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Abstract  

 

Nowadays, wearable medical devices play a vital role in many environments such 

as continuous health monitoring of individuals, road traffic management, weather 

forecasting, and smart home. These sensor devices continually generate a huge 

amount of data and stored in cloud computing. This chapter pro- poses Internet of 

Things (IoT) architecture to store and process scalable sensor data (big data) for 

healthcare applications. Proposed architecture consists of two main sub-

architecture, namely, MetaFog-Redirection (MF-R) and Grouping & Choosing 

(GC) architecture. Though cloud computing provides scalable data storage, it needs 

to be processed by an efficient computing platforms. There is a need for scalable 

algorithms to process the huge sensor data and identify the useful patterns. In order 

to overcome this issue, this chapter proposes a scalable MapReduce-based logistic 

regression to process such huge amount of sensor data. Apache Mahout consists of 

scalable logistic regression to process large data in distributed manner. This chapter 

uses Apache Mahout with Hadoop Distributed File System to process the sensor 

data generated by the wearable medical devices. 
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1 Introduction 

 
Data generation speed and the amount of data have increased over the past 20 years 

in different fields. A report published in 2011 by the International Data Corporation 

(IDC) states that the overall generated and stored data size in the globe was 1.8ZB 

(≈ 1021B), which enlarged by almost nine times within five years. Due to the enor- 

mous growth of world data, the name of big data is essentially used to express mas- 

sive datasets. In general, big data analytics requires advanced tools and techniques 

to store, process, and analyze the large volume of data. Big data consists of large 

unstructured data that require advanced real-time analysis. Thus, nowadays, many 

of the researchers are interested in developing advanced technologies and algo- 

rithms to solve the issues when dealing with big data. In order to discover new 

opportunities and hidden values from big data, Yahoo developed the Hadoop-based 

tools and technologies to store and process the big data. Nowadays, private organi- 

zations are also interested in the high prospective of big data, and numerous govern- 

ment agencies declared vital ideas to speed up the big data research and applications. 

Two leading scientific journals such as Nature and Science also opened special 

issues to solve and discuss the challenges and impacts of big data. In recent years, 

big data plays a vital role in Internet companies such as Google, Facebook, and 

Twitter. For example, Google handles nearly 100 petabytes (PB) and Facebook pro- 

duces log data of over ten petabytes per month. A modern Chinese company, Baidu, 

analyzes data of ten petabytes (PB), and Taobao, a subsidiary of Alibaba, produces 

data of ten petabytes (PB) for online trading per day. 

“Big data” initially meant the volume, velocity, and variety of data that becomes 

tricky to analyze by using conventional data processing platforms and techniques. 

Nowadays, data production sources are improved rapidly, such as telescopes, sensor 

networks, high-throughput instruments, and streaming machines, and these envi- 

ronments generate massive amount of data. Nowadays, big data has been playing a 

crucial role in a variety of environments such as healthcare, business organization, 

industry, scientific research, natural resource management, social networking, and 

public administration. Big data can be categorized by 10Vs as follows: 

Volume: The big volume indeed represents big data. Recently, the data generation 

sources are augmented, and it causes diversity of data such as text, video, audio, 

and large size images. In order to process the enormous amount of data, our con- 

ventional data processing platforms and techniques have to be enhanced. 

Velocity: The rate of the incoming data has increased dramatically; this velocity 

indeed represents big data. The phrase velocity represents the data generation 

speed. The data explosion of the social media has changed and causes variety in 

data. Nowadays, people are not concerned in old post (a tweet, status updates, 

etc.) and notice most hot updates. 

Variety: The variety of the data indeed represent big data. Nowadays, the collection 

of data types is also increased. For example, most organizations use the follow- 

ing type of data formats such as database, excel, and CSV, which can be stored 



 

 

in a plain text file. Nevertheless, sometimes, the data may not be in the antici- 

pated format, and it causes difficulties to process. In order to defeat this issue, the 

organization has to identify the data storage system which can analyze variety of 

data. 

Value: The value of data indeed represents big data. Having continuous amounts of 

data is not helpful until it can be turned into value. It is essential to understand 

that it does not always mean there is value in big data. The benefits and costs of 

analyzing and collecting the big data are more important things when doing big 

data analytics. 

Veracity: This veracity of data indeed represents big data. Veracity represents the 

data understandability; it doesn’t represent data quality. It is significant that the 

association should perform data processing to prevent “dirty data” from accumu- 

lating in the systems. 

Validity: It is essential to ensure whether the data is precise and accurate for future 

use. In order to take the right decisions in the future, the organizations should 

validate the data noticeably. 

Variability: Variability refers to the data consistent and data value. 

Viscosity: Viscosity is an element of velocity, and it represents the latency or lag 

time in data transmit between the source and destination. 

Virality: Virality represents the speed of the data send and receives from various 

sources. 

Visualization: Visualization is used to symbolize the big data in a complete view 

and determine the hidden values. Visualization is an essential key to making big 

data an integral part of decision-making. 

 

 
2 Overview of the Smarter HealthCare System in Internet 

of Things (IoT) 

 
Nowadays, development in wireless communication technologies has changed the 

traditional communication methods. In the last decade, man-to-man communication 

and man-to-machine communication are most often used in communication envi- 

ronments. The push toward the network communications has increased, and 

machine-to-machine communication is recently used in many platforms. IoT pro- 

vides the platform to service with supporting communication among physical 

objects and virtual representations. IoT consists of various tools and technologies 

such as controllers, sensors, or low-powered wired and wireless services. In other 

words, the Internet of Things (IoT) is the wired or wireless interconnected various 

physical devices used to observe, communicate, and transfer information with their 

external environment or internal states. Nowadays, wireless mobile sensor network 

(WMSN) is most often used in continuous monitoring of healthcare applications, 

where patients are monitored with the help of sensor devices. This section describes 

the research work related to the healthcare systems using medical sensor networks 



 

and wearable sensor devices. Harvard Sensor Network Lab recently developed the 

CodeBlue project, which aims to monitor the patients (Malan et al. 2004; Lorincz 

et al. 2004). CodeBlue project, several medical sensors are fixed on the patient’s 

body to sense the patients’ health conditions. In addition, these medical sensors 

continuously sense the patient body and transmit the health conditions to the end- 

user devices (laptops, PDAs, and personal computers) using wireless technologies. 

These data are generally used for finding the useful patterns to protect the patients 

from emergency situations. The main function of CodeBlue is very simple: a medi- 

cal professional or doctor issues a query for patient healthcare data using their per- 

sonal digital assistant (PDA), which works based on the publish and subscribe 

architecture. Finally, the collected data from the medical sensors are publishing to a 

specific channel and end-user need to subscribe that channel by using their laptop 

and PDA (Kumar and Lee 2011). In addition, Wood et al. (2006) from the University 

of Virginia have developed the heterogeneous network architecture named AlarmNet 

(Wood et al. 2006). The goal of this project is to monitor the patient health in the 

home and assisted living environment. More similarly, AlarmNet consists of envi- 

ronmental sensor networks and body sensor networks to efficiently sense the spe- 

cific data. Three network tiers are used in this framework to sense the specific data 

in home and assisted living environment. In the first tier, a patient wears a variety of 

body sensor devices such as accelerometer, ECG, and SpO2, which sense individual 

physiological (health) data, whereas in the second tier, environmental sensors such 

as dust, temperature, motion, and light (i.e., MicaZ boards) are fixed in the living 

space to sense the range of environmental conditions. Finally, in the third tier, an 

Internet Protocol (IP)-based network is made available which is comprised of 

Stargate gateways called AlarmGate. AlarmNet has used the body sensor devices to 

broadcast the individual physiological data from single hop to the second tier (i.e., 

nearest stationary sensor). Once the physiological data is received by the second 

tier, the stationary sensors forward the physiological data using shortest path first 

routing protocol (i.e., multi-hop communication) to the AlarmGate. The AlarmGate 

works as a gateway between the IP networks and wireless sensor nodes and is also 

attached to a back-end server. Ng et al. (2004) have developed the ubiquitous moni- 

toring environment for wearable and implantable sensors (UbiMon) (Ng et al. 

2004). This project is a type of body sensor network (BSN) architecture composed 

of implantable and wearable sensors using the wireless ad hoc network. The main 

goal of this project is to provide continuous monitoring of patient’s health status and 

also predict the emergency conditions. In addition, Chakravorty (2006) have devel- 

oped a mobile healthcare project called MobiCare. This project is used to provide 

continuous and timely monitoring of individual’s physiological status. 

MobiCare project possibly saves many patients’ lives and quality of patient care. 

MobiCare project consists of wearable sensors such as ECG, SpO2, and blood oxy- 

gen to monitor the patients. This project timely senses the patient’s body and trans- 

fers the health status to the MobiCare client. In order to send the BSN data to the 

server, MobiCare client uses HTTP POST protocol. In addition, MobiCare server is 

also used to perform off-line physiological analysis and supports to the medical 

staffs for patient care (Chakravorty 2006). 



 

 

Blum and Magill (2010) have proposed a personalized ambient monitoring (PAM) 

project used to monitor the patient’s mental health (Blum and Magill 2010). The goal 

of the PAM project is to monitor the day-to-day activity of patients with bipolar dis- 

order (BP). Various Bluetooth protocols are used to join the mobile phones and body 

sensors; thereafter Bluetooth also connects the personal computers and mobile 

phones. The goal of the mobile phones is to aggregate the body sensors data and send 

it to the personal computers for storage and analysis. 

 

 
3 Big Data in Healthcare 

 
In recent decades, big data analytics also impact more in healthcare. Nowadays, 

healthcare systems are rapidly adopting clinical data, which will rapidly enlarge the 

size of health records that are accessible, electronically (Lopez and Sekaran 2016). 

Concurrently, fast progress and development have achieved in modern healthcare 

management system (Lopez et al. 2014). A recent study expounds six use cases of 

big data to decrease the cost of patients, triage, readmissions, adverse events, and 

treatment optimization for diseases affecting multiple organ systems (Bates et al. 

2014). In yet another study, big data use cases in healthcare have been divided into 

number of categories such as clinical decision support (with a subcategory of clini- 

cal information), administration and delivery, consumer behavior, and support ser- 

vices (Lopez and Manogaran 2016). Jee et al. described how to reform the healthcare 

system based on big data analytics to choose appropriate treatment path, improve- 

ment of healthcare systems, and so on (Jee and Kim 2013; Lopez and Gunasekaran 

2015; Manogaran and Lopez 2017). The above use cases have utilized the following 

big data in healthcare implementation (Chandu Thota, Gunasekaran Manogaran, 

Revathi Sundarsekar, V. Vijayakumar, “Big Data Security Framework for Distributed 

Cloud Data Centers,” 2016). (1) Patient-centered framework is produced based on 

the big data framework to approximate the amount of healthcare (cost), patient 

impact (outcomes), and dropping readmission rates (Chawla and Davis 2013). (2) 

Virtual physiological human analysis framework is combined with big data analyt- 

ics to create robust and valuable solutions in silico medicine (Viceconti et al. 2015). 

 

 
3.1 Digital Epidemiology 

 
Digital epidemiology enables real-time disease surveillance through novel analysis 

of digital data (Salathe et al. 2012). Meaningful understanding and analysis of digi- 

tal sources, such as social media, are critical to improve real-time disease surveil- 

lance and enable significant public health solutions. Digital epidemiology 

complements traditional epidemiological studies, such as case records, case reports, 

ecological studies, cross-sectional studies, case control studies, cohort studies, ran- 

domized controlled trials, and systematic reviews and meta-analysis. While data of 



 

 

 
 

Fig. 10.1 Digital and traditional epidemiology. Digital epidemiology complements traditional 

epidemiology, by conducting computational analytics of real-time health- and non-health-related 

digital data and sensors to derive real-time estimates of disease dynamics 

 

study participants are primarily collected by traditional epidemiological studies to 

address a research question of clinical and/or public health significance, digital epi- 

demiology also makes use of data sources that are originally collected and/or gener- 

ated for health- and non-health-related purposes. Figure 10.1 illustrates the methods 

of digital and traditional epidemiology. 

ChatterGrabber is a social media surveillance software toolkit to identify poten- 

tial health risks and disease outbreaks, by analyzing tweets for disease symptoms in 

specific locations (Schlitt et al. 2015). This software toolkit is used for disease sur- 

veillance in different applications, including the EpiDash application to monitor 

norovirus outbreaks. Google search queries have been analyzed for surveillance of 

infectious diseases, such as in Google Flu Trends and Google Dengue Trends for 

influenza and dengue, respectively (Ginsberg et al. 2009). These digital surveillance 

systems act as early warning systems for infectious disease outbreaks and comple- 

ment traditional disease surveillance systems that have a lag time in collection and 

dissemination of estimates of disease burden. HealthMap provides real-time infec- 

tious disease surveillance by analyzing online sources of news (Google News), 

email list serves (ProMED-mail), and information provided by global health orga- 

nizations (WHO, OIE, FAO) (Freifeld et al. 2008). It is an automated monitoring 

tool for infectious disease outbreaks affecting human and animal health. 

 

 
3.2 FRED Software for Disease Modeling 

 
FRED (a Framework for Reconstructing Epidemiological Dynamics) is a disease 

modeling software used to handle huge amount of data (synthetic population). 

FRED uses mitigation strategies, viral evolution, and personal health behaviors to 

model the disease outbreak (Grefenstette et al. 2013). FRED is an open source 

framework for epidemic modeling, rather than a model of a particular infectious 

disease. Geographic regions are used in FRED to represent every individual as 



 

 

Fig. 10.2 Framework of 

the FRED 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.3 Project creation in FRED 

 

agent. Each agent has a set of sociodemographic characteristics and daily behaviors 

that include age, sex, employment status, occupation, and household location and 

membership in a set of social contact networks. This synthetic population data is 

used to model the disease outbreak in FRED. The FRED framework is depicted in 

Fig. 10.2. Figure 10.3 represents the graphical user interface for the FRED software. 

Figure 10.4 represents the output variables for disease modeling of H1N1 influenza. 

Figures 10.5 and 10.6 represent the susceptible, exposed, infected, and recover 

(SEIR) model simulation results of H1N1 influenza. 
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Engine 
Behaviour 

Interventions 



 

 

 
 

Fig. 10.4 Output variable specification in FRED 

 

 

Fig. 10.5 SEIR model simulation 

 

3.3 NoSQL Databases for Big Data in Healthcare 

 
NoSQL database is used to store huge volume of data in distributed manner. A NoSQL 

database does not follow any relational schema. NoSQL databases can be classified 

into four types such as key-value stores, column family database stores, document 

stores, and graph stores. The difference between EHR requirements and NoSQL data- 

base features is depicted in Table 10.1. 



 

 

3.3.1 Key-Value Stores for Storing Big Clinical Data 

 
Key-value databases store the data based on the key and value pairs. In general, 

key-value databases assume that the path is the key and the contents are the file. 

Key-value databases are applicable only for small applications not for complex 

applications. Key-value database for storing clinical data is shown in Fig. 10.7. 

 
 

3.3.2 Column Family Stores for Storing Big Clinical Data 

 
Column family database stores the huge data into rows as collections of columns. 

All the rows in this database consist of number of columns. Column family database 

for storing clinical data is shown in Fig. 10.8. 

 
 

3.3.3 Document Stores for Storing Big Clinical Data 

 
A document store databases are used to store huge data related to document format. 

This type of database is usually used to store semi-structured data. Document store 

database for storing clinical data is shown in Fig. 10.9. 

 
 

3.3.4 Graph Stores for Storing Big Clinical Data 

 
Graph databases consist of connections, or edges, between nodes. It is a type of 

NoSQL database that uses graph theory to store, map, and query relationships. 

Graph database for storing clinical data is shown in Fig. 10.10. Figure 10.11 shows 

the various NoSQL databases, and Table 10.2 compares the various types of NoSQL 

databases. 

 

 
4 Proposed Architecture for Healthcare Internet of Things 

 
Electronic medical record (EMR) is comprised of patient health-related informa- 

tion. The following information generally available in all EHRs are laboratory 

results, billing data, medication records, and test details. In most of the cases, labo- 

ratory results and billing data are available as structured “name-value pair” data. 

Recently, more number of researches is trying to develop big data-based electronic 

phenotype algorithms to identify diseases from the EHR. Laboratory data and vital 

signs are mostly in the structured format. It follows coding scheme to store the huge 

amount of lab-related data. Nowadays, many dictionaries and various algorithms 

are developed to reduce the complexity of laboratory data. 



 

 

 
 

Fig. 10.6 Geospatial visualization of FRED result 

 
Table 10.1 Difference between EHR requirements and NoSQL database features 

 

EHR requirement NoSQL database feature 

Healthcare data size increasing over time, so it 

needs scalability 

Automatic scaling is available in NoSQL 

databases 

Structure of data is varied over time, so it needs 

new solutions 

NoSQL databases allow unstructured or 

semi-structured data to be stored easily 

Healthcare data should always be accessible for 

continuity of healthcare services 

High availability is one of the main feature 

of NoSQL databases 

Generally healthcare data is added continuously Eventual consistency suggested by NoSQL 

database architecture is considered 

acceptable for EHR use cases 

Healthcare data should be available to multiple 

locations which require a high-performance 

system for high-speed data access 

NoSQL databases offer higher performance 

in many use cases 

 
In order to store the huge amount of healthcare data, proposed architecture has 

used NoSQL-based database. High availability of healthcare information has led to 

increase the accuracy and overall quality of healthcare delivery. Nowadays, the size 

and structure of healthcare data are increasing dramatically. Hence, relational 

database management system is not suitable for storing such huge size of data. 

Researchers develop a number of big data technologies to solve such issues. NoSQL 

databases have significant advantages such as auto scaling, better performance, and 

high availability which address the limitations of relational databases in distributed 



 

 

 

 
 

Fig. 10.7 Key-value database structure for storing clinical data 

 

healthcare systems. Scalable sensor data processing architecture is proposed in this 

chapter to store and process body sensor data for healthcare applications (Fig. 10.12). 

In this proposed architecture, electronic medical records are collected through clini- 

cal test, and the results are stored into cloud storage (Amazon S3). MapReduce 

implementation of online stochastic gradient descent algorithm is used in the logis- 

tic regression to develop the prediction model. Prior electronic medical records are 

used to train the logistic regression model. After completion of training process, the 

prediction model will use the current sensor data (blood pressure, blood sugar level, 

and heart rate) of the patient to predict the heart disease status. 

The proposed architecture is used for the personal health monitoring of individu- 

als. Whenever the respiratory rate, heart rate, blood pressure, body temperature, and 

blood sugar exceed its normal value, then the device sends an alert message with 

clinical value to the doctor using wireless network through fog computing. After 

successfully identified the authorized user, health data securely transfer to different 

data centers provided by different cloud data service providers. Meta Cloud Data 



 

 

 
 

Fig. 10.8 Column family database structure for storing clinical data 

 

 

Storage architecture is used to transfer the data from applications to cloud data cen- 

ters and cloud data centers to applications. 

Once the data is transferred from applications to the cloud data centers, it is 

required to be stored efficiently. Nowadays, data generation sources are increased 

such as high-throughput instruments, telescopes, sensor networks, and streaming 

machines, and these environments produce huge amount of data. In order to solve 



 

 

 

 
 

Fig. 10.9 Document store database structure for storing clinical data 

 

 
 

this issue, Hadoop Distributed File System (HDFS) is used in this phase to store 

such huge amount of data. This phase also categorizes the data into different levels 

and stores them into different data centers. 

Grouping & Choosing (GC) architecture is embedded with MetaFog-Redirection 

architecture to secure integration of fog to cloud computing and protect big data 

against intruder (Manogaran et al. 2017a). Clinical data is stored in multiple cloud 

data centers based on importance and categorization (Manogaran et al. 2017b). Data 

categorization is classified into three levels such as sensitive, critical, and normal. 

Each categorized data is supposed to be stored in different data center. Proposed 

architecture is used to redirect the user request to the appropriate data center. 



 

 

 

Fig. 10.10 Graph database structure for storing clinical data 

 

MetaFog-Redirection (MF-R) architecture with Grouping & Choosing (GC) 

architecture (Fig. 10.13) is proposed in this chapter. The goal of the proposed GC 

architecture is to integrate the fog computing with cloud computing. The following 

integrations are performed in the GC architecture; it includes application integra- 

tion, data transfer from fog servers to cloud data centers, and security mechanisms 

for communication between fog computing and cloud computing. 

 

 
5 Big Data Analytics Using MapReduce 

 
Logistic regression is used in the proposed MetaFog architecture to predict the dis- 

ease based on the historical records. Logistic regression is often used in dataset 

where the dependent variable is dichotomous. Logistic regression is used in this 

chapter to develop the prediction model and find the relationship between depen- 

dent and independent variables. MapReduce implementation of stochastic gradient 

descent with logistic regression is shown below: 

John Taylor 

Report Generated By Report Viewed By 

Most_Recent_Report 

Name:WX_YZ 

Personal_Details 

Age:29 

Sex:M 

Data_of_Admit: 1/26/2016 

ID:251 

Symptoms:High fever 

Current Status: Discharged 

Address Dengue Lab Result Malaria Lab Result 

Result:Positive Result: Negative 

District: Chittor 

State: Andra_pradesh 

Long:13.20 

Lat:79.11 

Follower of 

Name:AB_CD 



 

 

 

 
 

Fig. 10.11 Types of open source NoSQL databases 

 
Input: Set V ={(ai𝜖Rd;bi𝜖R)}n

i=1 of n clinical records 

𝜃t𝜖Rd = Weights at time t 

n = Learning rate 

Output: (t+1)Rd = Weights at time t+1 

Step 1: Map Algorithm: 

class MAPPER 

method INITIATIVE 

double 𝜃=1; 

double n=0.1; 

# key k; value v; 

method MAP (string; dounle v); 

begin 

(ai;bi)←(k;v) 

r=rand( ) #number of reducer 

EmitIntermediate (r;( ai;bi); 

end 

Step 2: Reduce Algorithm: 

class REDUCER 

# key k; value v; 

method REDUCE (string k;double v [1;2;...;r]) 

begin 



 

 

 

 

 

 

 

 

 

Table 10.2 Different NoSQL databases and its comparison 
 

SNo NoSQL DB Data model Usage Strength Weakness Example 

1 Key-value stores Collection of 

key-value pairs 

Briskly changing data and 

high availability (e.g., Stock 

Market Analysis) 

Fast lookups Stored data has no 

schema 

Riak, Redis, Azure, 

Table Storage, 

Amazon, Simple 

DB 

2 Column family 

stores 

Column families Read/write extensive 

applications (e.g., social 

networking) 

Fast lookups Very low-level API HBase, Cassandra 

3 Document stores Collection of 

key-value 

connections 

Working with occasionally 

changing/consistent data (e.g., 

CRM systems) 

Incomplete data 

tolerant 

Query performance, 

no standard query 

syntax 

CouchDB, 

MongoDB 

4 Graph stores Property 

graphs—nodes 

Spatial data storage (e.g., 

geographical information 

system) 

Graph algorithm— 

shortest paths, 

connected ness, etc. 

Not easy to cluster, 

travers whole graph 

to get answer 

InfoGrid, Infinite 

Graph, Neo4J 



 

 

 

 
 

Fig. 10.12 Scalable sensor data processing architecture in the cloud 
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for each (ai;bi) 𝜖v[1;2;...;r]do 
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Set V  = {(a  Rd ;b  R)}
n
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i =1 
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Fig. 10.13 MetaFog-Redirection (MF-R) architecture with Grouping & Choosing (GC) 

architecture 

 

 

 
where M = 

 
. Assume that m is the number of systems in the cloud. In 

m 
MapReduce framework, M is automatically assigned by mappers (Kang et al. 2014). 

After splitting into M block sizes ith reducer get Vi value. Stochastic gradient descent 

(SGD) method is used in the reducer function to get the efficient weights and reduce 

the error function. In the above algorithm, MAP and REDUCE method runs T itera- 

tions. Each iteration generates weights  kq
(t +1)    

where kϵ[1; 2; .. ; M]. The final weight 

θt + 1  is calculated based on the average of  kq
(t +1)  

. The average of weight θt + 1  can be 

defined by  q t +1 = 
 1   M  

kq
(t +1)  

. 
M k =1 

 

5.1 Mahout Implementation of SGD for Logistic Regression 

 
Apache Mahout is a library of scalable machine learning algorithms. Apache 

Mahout is implemented on top of Apache Hadoop and using the MapReduce para- 

digm. Machine learning is a type of artificial intelligence focused on enabling 

machines to learn without being explicitly programmed, and it is commonly used to 
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Table 10.3 Cleveland Heart Disease Database (CHDD) for training the logistic regression 
 

SNo Attribute Range Description 

1 Age Continuous Age in years 

2 Sex 0–1 Sex 0 = female; sex 1 = male 

3 Cp 1–4 Chest pain type (Cp 1 = typical angina; Cp 2 = atypical 

angina; Cp 3 =non-anginal pain; Cp 4 = asymptomatic) 

4 Trestbps Continuous Resting blood pressure (in mm Hg) 

5 Chol Continuous Serum cholesterol in mg/dl 

6 Fbs 0–1 (Fasting blood sugar >120 mg/dl) (Fbs 1 = true; Fbs 0 = 

false) 

7 Restecg 0–2 Resting electrocardiographic results (Restecg 0 = normal; 

Restecg 1 = having ST-T wave abnormality; Restecg 2 = 

showing probable or define left ventricular hypertrophy by 

Estes’ criteria) 

8 Thalach Continuous Maximum heart rate achieved 

9 Exang 0–1 Exercise induced angina (Exang 1 = yes; Exang 0 = no) 

10 Old peak Continuous ST depression induced by exercise relative to rest 

11 Slope 1–3 The slope of the peak exercise ST segment (Slope 1 = 

upsloping; Slope 2 = flat; Slope 3= downsloping) 

12 Ca 0–3 Number of major vessels (0–3) colored by fluoroscopy 

13 Thal 3–7 (Thal 3 = normal; Thal 6 = fixed defect; Thal 7 = 

reversible defect) 

14 Num 0–1 Diagnosis classes (Num 0 = healthy; Num 1 = patient who 

is subject to possible heart disease) 

 
improve future performance based on previous outcomes. Big data is stored on the 

HDFS; Apache Mahout is used to execute machine learning algorithms that extract 

meaningful patterns from datasets. The abovementioned MapReduce-based logistic 

regression can be done with the help of Apache Mahout. Mahout implementation of 

logistic regression using SGD supports the following command lines: 

• Training the model 

• Mahout org.apache.mahout.classifier.sgd.TrainLogistic – passes 1 – rate 1 – lambda 

• 0.5 –input heart.csv – features 21 – output heart.model – target Num – categories 2 – 

• Predictors Thalach Trestbps Fbs – types n. 

• Testing the model 

Mahout org.apache.mahout.classifier.sgd.RunLogistic – input heart.csv – model. 

heart.model – auc – scores – confusion 

 

 
5.2 Model Development with Cleveland Heart Disease 

Database (CHDD) 

 
Logistic regression is trained using the prior clinical records and sensor data of the 

patients. The prediction model can use current sensor data (blood pressure, blood 

sugar level, and heart rate) of the patient to predict the heart disease status. In this 



 

Table 10.4 Contingency table of Cleveland Heart Disease Database (CHDD) 
 

Health 

measurement 

Variable name in Cleveland Heart 

Disease Database (CHDD) 

Threshold level in 

wearable sensor 

Disease 

Yes No 

Heart rate Thalach Low (<60) 0 0 

Medium (60–100) 7 1 

High (>100) 163 132 

Blood pressure Trestbps Low (<60) 0 0 

Medium (60–140) 100 137 

High (>140) 39 27 

Blood sugar Fbs Low (<70) 0 0 

Medium (70–120) 117 141 

High (>120) 22 23 

 
analysis the prediction model uses the current sensor data obtained from body sen- 

sor devices through cloud and big data technologies. Cleveland Heart Disease 

Database (CHDD) is the de facto database for heart disease research (Manogaran 

2017). This database is used to train the proposed prediction model, and it contains 

76 attributes; but all published experiments refer to using a subset of 14 of them. 

The Cleveland database is widely used by the machine learning (ML) researchers 

till date. Table 10.3 depicts the number of attributes, description, and its range. 

Contingency table is depicted in Table 10.4. 

 

 
6 Conclusion 

 
This chapter proposes Internet of Things (IoT) architecture to store and process 

scalable sensor data (big data) for healthcare applications. Proposed architecture is 

consists of two main sub-architecture, namely, MetaFog-Redirection (MF-R) and 

Grouping & Choosing (GC) architecture. MapReduce-based logistic regression is 

implemented with the help of Apache Mahout. Logistic regression is trained using 

the prior clinical records from the Cleveland Heart Disease Database (CHDD) and 

sensor data of the patients. The prediction model can use current sensor data (blood 

pressure, blood sugar level, and heart rate) of the patient to predict the heart disease 

status. In this analysis, the prediction model uses the current sensor data obtained 

from body sensor devices through the cloud and big data technologies. 

 

 
  



 

 

References 

 
Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big data in health care: 

Using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33(7), 

1123–1131. 

Blum, J. M., & Magill, E. (2010). The design and evaluation of personalised ambient mental health 

monitors. In 7th Annual IEEE Consumer Communications and Networking Conference (pp. 

1–5). Institute of Electrical and Electronics Engineers (IEEE). 

Chakravorty, R. (2006). A programmable service architecture for mobile medical care. In Fourth 

Annual IEEE International Conference on Pervasive Computing and Communications 

Workshops (PERCOMW’06) (pp. 5-pp). IEEE. 

Chawla, N. V., & Davis, D. A. (2013). Bringing big data to personalized healthcare: A patient- 

centered framework. Journal of General Internal Medicine, 28(3), 660–665. 

Freifeld, C. C., Mandl, K. D., Reis, B. Y., & Brownstein, J. S. (2008). HealthMap: Global infec- 

tious disease monitoring through automated classification and visualization of internet media 

reports. Journal of the American Medical Informatics Association, 15(2), 150–157. 

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). 

Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012–

1014. 

Grefenstette, J. J., Brown, S. T., Rosenfeld, R., DePasse, J., Stone, N. T., Cooley, P. C., ..., Guclu, 

H. (2013). FRED (A Framework for Reconstructing Epidemic Dynamics): An open-source 

software system for modeling infectious diseases and control strategies using census-based 

populations. BMC Public Health, 13(1), 1. 

Jee, K., & Kim, G. H. (2013). Potentiality of big data in the medical sector: Focus on how to 

reshape the healthcare system. Healthcare Informatics Research, 19(2), 79–85. 

Kang, D., Lim, W., Shin, K., Sael, L., Kang, U. (2014). Data/feature distributed stochastic coordi- 

nate descent for logistic regression. In Proceedings of the 23rd ACM International Conference 

on Conference on Information and Knowledge Management (pp. 1269–1278). ACM. 

Kumar, P., & Lee, H. J. (2011). Security issues in healthcare applications using wireless medical 

sensor networks: A survey. Sensors, 12(1), 55–91. 

Lopez, D., & Gunasekaran, M. (2015). Assessment of vaccination strategies using fuzzy multi- 

criteria decision making. In Proceedings of the Fifth International Conference on Fuzzy and 

Neuro Computing (FANCCO-2015) (pp. 195–208). Springer International Publishing. 

Lopez, D., & Manogaran, G. (2016). Big data architecture for climate change and disease dynam- 

ics. In G. S. Tomar, N. S. Chaudhari, R. S. Bhadoria, & G. C. Deka (Eds.), The human element 

of big data: Issues, analytics, and performance. Boca Raton: CRC Press, Taylor & Francis. 

Lopez, D., & Sekaran, G. (2016). Climate change and disease dynamics-a big data perspective. 

International Journal of Infectious Diseases, 45, 23–24. 

Lopez, D., Gunasekaran, M., Murugan, B. S., Kaur, H., Abbas, K. M. (2014). Spatial big data 

analytics of influenza epidemic in Vellore, India. In Big Data (Big Data), 2014 IEEE 

International Conference on (pp. 19–24). IEEE. 

Lorincz, K., Malan, D. J., Fulford-Jones, T. R., Nawoj, A., Clavel, A., Shnayder, V., et al. (2004). 

Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive 

Computing, 3(4), 16–23. 

  



 

Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S. (2004). Codeblue: An ad hoc sensor network 

infrastructure for emergency medical care. In International workshop on wearable and implant- 

able body sensor networks, 5.12–15 

Manogaran, G., Lopez, D. (2017a). Health data analytics using scalable logistic regression with 

stochastic gradient descent, International Journal of Advanced Intelligence Paradigms, 8(2). 

Manogaran, G., & Lopez, D. (2017b). Disease surveillance system for big climate data processing 

and dengue transmission. International Journal of Ambient Computing and Intelligence 

(IJACI), 8(2), 88–105. 

Manogaran, G., & Lopez, D. (2017c). Spatial cumulative sum algorithm with big data analytics for 

climate change detection. Computers and Electrical Engineering. http://dx.doi.org/10.1016/j. 

compeleceng.2017.04.006. 

Manogaran, G. C. T., Lopez, D., Vijayakumar, V., Abbas, K. M., & Sundarsekar, R. (2017a). Big 

data knowledge system in healthcare. In C. Bhatt, N. Dey, & A. Ashour (Eds.), Internet of 

things and big data technologies in next generation healthcare, studies in big data series. 

Switzerland: Springer International Publishing. 

Manogaran, G., Thota, C., & Sundarsekar, R. (2017b). Big data security intelligence for healthcare 

industry 4.0. In L. Thames & D. Schaefer (Eds.), Cybersecurity for industry 4.0. Switzerland: 

Springer International Publishing. 

Ng, J. W., Lo, B. P., Wells, O., Sloman, M., Peters, N., Darzi, A., ... ,Yang, G. Z. (2004, September). 

Ubiquitous monitoring environment for wearable and implantable sensors (UbiMon). In 

International Conference on Ubiquitous Computing (Ubicomp). 

Salathe, M., Bengtsson, L., Bodnar, T. J., Brewer, D. D., Brownstein, J. S., Buckee, C., et al. 

(2012). Digital epidemiology. PLoS Computational Biology, 8(7), e100216. 

Schlitt, J. T., Lewis, B., & Eubank, S. (2015). ChatterGrabber: A lightweight easy to use social 

media surveillance toolkit. Online Journal of Public Health Informatics, 7(1), 52–53. 

Thota, C., Manogaran, G., Sundarsekar, R., & Vijayakumar V. (2016). Big data security framework 

for distributed cloud data centers. In M. Moore (Ed.), Cybersecurity Breaches and issues sur- 

rounding online threat protection. IGI Global 

Viceconti, M., Hunter, P., & Hose, R. (2015). Big data, big knowledge: Big data for personalized 

healthcare. IEEE Journal of Biomedical and Health Informatics, 19(4), 1209–1215. 

Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., ... ,Stankovic, J. (2006). Alarm-net: 

Wireless sensor networks for assisted-living and residential monitoring. University of Virginia 

Computer Science Department Technical Report, 2. 

http://dx.doi.org/10.1016/j.compeleceng.2017.04.006
http://dx.doi.org/10.1016/j.compeleceng.2017.04.006

