Pharmacoepidemiology, Machine Learning and COVID-19: An intent-to-treat analysis of hydroxychloroquine, with or without azithromycin, and COVID-19 outcomes amongst hospitalized US Veterans.

Gerlovin, Hanna; Posner, Daniel C; Ho, Yuk-Lam; Rentsch, Christopher T; Tate, Janet P; King, Joseph T; Kurgansky, Katherine E; Danciu, Ioana; Costa, Lauren; Linares, Franciel A; +11 more... Goethert, Ian D; Jacobson, Daniel A; Freiberg, Matthew S; Begoli, Edmon; Muralidhar, Sumitra; Ramoni, Rachel B; Tourassi, Georgia; Gaziano, J Michael; Justice, Amy C; Gagnon, David R; Cho, Kelly; (2021) Pharmacoepidemiology, Machine Learning and COVID-19: An intent-to-treat analysis of hydroxychloroquine, with or without azithromycin, and COVID-19 outcomes amongst hospitalized US Veterans. American Journal of Epidemiology. ISSN 0002-9262 DOI: https://doi.org/10.1093/aje/kwab183

Permanent Identifier

Use this Digital Object Identifier when citing or linking to this resource.

https://doi.org/10.1093/aje/kwab183

Abstract

Share

Download

Embargo Date: 24 June 2022

Restricted to: Repository staff only

Filename: Gerlovin_AJE_HCQ_accepted.pdf

Licence: Copyright the publishers

[img]

Downloads

View details

Metrics & Citations


Google Scholar