGcoT, we must over-

come two related challenges arising from the presence of population structure within a

species: (1) how to control for population structure in association tests; and (2) how to

accurately estimate or represent the population structure to be controlled for.

Univariate linear mixed models (LMMs), which have been widely used in human

genome-wide association studies (GWAS) [9] and recently applied to bacterial GWAS

[10], provide a solution to address both challenges. Each model explains a response vari-

able using a fixed effect of an independent variable and mixed random effects of population

structure and environmental factors. For each LMM, the population structure is repre-

sented by a relatedness matrix, whose principal components (PCs) can be used for an

orthonormal transformation of genetic variation underlying the population structure [11].

McVean demonstrates that not only do these PCs simplify computations, but also corre-

late with bacterial genealogies [12]. Compared to phylogeny-based association tests, such

as phylogenetically independent contrasts and phylogenetic generalised least squares [13],

LMMs do not rely on specific phylogenetic models nor assume that mutation rather than

recombination dominates genetic variation.

Here, we introduce an R package GeneMates, which implements a novel network ap-

proach to the identification of HGcoT within a bacterial species. This approach takes as

input specific information extracted from bacterial WGS data and produces a network

showing allele-level evidence of HGcoT. We validated GeneMates using published WGS

data from two bacterial species, Escherichia coli and Salmonella enterica, with which we

identify horizontally co-transferred AMR genes. We also provide helper scripts to assist

users in preparing necessary input files from standard formats. Since GeneMates is theo-
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retically applicable to any kind of acquired genes in bacteria, it has the potential to also

be used for investigating structures and dissemination of other mobile gene clusters of

interest, such as virulence genes.

2 Implementation

GeneMates consists of R functions performing network construction, topological analysis

and data visualisation. It works at the allele level to track recent HGcoT. Particularly,

we assume that bacterial isolates under study will typically be collected in a period that

is too short to accumulate any mutation in recently acquired genes of interest, such as

AMR genes. In addition, for convenience we assume that every gene has zero or one allele

in each genome as it is not possible to reliably resolve exact alleles of the same gene using

short reads, which by far account for the majority of WGS data.

We developed a network approach to integrate and visualise evidence of physical link-

age between alleles of mobile genes in bacteria. In the network, nodes represent alleles

and weighted directed edges reflect the strength of evidence. GeneMates produces such

a network in each run. Let vector e denote an edge, then it represents a linear model

Y ∼ X, where scalar variables Y and X denote presence-absence of alleles Y and X in an

isolate, respectively. The model explains the distribution of allele Y (response allele) with

that of allele X (explanatory allele) and covariates. For GeneMates, the covariates are

isolate projections in an orthonormal transformation of the population structure based

on a core-genome relatedness matrix. Correspondingly, the edge is directed from node

X to node Y. A user may filter edges of a resulting network based on the association

score sa(e) and distance score sd(e) in order to identify edges showing strong evidence

of physical linkage, and carry out topological analysis for the filtered network afterwards.

In following subsections, we describe key elements of our approach. Additional details of

implementation are provided in Section 3 of Additional File 1.

2.1 Network construction

Figure 1 illustrates our work flow for network construction – the core functionality of

GeneMates. In order to integrate functions implementing this work flow, we created a

wrapper function findPhysLink (find physical linkage), which takes as input a binary al-

lelic presence-absence matrix (PAM) of target genes across genomes, a matrix of biallelic

core-genome SNPs (cgSNPs), and optionally, a table of allelic physical distances (APDs)

for target genes. These inputs can be extracted from read alignments and genome assem-

blies using our helper scripts (released with GeneMates). Function findPhysLink deter-

mines nodes and edges of a resulting association network and produces tables that can be

exported to Cytoscape [14] as node and edge attributes for network visualisation.
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Figure 1: An overall work flow of function findPhysLink . In this flowchart, cylinders
denote both the input WGS data and a non-redundant (namely, with no sequence duplication)
reference database of mobile AMR genes; rounded rectangles denote the two key outputs – an al-
lele network, and a linkage network when reliable APDs are available; ordinary rectangles denote
intermediate results, which are matrices or data frames; each arrow represents a process of spe-
cific data analysis, which starts from the input and ends at its outcome, with the process name
labelled besides the line. Steps integrated with findPhysLink are shaded within the dashed rect-
angular border. Abbreviations: cgSNPs, core-genome SNPs, which are particularly restricted to
biallelic SNPs conserved in all isolates for this package; PAM: a binary presence-absence matrix.

2.1.1 Node generation

Assuming m alleles of target genes are detected in n bacterial isolates, GeneMates function

importAllelicPAM imports an n × m binary PAM A = (aij), where an entry aij =

1 if the j-th allele is found in the i-th isolate, and aij = 0 otherwise. This function

can discard alleles of insufficient frequencies and/or co-occurrence frequencies with two

optional filters. In order to reduce the number of tests for allele-allele associations, we

followed the implementation of R package BugWAS [10] and coded importAllelicPAM to

de-duplicate each group of identical columns of PAM into a binary vector called an allelic

distribution pattern (Section 3.1.2 of Additional File 1). The function uses column means

to apply a column-wise zero-centring to the pattern matrix, which is a common technique

used for simplifying matrix algebra without affecting the distribution of data points [15].
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2.1.2 Edge weights

GeneMates evaluates two kinds of evidence to assess HGcoT between alleles X and Y .

The first evidence is a significant positive fixed effect of X on presence-absence of Y when

controlling for bacterial population structure. Testing for this effect is an analogue of

GWAS, which test for genotype-phenotype associations. Specifically, for edge e in an as-

sociation network, GeneMates function lmm estimates parameters of a univariate LMM

using a residual maximum likelihood (REML) approach to test for the fixed effect of X,

and another function evalPL transforms the effect size β and its Bonferroni-corrected

p-value into an association score sa(e) with possible values 1 (significant positive associ-

ation), -1 (significant negative association), and 0 (insignificant association). See Section

3.1 in Additional File 1 for details.

The second evidence comes from consistent physical distances between alleles X and

Y in different bacterial genomes (namely, APDs) as structural variation is likely to only

occur at a limited level within a mobile gene cluster in a short period. For instance, the

same ARG cluster sul2 -strA-strB has been circulating among Gram-negative bacteria

for decades due to its association with plasmids and transposons [16]. Since APDs are

measured in genome assemblies, whose completeness determines the amount of measurable

APDs when X and Y are co-localised in the same genomic region, for edge e, we also

consider its distance measurability min(e) – the percentage of genomes in which the

APDs between X and Y are actually measurable. This measurability value is calculated

by GeneMates function summariseDist, which also evaluates the consistency of APDs

included for the distance assessment and assigns a consistency score c(e) with values -1

(evidence against physical linkage), 0 (insufficient evidence) and 1 (evidence supporting

physical linkage). Notably, this function estimates the probability of distance identity-

by-descent (IBD) and compares it to a user pre-defined threshold (default: 0.9) for the

assignment of each consistency score. See Section 3.3.2 and Figure s18 in Additional File

1 for details. A summary distance score is defined for edge e as the consistency score

weighted by measurability: sd(e) = min(e)c(e). Finally, the association and distance

scores are summed to get a linkage score s(e), reflecting the evidence of physical linkage,

where −2 ≤ s(e) ≤ 2 because 0 ≤ min(e) ≤ 1. Particularly, we define a linkage network

as an association network in which weights of each edge are comprised of a fixed-effect

size and a linkage score (Section 3.3 in Additional File 1).

2.2 Network visualisation and topological analysis

GeneMates comprises several functions used for displaying resulting networks and ex-

ploring network topology for evidence of HGcoT under given conditions. For instance,

function mkNetwork (make network) extracts user-specified node attributes (such as the

frequency and associated AMR phenotype of each allele) and edge attributes (such as
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the estimated fixed effect size β̂ and linkage score s per edge) from result tables of find-

PhysLink and print them into plain-text files that can be imported by Cytoscape for

network visualisation. Function extractSubgraphs follows a predefined node list to pull

out subnetworks from a parental network produced by findPhysLink. The subnetworks

can be maximal cliques identified using the function max cliques of an R package igraph

[17]. In addition, function countNeighbours lists the number of neighbours per node in a

network and getClusterMemberCooccurrence finds out isolates in which member alleles of

each subnetwork are co-occurring.

3 Results

We assessed the performance of GeneMates and validated our methodology using pub-

lished WGS data sets of two bacterial pathogens of great clinical concern – multidrug-

resistant Escherichia coli and Salmonella enterica serovar Typhimurium. Genomes in

these well studied data sets have distinct population structures, contain diverse AMR

genes and MGEs, and show known gene-gene associations that we expected GeneMates

to identify. See Section 4 of Additional File 1 for details of materials and methods.

3.1 Characteristics of example data sets

Both the E. coli and Salmonella data sets consisted of paired-end Illumina short reads,

generated from 169 genomes of E. coli collected during the Global Enteric Multicentre

Study (GEMS) [18, 19] and 359 genomes of typical S. Typhimurium Definitive Type 104

(DT104) [20], respectively. Additional File 2 provides detailed genome information.

AMR gene content In the 169 E. coli genomes, we identified 178 alleles of 33 AMR

genes conferring resistance to eight antimicrobial classes (Figure s1). The four known

intrinsic AMR genes of E. coli (ampH, ampC 1, ampC 2 and mrdA) displayed higher

frequencies than the 29 acquired AMR genes (> 87% versus < 63%). Altogether, we

detected 67 alleles of acquired AMR genes, including 45 alleles showing frequencies less

than 3%. In the 359 Salmonella genomes, we identified 57 alleles of 24 AMR genes

(conferring resistance to six antimicrobial classes), including a single allele of the known

intrinsic AMR gene (aac6-Iaa) of S. enterica and 56 alleles of 23 acquired AMR genes

(Figure s3). Notably, five acquired AMR genes (sul1, aadA, blaCARB, tet(G) and floR)

that are known to be frequently present in the Salmonella genomic island 1 (SGI1) [21]

were only detected in the dominant lineage of the Salmonella genomes (Figure s4).

Core-genome SNP sites We performed SNP analysis with the method described in

Section 4.2 of Additional File 1. Particularly, we define cgSNP sites as SNP sites detected
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in all genomes and outside of repetitive or prophage regions. Altogether, the numbers of

cgSNP sites used for correcting for population structure (namely, biallelic cgSNP sites)

of the 169 E. coli genomes and 359 Salmonella genomes were 209,097 and 2,316, respec-

tively. The percentage of total genetic variation captured by PCs of each cgSNP matrix is

illustrated in Figure s8a. Furthermore, the REML estimate of parameter λ (which reflects

the effect of population structure on the distribution of the response allele) in the null

LMM for presence-absence of each allele of AMR genes perfectly predicted whether ≥ 5

PCs had significant effects (Bonferroni-corrected p-values ≤ 0.05) on the distribution of

this allele (Figure s8b).

3.2 Effects of controlling for population structure

In order to evaluate the effect of controlling for population structure using LMMs when

measuring associations between alleles of acquired AMR genes, we compared unadjusted

p-values of fixed effects estimated using the LMMs to those estimated using simple pe-

nalised logistic models (PLMs) [22] (Figure 2). Particularly, we considered a fixed effect

estimated with either kind of models significant if its Bonferroni-corrected p-value was

≤ 0.05. Figure 3 illustrates a directed comparative network for detected alleles of AMR

genes in each example data set. In this network, each edge starts from an explanatory

allele and terminates at a response allele, representing a significant fixed effect of the

explanatory allele in an LMM or PLM or both. For the 67 alleles in E. coli genomes,

3,364 LMMs were applied to 60 allele distribution patterns, and 118 significant pairwise

associations were detected. Simple PLMs for the same allele patterns of AMR genes in E.

coli genomes identified 70 significant associations, 50 of which overlapped with those from

LMMs. The resulting comparative network consisted of 45 nodes, 138 edges and two con-

nected graph components (Figure 3a). Regarding the 56 alleles in Salmonella genomes,

2,040 LMMs were applied to 48 allele distribution patterns and 112 significant pairwise

associations were detected. Simple PLMs for the same allele patterns of AMR genes in

Salmonella genomes identified 48 associations, 36 of which overlapped with those from

LMMs. The resulting comparative network consisted of 32 nodes, 124 edges and a single

connected graph component (Figure 3b). In addition, for both the E. coli and Salmonella

data sets, estimates of fixed effects in LMMs displayed a complete sign identity to those

in PLMs given a maximum type-I error rate 0.05.

For most allele pairs, correcting for population structure using LMMs yielded higher

p-values: the majority of fixed effects (74% for E. coli and 85% for Salmonella) in LMMs

became less significant than those in PLMs (Figure 2b, d). Nonetheless, associations

for some allele pairs became more significant after adjusting for population structure,

and in most of such cases (93% and 99% for E. coli and Salmonella, respectively), the

distribution of at least one of the alleles showed moderate to strong structural random
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effects (1 < λ̂0 ≤ 105). Notably, for both data sets the number of significant associations

became greater when adjusting for population structure (Figures 2 and 3), although the

increase was not significant (two-sided p-value = 0.58 using a two-proportion Z-test for

the null hypothesis of identical proportions).

Figure 2: A comparison of unadjusted p-values from PLMs and LMMs for the
same pairs of allelic distribution patterns of AMR genes. For the E. coli data set
(panels a and b) and Salmonella data set (panels c and d), respectively, a scatter plot and
box plot of paired p-values are drawn on square-root transformed axes to compare the p-values.
Any p-value less than 2.2 × 10−16 is rounded to 2.2 × 10−16 owing to the smallest precise
floating number in our computer. In panels a and c, black diagonal lines indicate equality
between p-values from these two kinds of models, and grey dashed lines indicate the p-value
corresponding to the Bonferroni corrected p-value 0.05, which is used in this study as a cut-off
for significant associations. Associations that were only significant in PLMs, only significant
in LMMs, significant in both PLMs and LMMs, and significant in neither kind of models, are
represented by blue, red, purple, and grey circles, respectively.
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Figure 3: Comparative networks for detected alleles of acquired AMR genes in
169 E. coli and 359 Salmonella genomes. Each node represents an allele or a cluster
of identically distributed alleles, with a diameter proportional to the allele frequency and a fill
colour indicating the AMR phenotype encoded. The yellow node border denotes an allele or allele
cluster detected in one genome. The edge width is proportional to the strength of a significant
association (|β̂|) determined using an LMM. Edge colours indicate significant associations from
LMMs or PLMs or both. Solid and dashed edges represent significant positive (β̂ > 0) and
significant negative associations (β̂ < 0), respectively, identified using models indicated by edge
colours. The Venn diagram of each panel counts edges under each colour. The shaded area (light
green) encircles alleles of known co-mobilised AMR genes. AMR classes defined by antimicrobials
that were resistant to: AGly (aminoglycosides), Bla (beta-lactams), Flq (fluoroquinolones),
MLS (macrolides, lincosamides, and streptogramins), Phe (phenicols), Sul (sulfonamides), Tet
(tetracyclines), Tmt (trimethoprim), and Mix (multiple classes of antimicrobials).
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3.3 Effects of adding APDs to association networks

APDs were measured by the shortest-path distance (SPD), defined as the smallest dis-

tance between two given loci in an assembly graph (constructed using Unicycler [23]). This

approach allows us to recover query sequences that are split into adjacent contigs and to

measure APDs between loci that are located in different contigs, potentially increasing

distance measurability of the graph, defined as the percentage of measured APDs in all

possible APDs of a complete circular genome. Nonetheless, since SPDs are affected by

the topology of each assembly graph, which is usually tangled and partially resolved when

only short reads are used for genome assembly, it is necessary to determine appropriate

criteria for filtering out inaccurate SPDs. Therefore, we downloaded from GenBank [24]

10 complete reference genomes of multidrug resistant E. coli and S. Typhimurium, re-

spectively (Additional File 2), and compared SPDs measured in de novo assembly graphs

(constructed from simulated Illumina reads) to true physical distances extracted from

the original circularised complete genomes (Supplementary Section 4.6). Specifically, we

used Bandage [25] to identify BLAST hits to random coding sequences (CDSs) in each

assembly graph and to extract the SPDs for each pair of hits.

Filters determined for removing inaccurate SPDs We considered an SPD accurate

if its error fell within a given tolerance range (for instance, ±2 kbp), and hence defined

the accuracy rate as the percentage of accurate SPDs in all SPDs, either filtered or not. In

practice, any parameter for BLAST hits and SPD measurement can be taken into account

for excluding SPDs. In this study, we assessed the accuracy rate of SPDs measured within

various maximum distances and node numbers for each assembly graph when confining

BLAST hits to a minimum query coverage and nucleotide identity 95%. Across E. coli

and S. Typhimurium genomes, we constantly saw that the accuracy rate reached ≥ 90%

under an error tolerance ±1 kbp when SPDs were measured within 250 kbp and no more

than two nodes (Figures s9 and s11).

Moreover, since the accuracy rate of SPDs measured within contigs stayed above 90%

when tolerating errors within ±1 kbp (Figures s10 and s12), we implemented prioritisation

of SPDs based on their sources (namely, contigs or assembly graphs) in order to exclude

inaccurate SPDs from assembly graphs where repeats have not been resolved by the

assembler. Specifically, when the physical distance between two CDSs is measurable in

both a contig and an assembly graph of the same genome, this method overrides the

graph-based SPD with its corresponding contig-based SPD, thereby taking advantage of

both the high accuracy rate of contig-based SPDs and high measurability of graph-based

SPDs. As shown in Tables s5 and s6, the prioritisation method led to an accuracy rate of

100% for the majority of SPDs measured between acquired AMR genes, which are often

embedded within tangled sub-graphs owning to surrounding repeats.
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We found that inaccurate SPDs measured in two nodes of Salmonella assembly graphs

(Table s6) were caused by chimeric alleles (that is, highly similar alleles of the same gene

were mistakenly assembled into one allele) in the assembly, owing to the limited capacity of

short reads in resolving repeats. We addressed this issue through increasing the threshold

for both the nucleotide identity and query coverage of BLAST hits from 95% to 99%

(BLAST hits to chimeric alleles were hence discarded), and improved the accuracy rate

for two genomes at the cost of reducing distance measurability (Table s7). Accordingly,

we applied this adjusted threshold to the measurement of SPDs between acquired AMR

genes in the 358 Salmonella draft genomes. Besides, we directly calculated SPDs for

strain DT104, whose complete genome is publicly accessible on GenBank.

SPDs between alleles of acquired AMR genes From de novo assemblies of the

169 E. coli genomes, we obtained 1,550 SPDs for 301 allele pairs that were tested for

associations (Hence alleles of each pair did not have identical presence-absence status

across genomes) and 20 SPDs for nine pairs of identically distributed alleles. The largest

SPD was 59,433 bp (measured across 17 nodes) and the greatest node traversal to measure

an SPD was across 39 nodes (yielding an SPD of 4,628 bp). The exclusion of SPDs

measured in more than two nodes resulted in 673 (43%) SPDs reliably measured for 163

tested allele pairs and 18 (90%) SPDs for eight pairs of identically distributed alleles.

From de novo assemblies of the 359 Salmonella genomes, we obtained 2,880 SPDs for

224 allele pairs tested for associations, including 2,322 SPDs between alleles of the five

SGI1-borne AMR genes (Table s8), and another 10 SPDs from five pairs of identically

distributed alleles. The largest SPD was 710,475 bp (measured across 44 nodes) and the

greatest node number was 57 (yielding an SPD of 687,051 bp). We saw large SPDs (> 56

kbp, which were extraordinarily larger than the others) when the node number exceeded

14. The exclusion of SPDs that were greater than 250 kbp and measured in more than

two nodes resulted in 994 SPDs from 59 tested allele pairs and eight SPDs from three

pairs of identically distributed alleles.

Overall, positively associated alleles of acquired AMR genes in E. coli and Salmonella

genomes showed higher measurability of SPDs than those measured between negatively

associated alleles. Specifically, for pairs of positively associated alleles, 64 (72%) out of

89 pairs in E. coli and 25 (26%) out of 97 pairs in Salmonella had at least two SPDs

measured, respectively (Tables s9 and s10). Moreover, after the removal of SPDs greater

than 250 kbp and measured in more than two nodes, 31 (35%) out of the 89 allele pairs in

E. coli and 10 (10%) out of the 97 allele pairs in Salmonella had distance measurability

above 75%. By contrast, no SPD was measurable between negatively associated alleles

as these alleles did not co-occur in any genome.
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Linkage networks showing support of SPDs to HGcoT For each pathogen, we

created a linkage network, in which nodes represent alleles or clusters of identically dis-

tributed alleles of acquired AMR genes and directed edges indicate significant associations

obtained from LMMs (Figure 4). The edge width is proportional to an estimated effect

size β̂, solid lines and dashed lines indicate positive associations and negative ones, re-

spectively, and the edge colour indicates the distance score sd. No filter was applied to

distance scores. The linkage network for E. coli consisted of 122 edges linking 46 nodes

corresponding to 52 alleles of 26 acquired AMR genes. The distance score followed a

bimodal distribution, with 57 out of 83 allele pairs (69%) having sd = 0 (84 edges) and

23 (28%) allele pairs having sd > 0.5 (38 edges). Considering only the edges that yielded

sd > 0.5 and connected alleles encoding distinct kinds of resistance phenotypes, aminogly-

coside resistance alleles linked to 14 alleles – the greatest number of connections, followed

by sulphonamide resistance alleles (linked to 11 alleles). By contrast, blaOXA-1, the only

beta-lactam resistance allele having edges with distance scores above 0.5, was linked to

two alleles (aadA1-pm.182 and catA1.215). Notably, as shown in Figure 4, five alleles

(dfrA14.227, strB, sul2.168, strA.173 and sul2 ) formed a cluster that was interconnected

by bidirectional edges with high distance scores (sd > 0.6).

The linkage network for Salmonella consisted of 37 alleles (21 AMR genes) connected

by 162 edges (Figure 4). No identically distributed alleles could be collectively represented

by a single node in this network due to absence of perfect measurability or consistency of

SPDs. The distance score again followed a bimodal distribution, with 95 out of 104 (91%)

pairs having sd < 0.05, and seven (7%) pairs (nine alleles in total) having sd > 0.5 (13

edges), all of which corresponded to significant positive associations. Considering only

the 13 edges having distance scores above 0.5, strB (aminoglycoside resistance) linked to

the greatest number of alleles (four, altogether), followed by sul2 and dfrA14.79, each

connected to two alleles.
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Figure 4: Linkage networks for detected alleles of acquired AMR genes in 169 E.
coli and 359 Salmonella genomes. Each node represents an allele or a cluster of identically
distributed alleles, with a diameter proportional to the allele frequency and a colour indicat-
ing the AMR phenotype encoded. Every edge is directed, starting from an explanatory allele
and terminating at a response allele, representing a significant association determined using an
LMM. The edge width is proportional to |β̂| of the explanatory allele in an LMM. Solid edges
represent significant positive associations (β̂ > 0) while dashed edges represent significant nega-
tive associations (β̂ < 0). The edge colour follows a gradient of the distance score sd to indicate
the strength of evidence for physical linkage. The shaded area (light green) encircles alleles of
known co-transferred AMR genes. AMR classes defined by antimicrobials that were resistant
to: AGly (aminoglycosides), Bla (beta-lactams), Flq (fluoroquinolones), MLS (macrolides, lin-
cosamides, and streptogramins), Phe (phenicols), Sul (sulfonamides), Tet (tetracyclines), Tmt
(trimethoprim), and Mix (multiple classes of antimicrobials).
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Reasons for inconsistency in measured physical distances In both the E. coli and

Salmonella data sets, a lack of consistency in SPDs (namely, c = 0) measured between

several positively associated alleles of acquired AMR genes was observed (Tables s9 and

s10). We investigated this issue based on GeneMates outputs and identified two common

explanations.

First, in many cases diverse genetic structures were found carrying the same combi-

nation of alleles of AMR genes. For example, using de novo assembly graphs of E. coli

genomes, we recovered six distinct genetic structures linking alleles blaTEM-214.147 and

tet(A), which showed significant positive associations in both LMMs and PLMs but had

six distinct SPDs (Figure s13). We found that these SPDs followed a lineage-specific dis-

tribution. As illustrated in Figure s14, the allele blaTEM-214.147 was carried by transposon

Tn2, which was common to all the six structures, either in its complete or truncated

form. The variety of insertion sites and orientations of this transposon relative to the

allele tet(A) in E. coli genomes, as well as plausible gene gain/loss events inferred from

structural comparisons, resulted in differences in SPDs measured between the two alleles.

Second, the GeneMates algorithm depreciates physical distances showing IBD for scor-

ing the distance consistency (Section 3.3.2 of Additional File 1). For instance, alleles of

SGI1-borne AMR genes sul1 and aadA2 in Salmonella were frequent amongst the 359

Salmonella isolates, with an occurrence count 328 (91%) and 323 (90%), respectively (Ta-

ble s8). Co-occurrence of these two alleles were also frequent, with a count 318 (89%)

in total. SPDs between sul1 and aadA2 were obtained from genome assemblies of 295

(93%) out of the 318 isolates where the alleles were co-occurring. After removing the only

SPD measured across more than two nodes (504 bp, across three nodes), we obtained

294 SPDs, consisting of 293 SPDs measured in either contigs or assembly graphs and a

single SPD measured in the complete chromosome genome of the reference strain DT104.

All the filtered SPDs were 504 bp, except the one from the complete genome (9,964 bp).

Despite this consistency in SPDs, the consistency score c = 0 as all the 294 SPDs were

obtained from the same lineage highlighted in Figure s15a (IBD probability of reliable

SPDs: 95%).

3.4 Validation of GeneMates

We validated our approach by examining known and novel physical clusters of mobile

AMR genes in the example data sets. Networks were constructed at the allele level for

these genes using the GeneMates function findPhysLink.
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Table 1: A comparison of significant positive associations in the network for E. coli
genomes to known co-localisation of mobile AMR genes. Co-localisation of AMR genes
in MGEs were previously determined by Ingle, et al. [19]. Each pair of significantly associated
alleles (denoted by alleles 1 and 2, regardless of their roles in a linear model) is identified in the
network shown in Figure 3. Directionality of associations is omitted in this table, hence each
pair of alleles only appears once in the table, although the alleles may mutually associated in
linear models. Notice an AMR gene may have multiple alleles (whose names are listed in the
column Allele 1 or Allele 2) or no allele (denoted by a dash sign in the table) present in the
association network. Abbreviations: LMM, linear mixed model; PLM, penalised logistic model.
Symbols indicating whether a significant association is determined using either an LMM or a
PLM: ( ), yes; ( ), no. sd: the distance score, which takes into account the distance consistency,
measurability, and the probability of IBD. pIBD: an estimate of the probability that APDs used
for calculating the sd are in IBD. This probability does not exist when no APD is available.

Gene 1 Gene 2 Allele 1 Allele 2 LMM PLM sd pIBD

tet(B) strB tet(B).67 strB.153 0 -

tet(B).67 strB.156 0 -

tet(B).67 strB.162 0 -

tet(B) sul2 – – - -

tet(B) strA – – - -

dfrA14 strB dfrA14.227 strB 0.93 0.5

dfrA14 strB.157 0 -

dfrA14 sul2 dfrA14.227 sul2 0.87 0.5

dfrA5 sul2.168 0 -

dfrA7 strA dfrA7 strA.173 0 0.35

dfrA7 strB dfrA7 strB 0 0.35

dfrA7 sul2 dfrA7 sul2.167 0 -

dfrA7 sul2.168 0 -

dfrA7 sul1 dfrA7 sul1 1 0.46

dfrA7 sul1.203 1 0.04

dfrA17 sul1 1 0.26

dfrA7 tet(A) dfrA7 tet(A) 0 -

tet(A) strA tet(A) strA.173 0 1

tet(A) strB tet(A) strB 0 1

tet(A) sul2 tet(A) sul2.168 0 -

tet(A) sul1 – – - -

blaTEM-198 tet(A) blaTEM-214.147 tet(A) 0 0.5

blaTEM-198 sul1 – – - -

blaTEM-198/191 strA blaTEM-214.147 strA.173 0.29 0.5

blaTEM-198/191 strB – – - -

blaTEM-198/191 sul2 – – - -

dfrA8 strA dfrA8 strA.173 0.26 0.12

dfrA8 strB dfrA8 strB.153 0.33 0.12

dfrA8 sul2 dfrA8 sul2 0.23 0.07

strA strB strA.173 strB 0.68 0.5

strA.173 strB.153 0.67 0.5

strA.178 strB 0 -

strA sul2 strA.173 sul2 0.62 0.5

strA.173 sul2.168 1 0.38

strB sul2 strB sul2.168 1 0.38

strB.153 sul2 0.65 0.5

strB sul2 0.84 0.5

sul1 strA – – - -

sul1 strB – – - -

sul1 sul2 sul1 sul2.167 0 -

sul1.203 sul2.168 0 -
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Identifying known clusters of mobile AMR genes The first set of positive controls

in our validation study consisted of 28 pairs of AMR genes that are known to be co-

mobilised by MGEs between E. coli genomes [19]. As shown in Table 1, LMMs and

PLMs identified significant positive associations at the allele level in 19 (68%) and 16

(57%) pairs, respectively. The second set of positive controls for validation consisted

of five AMR genes (aadA2, floR, tet(G), blaCARB-2, and sul1 ) that are co-localised in

the acquired multidrug-resistant element SGI1 in Salmonella genomes [20]. For these

genes, LMMs and PLMs identified significant positive associations between eight and ten

allele pairs, respectively (Table 2). The exclusion of allele pairs having sd < 0.6 led to a

substantial reduction of co-mobilisation candidates, with 12 out of 33 (36%) allele pairs

in E. coli genomes and two out of 20 (10%) allele pairs in Salmonella genomes passed

this filter.

Table 2: LMM-based significant associations between five alleles of AMR genes
in SGI1. Allele Y and Allele X denote the response allele and explanatory allele in an LMM
Y ∼ X, respectively. An association is denoted by a filled circle in the column LMM when it is
significant, otherwise, an unfilled circle is drawn. Directionality is shown in this table in order
to compare the value of λ̂, which denotes an REML estimate of the parameter λ for random
structural effects in an LMM. sd: score of APDs. pIBD: an estimate of the probability that
APDs used for calculating the sd are in IBD.

Gene Y Gene X Allele Y Allele X λ̂ LMM PLM sd pIBD

floR sul1 floR.12 sul1 64.98 0.03 0

sul1 floR sul1 floR.12 ≥ 105 0.03 0

aadA2 floR aadA2 floR.12 137.49 0.02 0

floR aadA2 floR.12 aadA2 82.73 0.02 0

blaCARB floR blaCARB-2 floR.12 110.28 0.04 0

floR blaCARB floR.12 blaCARB-2 57.27 0.04 0

floR tet(G) floR.12 tet(G) 64.45 0.99 0.5

tet(G) floR tet(G) floR.12 91.3 0.99 0.5

blaCARB sul1 blaCARB-2 sul1 70.79 0.92 0.85

sul1 blaCARB sul1 blaCARB-2 ≥ 105 0.92 0.85

aadA2 blaCARB aadA2 blaCARB-2 130.1 0 0

blaCARB aadA2 blaCARB-2 aadA2 123.6 0 0

blaCARB tet(G) blaCARB-2 tet(G) 244.33 0.04 0

tet(G) blaCARB tet(G) blaCARB-2 160.14 0.04 0

sul1 tet(G) sul1 tet(G) ≥ 105 0.03 0

tet(G) sul1 tet(G) sul1 55.9 0.03 0

aadA2 tet(G) aadA2 tet(G) 118.93 0.04 0

tet(G) aadA2 tet(G) aadA2 77.76 0.04 0

aadA2 sul1 aadA2 sul1 73.42 0 0.95

sul1 aadA2 sul1 aadA2 ≥ 105 0 0.95

Identifying novel clusters of AMR genes We noticed that some edges in linkage

networks possibly indicated novel physical linkage between several alleles of AMR genes
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in E. coli and Salmonella genomes. For instance, 20 novel edges in the linkage network

for E. coli (Figure 4) had the maximum association score sa = 1 (0.12 < β̂ ≤ 1 in LMMs)

and high distance scores (0.75 ≤ sd ≤ 1), and these edges formed five maximal cliques

each consisting of three alleles. Similarly, a three-allele clique showing high distance scores

(0.7 ≤ sd ≤ 0.9) was identified in the linkage network for Salmonella (Figure 4). As a

further validation of GeneMates, we investigated two maximal cliques through resolving

their genetic structures and vectors in genome assemblies.

The first clique consisted of alleles dfrA1, aadA1-pm.181, and sat-2A detected in E. coli

genomes. As illustrated in Figure s16a, LMMs identified significant positive associations

between alleles this clique. Moreover, we saw perfect identity and measurability in APDs

between these alleles (that is, sd = 1 for every edge of this clique, see Table s11 for more

details). The combination of these three alleles occurred in two genomes belonging to two

distantly related lineages (Figure s16b), with the alleles present in the same gene-cassette

array of a class-2 integron (Figure 5a, b). Further, we confirmed that this integron was

carried by variants of a Tn7 transposon (100% coverage under a nucleotide identity of

99%), each interrupted by an insertion of a distinct IS element (Figure 5c). Therefore,

there is strong evidence that these alleles were co-transferred between E. coli lineages by

the MGE Tn7.

The second clique consisted of alleles strA.55, strB, dfrA14.79, and sul2 detected in

Salmonella genomes (Figure 4). Both LMMs and PLMs identified that associations be-

tween all of these alleles were significantly positive (0.69 ≤ β̂ ≤ 0.98 in LMMs). Edges

between these alleles had distance scores between 0.7 and 0.9 except edges linking strA.55

(0 ≤ sd ≤ 0.25). As shown in Figure 6a, these four alleles co-occurred in 13 Salmonella

genomes from distantly related clades. Using Bandage and nucleotide BLAST, we con-

firmed co-localisation of these alleles in a 3,084 bp region that was present in 10 out of

the 13 genomes under a 100% nucleotide identity and coverage, and these 10 genomes

were sparsely distributed across the phylogenetic tree (Figure 6a). Furthermore, we saw

an insertion of the allele dfrA14.79 into strA.55, splitting the latter allele into two seg-

ments that covered 65.8% and 34.5% of its length, respectively. In the assembly graph of

one of the 10 genomes, ERR026101, we found the 3,084 bp multidrug-resistance (MDR)

region in a 6,790 bp node, which appeared as a self-circularised sequence independent

to other graph components (Figure 6b). Using megaBLAST under its default parame-

ters, a sequence search of this MDR region against the NCBI nucleotide database of the

Enterobacteriaceae group (taxid: 91347, accessed in April, 2018) showed exact matches

(100% nucleotide identity and coverage) to a known and widely distributed MDR plas-

mid pCERC1 (GenBank accession: JN012467) as well as a number of plasmids widely

distributed in bacteria of Enterobacterales (Table s12). Hence this MDR region is shared

amongst a great variety of plasmids.
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Figure 5: Putative physical linkage between three resistance alleles in two E.
coli genomes. (a) A path constituting an inferred MGE in the assembly graph of genome
ERR178189. This plot is drawn with Bandage in a double-strand style, where the orientation of
each DNA strand is indicated by an arrow-like node end. The width of each node is proportional
to its read depth. Some nodes not contributing to any MGE-related paths were deleted from
this graph for visual conciseness. (b) A path constituting the other inferred MGE (following
the red dashed line) in the assembly graph of genome ERR178173. This plot was drawn in the
same way as panel a. (c) Alignment of the two Tn7 variants in E. coli genomes (ERR178189
and ERR178173) to a reference Tn7 sequence (GenBank accession: KX159451, denoted by the
green shaded areas). Two direct repeats flanking the ISs, including inverted repeats, are denoted
by green and pink boxes, respectively. Reference DNA sequences of ISKpn26 (1,196 bp) and
ISEc23 (2,532 bp) were retrieved from the ISFinder database [26] in January 2018. Each IS in
the resolved region showed a 100% coverage and a nucleotide identity of 99% to its reference.

19

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.02.29.970970doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.29.970970
http://creativecommons.org/licenses/by-nc/4.0/


Figure 6: Distribution and genetic structure of the four-allele clique in Salmonella
genomes. (a) A ring plot displaying co-occurrence events (red ring) of the four alleles (darker
boxes in grey rings) against the midpoint rooted phylogeny of the Salmonella genomes. Clades
are coloured by their top-10 most correlated PCs that are significantly explaining the presence-
absence status of an arbitrarily designated response allele sul2. Tips highlighted with red circles
denote genomes where the exact 3,084 bp MDR region harboured all the four alleles were found
using nucleotide BLAST. (b) A putative 6,790 bp plasmid sequence restored from the assembly
graph of genome ERR026101. The resistance alleles were present in this sequence at a nucleotide
identity and coverage of 100%.

4 Discussion

GeneMates implements a novel network approach to detection of HGcoT between bacteria.

Compared to existing methods that rely on co-occurrence counts or naive association

coefficients of AMR genes, GeneMates enables us to test for gene-gene associations when

controlling for population structure, the main confounding factor in bacterial GWAS

[27], through incorporating PCs into LMMs. It has been shown that this procedure

can retain statistical power of association tests [10, 28]. In our examples, association

networks constructed using GeneMates reveal extensive associations between alleles of

horizontally acquired AMR genes (Figure 3). Moreover, as expected, the majority of

p-values from association tests became greater after correcting for population structure

using LMMs, while the other p-values saw a reduction, indicating increased significance of

associated alleles (Figure 2). LMMs provide us with another advantage: we only need to

estimate three parameters (β, γ and τ) besides the intercept term α to fit a model, hereby

circumventing the problem of over-fitting as well as relaxing the requirement for sample

size. Notably, long-tailed curves of cumulative percentages of total genetic variations
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captured by PCs (Figure s8) indicates the necessity of including all PCs obtained from

the cgSNP matrix for accurate modelling in association analysis.

On the grounds of examples where stable structures of acquired AMR genes are shared

between bacteria via MGEs in a short period of time [16, 19, 20, 29], we have implemented

another innovation in GeneMates – the evaluation of APD consistency for evidence of

HGcoT. Since the physical distances between two loci in bacterial genomes are corre-

lated with both locus co-occurrence and PCs representing population structure, APDs

cannot be directly incorporated into LMMs or PLMs as additional covariates. Instead,

GeneMates scores the variation of APDs while taking the population structure into ac-

count. As for APDs, it is self-evident that they can be precisely calculated from genetic

coordinates in finished-grade genome assemblies, which remain the minority of available

bacterial genome sequences. In order to overcome some of the limitations of measuring

APDs in draft genomes, we measured APDs in the form of SPDs in assembly graphs,

and developed a simulation-based approach to determining reliability filters of SPDs.

Using this approach, the accuracy of SPDs from de novo assembly graphs of reference

multidrug-resistant E. coli or S. Typhimurium genomes consistently exceeded 90% when

the distances were only measured in one or two nodes (Figures s9 and s11), implying a

universal filter for other bacterial genomes. Nevertheless, as summarised in Section 3.3

and displayed in Figure 4, the short-read genome assemblies intrinsically confine both the

measurability and accuracy of SPDs, losing evidence for real physical linkage in HGT.

In Section 3.4, the identification of known and novel physical clusters of mobile AMR

genes suggests that maximal cliques in association networks are useful starting points

for recovering structures of horizontally co-transferred genes. A plausible reason is that

loci in strong physical linkage tend to predict the presence of each other (namely, mutual

positive associations) in HGT, and strong physical linkage is often related to close physical

proximity, which in turn increases the measurability of their physical distances, leading to

a greater distance score given the same consistency score. In practice, users could apply

other filters to the network to identify edges addressing specific questions.

GeneMates offers a framework (Figure 1) for further development, such as adding

new modules and introducing other statistical models. Our methodology and the anal-

ysis demonstrated in example studies are applicable to other kinds of acquired genes in

haploid genomes, as long as we can accurately determine the genotype of each genome.

Nevertheless, the inability of short reads to resolve repeats, either through read mapping

or de novo assembly, may cause false negatives and errors in allele calls when homologues

of a target gene coexist in a genome. Therefore, we expect a better performance of Gene-

Mates in analysing high-quality complete genomes or long-read sequencing data that are

able to resolve at least most of the repeats. Further, biological experiments are necessary

as a gold standard for validating candidates of HGcoT.
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5 Conclusions

We have developed an R package called GeneMates and supplementary tools for analysing

associations between allelic presence-absence status of acquired AMR genes and for in-

ferring physical linkage between these alleles. We have also demonstrated utilities of this

package using publicly available WGS data of 169 E. coli isolates and 359 Salmonella iso-

lates. Functions of the package reported known co-localised resistance alleles and discov-

ered their distributions in certain bacterial species. GeneMates differs from contemporary

bacterial GWAS tools in three aspects. First, it focuses on gene-to-gene associations rather

than genotype-to-phenotype associations. Second, it only performs association tests for

acquired genes rather than genome-wide single-nucleotide polymorphisms (SNPs). Third,

it evaluates evidence of physical distances between associated loci to infer physical link-

age, although a user may opt to turn this utility off for pure gene-to-gene associations.

This is a scalable and versatile approach, readily applicable to other kinds of horizontally

acquired genotypes. It is, however, confounded by limitations of short-read assembly,

and its power will increase in the future as we are accumulating complete genomes and

enhancing our ability in resolving repeats using sequencing data.

6 Availability and requirements

• Project name: GeneMates

• Project home page: github.com/wanyuac/GeneMates

• Programming language: R

• Operating system(s): platform independent

• Other requirements: GEMMA v0.96

• Licence: Apache License, Version 2.0
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