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Abstract
Background: Schistosomiasis control programmes primarily use school-based surveys to identify areas
for mass drug administration of preventive chemotherapy. However, as the spatial distribution of
schistosomiasis can be highly focal, transmission may not be detected by surveys implemented at
districts or larger spatial units. Improved mapping strategies are required to accurately and cost-
effectively target preventive chemotherapy to remaining foci across all possible spatial distributions of
schistosomiasis.

Methods: Here, we use geostatistical models to quantify the spatial heterogeneity of Schistosoma
haematobium and S. mansoni across sub-Saharan Africa using the most comprehensive dataset
available on school-based surveys. Applying this information to parameterise simulations, we assess the
accuracy and cost of targeting alternative implementation unit sizes across the range of plausible
schistosomiasis distributions. We evaluate the consequences of decisions based on survey designs
implemented at district and subdistrict levels sampling different numbers of schools. Cost data were
obtained from �eld surveys conducted across multiple countries and years, with cost effectiveness
evaluated as the cost per correctly identi�ed school.

Results: Models identi�ed marked differences in prevalence and spatial distributions between countries
and species; however, results suggest implementing surveys at subdistrict level increase the accuracy of
treatment classi�cations across most scenarios. While sampling intensively at the subdistrict level
resulted in the highest classi�cation accuracy, this sampling strategy resulted in the highest costs.
Alternatively, sampling the same numbers of schools currently recommended at the district level but
stratifying by subdistrict increased cost effectiveness.

Conclusions: This study provides a new tool to evaluate schistosomiasis survey designs across a range
of transmission settings. Results highlight the importance of considering spatial structure when
designing sampling strategies, illustrating that a substantial proportion of children may be undertreated
even when an implementation unit is correctly classi�ed. Control programmes need to weigh the
increased accuracy of more detailed mapping strategies against the survey costs and treatment priorities.

Introduction
Schistosomiasis is a chronic parasitic disease with substantial public health impacts globally. The
majority of the burden occurs in sub-Saharan Africa, with over 150 million individuals estimated to be
infected with either Schistosoma haematobium or S. mansoni [1]. Determined by the distribution of and
contact with freshwater snail habitats and access to clean water and sanitation, schistosomiasis
transmission is highly focal, with disease risks varying markedly within small spatial areas [2, 3]. This
spatial heterogeneity has become more pronounced as prevalence decreases due to highly successful
control programmes [4]. New strategies are required to identify and target remaining foci of infection in
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order to achieve elimination goals, including re-evaluating the spatial units at which control programmes
operate.

Preventive chemotherapy with praziquantel remains the cornerstone of schistosomiasis control
programmes [4, 5]. Mass drug administration targets high risk groups living in endemic areas, including
school aged children (SAC, ages 5–14 years), pregnant women and individuals with occupational risks
[6]. Prior to treatment, epidemiological data on infection prevalence are required to identify high-risk
communities within geographically suitable regions; prevalence is assessed, and treatment assigned at a
spatial unit referred to as the implementation unit (IU). Although there is no standard de�nition for IUs,
these are typically de�ned as districts or ecological zones consisting of multiple subdistricts [7]. Current
World Health Organization (WHO) guidelines recommend purposefully selecting sites in high prevalence
areas. In practice, most countries identify high prevalence regions and estimate prevalence using two-
stage cluster-based school surveys, sampling 50 children per school for up to �ve schools per IU [6, 7].
This survey design is easily implemented and analysed, using simple random sampling from lists of
schools per IU without requiring additional �ne-scale spatial information on schistosomiasis distribution.
Based on these surveys, preventive chemotherapy is administered every year for mapping units with over
50% prevalence, every two years if the prevalence is between 10–50% and every three years if prevalence
is below 10% [6]. These guidelines are currently under review by a WHO working group; although no
o�cial guidelines have been �nalised, forthcoming guidelines are likely to specify a single 10% threshold
determining annual treatment [8]. As countries move towards elimination and schistosomiasis
transmission becomes more focal, there is increasing recognition of the need to implement treatment
policies at lower administrative levels [9]. Previous studies have demonstrated a substantial proportion of
schools are misclassi�ed and incorrectly treated, due to variation within districts [10]. The rollout of these
new guidelines makes this an opportune time to evaluate potential sampling and treatment strategies
implemented at district or subdistrict levels [11].

Determining an optimal sampling strategy requires balancing trade-offs between accuracy and cost to
determine where preventive chemotherapy should be targeted. Simulations are frequently used to assess
how alternative sampling strategies can improve estimates of prevalence and maximise cost e�ciency
by more accurately targeting preventive chemotherapy [12–15]. Using geostatistical simulations of
baseline prevalence estimated from existing survey data, effects of different sampling strategies can be
evaluated against known parameters generated from spatially realistic simulated datasets. This allows
assessment of a wide range of sampling designs across different prevalence distributions. For
schistosomiasis, this approach has been used to explore the accuracy and cost effectiveness of varying
the number of schools and number of children sampled under current two-stage cluster design surveys
[16]. Additionally, a previous study explored the performance of two sampling strategies for classifying
school-level schistosomiasis prevalence: lot quality assurance sampling (LQAS), sampling small
numbers of children from all schools within a given area, and model-based geostatistical approaches,
using spatial modelling approaches to predict prevalence based on a small number of sampled schools
[12].
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Here, we use geostatistical simulations to evaluate potential survey sampling strategies across a range of
plausible spatial distributions of S. haematobium and S. mansoni prevalence. We compare two-stage
cluster survey designs implemented at district and subdistrict levels sampling different numbers of
schools. We aim to (i) quantify the spatial heterogeneity of schistosomiasis across sub-Saharan Africa;
(ii) evaluate the accuracy of survey designs across this range of parameters; and (iii) assess the cost
implications of survey designs. Together, this allows identi�cation of optimal survey designs across
spatially heterogenous distributions of disease.

Methods
To evaluate sampling strategies across all possible distributions of schistosomiasis in SSA, we �rst �t
country and species- speci�c geostatistical models to characterise the spatial heterogeneity of
schistosomiasis. These models were then used to parameterise simulations in a representative,
hypothetical country in SSA, capturing the full range of possible transmission scenarios. Alternative
sampling strategies were assessed based on the overall accuracy, numbers of schools correctly and
incorrectly treated as well as estimated cost implications.

Country-level geostatistical analysis

To estimate the spatial distribution of schistosomiasis, we obtained data on schistosomiasis surveys
from the WHO Expanded Special Project for Elimination of Neglected Tropical Diseases (ESPEN) portal
[17]. This represents the largest and most geographically comprehensive database of schistosomiasis
surveys. We assembled data for all geo-referenced school-based surveys of school age children in SSA.
To exclude survey points with inaccurate spatial data, we removed all surveys with duplicate locations
reported within the same year and surveys with coordinates reported outside the district or administrative
unit of the named school/site. We additionally excluded survey points reporting only a prevalence rather
than the numbers of children sampled and detected positive. We then excluded schools reporting over
100 children sampled as these were not representative of typical survey methodology and potentially
re�ected aggregated data. In line with current WHO guidelines, we de�ned S. haematobium using urine
�ltration and S. mansoni infections diagnosed using Kato-Katz techniques. For countries with repeated
survey data reported for multiple years, we included only the most recent survey. Countries with less than
50 survey points were excluded from further analysis.

From this dataset, we �t binomial geostatistical models to schistosomiasis data. Models were �t
separately for each country and species, with no additional covariates included. The number of
individuals, Yi, who tested positive for schistosomiasis out of the total number of individuals examined,
ni, at location xi was considered as the realisation of a binomial random variable Yi ~ Binomial(ni, p(xi)),
with p(xi) modelled as:

Eq. 1
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Where μ is the intercept,  is a zero mean Gaussian process with variance σ2 and an exponential
correlation function given by ρ(k; φ) = exp{-k/ φ} where φ > 0 is a scale parameter that controls the extent
of spatial correlation and k is the distance between two sampling locations.  is a set of independent zero-
mean Gaussian variables with variance τ2. Models were �t using Monte Carlo maximum likelihood
estimation implemented in R [18].

Schistosomiasis prevalence simulations

As we wanted to evaluate survey strategies for all possible schistosomiasis distributions, we chose to
simulate prevalence within a hypothetical representative country rather than using data for single
countries. We assigned this simulated country an area representing mean country area of all countries in
SSA (km2). We used the median ratio of numbers of district level IUs to country area in SSA to determine
the number of districts. Estimating �ve subdistricts per IU on average, we randomly assigned districts and
subdistricts, with all districts comprised of 5 subdistricts. The �nal country had district and subdistrict
sizes comparable to the average geographical sizes observed across SSA countries. As our simulated
country had a similar area to Uganda, we distributed schools based on the density of schools within
Uganda, assuming 500 SAC per school and at least 5 schools per district, leading to a total estimate of
15,000 schools countrywide (Supplementary information).

To capture heterogeneity of the spatial variability and spatial extent of schistosomiasis across SSA, we
combined parameters from all geostatistical models to generate gold-standard prevalence distributions.
For each species, we de�ned schistosomiasis using all possible combinations of the median, 25th and
75th percentile of country level parameters �t from geostatistical models, across deciles of mean
prevalence. This allowed simulations of prevalence surfaces capturing all possible scenarios with the full
range of prevalence levels, spatial variances and scales. For each combination of model parameters, we
conducted 100 unconditional simulations of the number of SAC positive in all schools within the
hypothetical country.   

Evaluation of alternate survey designs

Using these simulations, we assessed different survey designs. These included: 1) sampling 5 randomly
selected schools per district, with the IU de�ned as a district (existing sampling strategy); 2) sampling 5
randomly selected schools per subdistrict, using subdistrict as the IU; and 3) sampling 1 randomly
selected school per subdistrict, with IU de�ned as a subdistrict. For all sampling strategies, we sampled
50 randomly selected SAC per selected school. As per current guidelines, we used the mean prevalence
per IU to determine whether the school was above or below a threshold. To evaluate survey designs, we
compared the survey classi�cation of the IU to the gold standard classi�cation calculated from the mean
prevalence of all schools within the IU. Survey designs were assessed based on overall accuracy of
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treatment classi�cations (at the level of the IU) as well as the proportions of schools over or undertreated
(given school-level prevalence) using the resulting assigned IU treatment classi�cation. We additionally
compared the survey accuracy, with parameters de�ning the spatial distribution of schistosomiasis, to
determine how survey performance varied across transmission settings.

Cost analysis

As more intensive sampling may give more accurate results but be prohibitively expensive, we
additionally assessed the cost of all survey designs. Survey design costs were estimated using the
ingredients method using capital resources data obtained from school-based mapping surveys [16]. We
considered only �nancial costs and excluded expenditures related to general programme operating costs
or costs borne by the bene�ciaries. Expenditures related were extracted for �ve annual programmatic
surveys, including surveys conducted in 2016-2017 in Malawi and Uganda and surveys conducted in
2017-2018 in Tanzania, Malawi and Uganda (SCI, �nancial expenditure records). We calculated the mean
costs per school surveyed separately for each of the �ve available surveys, using the median cost from
all survey data to evaluate cost effectiveness. Consumable item costs were calculated based on the
quantity used for each diagnostic method and number of children surveyed, assuming 10% wastage. We
de�ned capital items as items with a typical life expectancy of over one year; the costs of these items
were annuitized based on the useful life expectancy in years.

We assumed an average of one school per day would be visited by the survey team, including a half day
to register children and collect samples and a half day of sample processing. Based on reported survey
activities, teams included one driver, one team leader, one district o�cer and one central o�cer with three
technicians would be required to sample 50 children. Per diems for sample teams were estimated based
on reported country speci�c expenditures. We calculated mean costs per school based on reported district
level fuel costs and numbers of schools covered, assuming vehicle maintenance was conducted once
during the survey period. No capital costs for vehicle purchase were included. All costs were converted
into US dollars (USD) using the Consumer Price Index and current exchange rates. Cost effectiveness was
evaluated based on the cost per school assigned to the correct treatment category using the median
survey cost per school. This de�nition of cost effectiveness prioritises classi�cation accuracy, weighting
schools not requiring treatment and requiring treatment equally. However, alternatively, control
programmes may prioritise ensuring all schools above the prevalence threshold receive treatment. To
address this priority, we additionally evaluated the cost per school requiring treatment which was
adequately treated.

Results
We �t geostatistical models for S. haematobium prevalence in 24 countries and S. mansoni in 28
countries across SSA (Figure 1). This dataset included results from 23722 school-based surveys, with the
numbers of schools sampled per country ranged from 64 to 1838 for S. haematobium and 64 to 2230 for
S. mansoni (Supplementary Information). For S. haematobium, the median school-level prevalence was
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0.02 (IQR: 0 – 0.12), with 3039 of the 10316 schools sampled (29.5%) reporting a prevalence of 10% or
higher (Figure 2). Median prevalence of S. mansoni was 0.00 (IQR 0 – 0.04) with only 2529 of 13406
schools sampled (18.9%) exceeding the 10% threshold. For both species, the median number of children
sampled per school was 50 (IQR: 30-50). Spatial patterns of prevalence varied markedly between
countries and species surveyed, with φ ranging from 0.07 to 146.44km (mean: 73.30km) for S.
haematobium and 0.0048 to 696.13km (mean: 109.23km). Similarly, both spatial variance (τ2) and
nonspatial variance (σ2) differed by country and species (Figure 3, Supplementary Information).

Using these models, we generated prevalence surfaces across our simulated country, representing
plausible spatial distributions of infections. From country speci�c geostatistical models, we used the
median, 25th and 75th quartiles for all possible combinations of model parameters φ, τ2 and σ2 with µ
ranging from 0.0005 to 0.207 (Table 1). This generated 297 unique scenarios each for S. haematobium
and S. mansoni. These scenarios represented all possible distributions of prevalence with different levels
of spatial and nonspatial variance and ranges of spatial correlation across a simulated country (Figure
4).

Table 1. Model parameters used for simulations
Parameter S. haematobium S. mansoni
µ 0.004, 0.008, 0.012, 0.017, 0.024,

0.040, 0.054, 0.079, 0.110, 0.125,
0.207

0.0005, 0.0013, 0.0026, 0.0038, 0.0048,
0.0058, 0.0068, 0.0077, 0.0175, 0.0423,
0.0991

φ 30.58, 73.30, 89.71 41.74, 61.64, 114.01
τ2 0.558, 0.977, 1.826 0.312, 0.655, 1.266
σ2 1.458, 3.642, 5.298 1.662, 4.056, 7.058

Across these scenarios, the currently used protocol randomly sampling 5 schools with the IU de�ned at
district level correctly classi�ed a median of 86.7% (Interquartile range (IQR): 83.4-90.3%) of districts for
S. haematobium and 93.9% (IQR: 89.1-98.2%) of districts for S. mansoni. However, within these districts,
only a median of 73.4% (IQR: 68.0 – 81.4%) and 89.2% (IQR: 80.1 – 96.3%) of schools were assigned to
the correct treatment category for S. haematobium and S. mansoni respectively. In contrast, de�ning the
IU at subdistrict level and sampling 5 schools per IU correctly classi�ed a slightly higher proportion of IUs,
with a median of 89.8% (IQR: 86.9 – 92.1%) and 89.6% (IQR: 87.2-91.1%) subdistricts correctly classi�ed
for S. haematobium and S. mansoni. Similarly, within classi�ed subdistricts, a higher proportion of
schools were correctly classi�ed, with 78.7% (IQR: 73.3-84.7%) and 75.7% (IQR: 70.9 - 79.3%) assigned
the correct treatment category for S. haematobium and S. mansoni (Figure 5).

Due to the intensity of sampling required to survey 5 schools per subdistrict, we additionally evaluated a
more realistic scenario sampling one school per subdistrict, sampling the same total number of schools
as the current sampling approach of 5 schools per district. This slightly decreased the treatment
classi�cation accuracy for subdistrict level IUs, with the median probability of correctly classifying a
subdistrict of 79.9% (IQR: 74.6-85.4%) and 91.7% (IQR: 85.7 – 96.6%) for S. haematobium and S.
mansoni (Figure 5). This led to treatment being correctly assigned to 75.2% (IQR: 69.5-82.2%) of schools
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for S. haematobium and 89.5% (IQR: 82.8 – 95.4%) of schools for S. mansoni. Comparing this sampling
strategy to the current district level sampling strategy demonstrated that even sampling only one school
per subdistrict still consistently resulted in a higher proportion of schools receiving the correct treatment
for all but the lowest prevalence settings. Despite the overall accuracy, sampling more intensively at
subdistrict level substantially decreased the number of undertreated schools when compared to sampling
only one school per subdistrict (Figure 6A and B). Any sampling strategy implemented at subdistrict level
consistently decreased the number of overtreated schools (Figure 6C and D). The treatment classi�cation
accuracy of all sampling strategies varied by schistosomiasis prevalence, with the lowest accuracy
observed when prevalence approached the 10% threshold. Overall, increased focality (as represented by
φ) resulted in increases in the numbers of schools over or undertreated for both species. Similarly, the
accuracy of treatment classi�cations decreased with increasing spatial variance (τ2) and nonspatial
variance (σ2).  These effects were more pronounced when the mean prevalence approached the 10%
threshold.

As the feasibility of these survey methods is largely dependent on total costs, we compared the total
costs of each survey approach. Median estimated costs per school were USD 779.90 (IQR: USD 770.30 –
807.70) for schools surveyed with both urine �ltration and Kato-Katz diagnostics, with median costs of
USD 714.00 (IQR: USD 708.80 – 749.90) for schools surveyed using only urine �ltration and USD 308.30
(IQR: USD 287.00 – 342.30) for schools surveyed using only Kato Katz. In addition to being highly
sensitive to the diagnostic method used, the majority of remaining costs were due to personnel costs
(Supplementary information). Although both sampling 5 schools per district and sampling 1 school per
subdistrict resulted in the same number of schools and total costs within this scenario, the median costs
per correctly classi�ed school were slightly lower for both species when 1 school was sampled per
subdistrict (Table 2). Sampling 5 schools per subdistrict resulted in the highest survey costs per correctly
classi�ed school. Similar trends were observed for costs per adequately treated school.

Table 2. Cost effectiveness of different sampling strategies for each species, median USD (IQR)
Species Sampling strategy Cost per correctly

classified school
Cost per adequately
treated school

S.
haematobium

5 schools per
district

22.71 (20.47, 24.50) 25.26 (20.10, 38.05)

1 school per
subdistrict

22.16 (20.27, 23.96) 28.65 (23.72, 37.42)

5 schools per
subdistrict

105.82 (98.40, 113.63) 116.95 (98.19, 153.03)

S. mansoni 5 schools per
district

8.07 (7.47, 8.98) 17.93 (12.62, 39.92)

1 school per
subdistrict

8.04 (7.54, 8.69) 16.36 (12.72, 23.80)

5 schools per
subdistrict

39.32 (37.19, 42.30) 67.73 (54.10, 103.62)

 

Discussion
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Identifying and targeting mass drug administration to the most needed areas while minimising costs is a
key priority for schistosomiasis control programmes. This study demonstrates the trade-offs control
programmes are faced with when conducting mapping surveys to determine schistosomiasis treatment.
A wide range of spatial patterns of both schistosomiasis species were identi�ed across SSA, as expected,
due to the diverse environments and health programmes within this region. For all of the varied
schistosomiasis distributions assessed, using subdistrict level IUs consistently increases accuracy of
both the IU level classi�cation and the proportions of schools assigned to the correct treatment category.
This analysis additionally illustrates how substantial proportions of schools may be undertreated, even
when the IU is correctly classi�ed, highlighting how the spatial structure impacts school-level
classi�cation accuracy. However, depending on the priorities of control programmes, the increased
accuracy of more detailed mapping strategies will need to be weighed against the survey costs and
whether the goals of the programme are to accurately distribute treatment or to minimise undertreatment.

Results of geostatistical analyses are consistent with other literature, reporting highly focal spatial
distributions of schistosomiasis with large decreases in prevalence observed following periods of
sustained control [2, 3]. Across all countries analysed, 6 countries had a mean school-level S.
haematobium prevalence of 10% or greater and only 2 countries had a mean S. mansoni prevalence
above this threshold. Previous studies have highlighted the dramatic decrease in schistosomiasis due to
effective control programmes across this region and successes of preventive chemotherapy in
substantially reducing disease burdens [4, 5]. However, due to limitations within the datasets analysed,
changes over time could not be assessed for these data and there remains little understanding of how
spatial distributions of schistosomiasis change following implementation of these control measures.
While it is likely that patchy implementation and variable transmission intensity within existing
implementation units will lead to increased focality, mapping surveys need to be evaluated against all
plausible spatial distributions of schistosomiasis.

As would be expected, the spatial structure of schistosomiasis prevalence strongly in�uences the
accuracy of treatment classi�cations under different mapping strategies. Classi�cation accuracy
decreases overall with increasing focality and spatial variance; these effects are particularly pronounced
as mean prevalence approaches the 10% threshold. However, within these IU-level classi�cations, there is
substantial heterogeneity in school-level prevalence, with the potential for large portions of schools to be
over or undertreated despite correct classi�cation of IU-level prevalence. Previous studies have similarly
described substantial numbers of schools not assigned to the correct treatment categories under existing
mapping strategies [16, 19]. This emphasises the need for control programmes to identify their key
treatment priorities; in some cases, this may require adopting less accurate mapping strategies in favour
of minimising the numbers of undertreated schools, prioritising sensitivity over accuracy.

Equally critically, control programmes are faced with choices on how to rationalise scarce resources.
Within all survey designs considered, increasing the total numbers of schools surveyed consistently
increases the classi�cation accuracy. While we present the total costs per school surveyed and the cost
per correctly identi�ed school, cost effectiveness of different survey designs may vary substantially by



Page 10/14

country and diagnostic method. By comparing these survey costs with treatment costs for a particular
region and species, control programmes can identify breakpoints at which the cost of treating all
individuals within an IU for the next 5-6 years recommended by current guidelines is equal to or less than
the costs of mapping [6]. For example, if a district has 100,000 SAC and treatment costs of USD 0.10 per
child, the costs of treating all children annually over a 5-year period would be USD 50,000. Comparing
these costs to the estimated survey costs allows control programmes to evaluate whether more intensive
surveys would be more cost effective than treatment of all children within the IU. As treatment costs vary
substantially by country and region, we have not evaluated survey cost effectiveness relative to treatment
costs but instead provide a framework control programmes can use to evaluate these costs within
speci�c settings. Detailed guidelines have been published for estimating both costs of surveys and
treatments (e.g. [20, 21]), allowing control programmes to develop site speci�c budgets enabling planning
of further survey activities. This may include evaluating economies of scale when rolling out large-scale
mapping and treatment surveys [22]. This study highlights the importance of considering the spatial
distributions of risk when designing surveys and demonstrates how simulations can allow assessment
across a wide range of prevalence distributions. 

Within these simulations, we chose to analyse the most commonly used two stage cluster-based survey
designs. This analysis assumed that the spatial distribution of prevalence is unknown with no previously
available geolocated school survey data, optimising sampling under a range of prevalence levels and
spatial distributions. While most countries have some baseline survey data, many countries lack reliable
spatial information on prevalence. However, if previous spatial data is available, alternative sampling
strategies may be more cost effective and appropriate. For example, geostatistical sampling designs
utilise information on the spatial structure of disease prevalence to design more e�cient surveys [23].
Exploiting spatial correlation between locations, this approach uses spatially regulated sampling within a
model-based geostatistical framework to estimate prevalence surfaces. While we only consider methods
for classifying an IU based on the empirical mean as typically done by current practice, geostatistical
analysis with a probabilistic assessment of the IU endemicity would lead to a substantial improvement of
classi�cation accuracy. Alternatively, when previous data is available, adaptive sampling can be used to
identify disease hotspots, applying previous survey information to optimise sampling strategies [24].
While these sampling approaches are likely to be more e�cient than simple random sampling, our
analysis provides a framework for collecting baseline prevalence data with little or no previous
geolocated survey data or in countries without the resources or technical skills to implement more
complex statistical models

Despite the utility of this approach in evaluating sampling strategies, this study had several important
limitations. Due to the wide range of spatial patterns assessed, we chose to conduct unconditional
simulations across a simulated country. While this allows assessment of spatial distributions of risk
representative of those found across SSA, the parameters used do not re�ect the density of schools or
distributions of administrative districts of all countries. Subdistrict de�nitions vary substantially by
country, with notable increases in the numbers of subnational administrative units within the past
decades [25]. While the consistent numbers of subdistricts identi�ed in all districts within our simulated
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country are unlikely to occur in most countries, this provides a model of how control programmes could
consider subdividing districts with variable numbers of subdistricts. Further, as this modelling approach
was developed using open-source software, this analysis can be easily modi�ed to re�ect actual
administrative boundaries. Additionally, although this study analysed the largest available database of
school-based surveys for schistosomiasis, this did not allow the evaluation of how spatial patterns
changed over time or in response to control measures. Future studies could evaluate how these spatial
distributions would be expected to change. As surveys are only conducted in geographically suitable
regions for schistosomiasis transmission, further work could explore the application of improved
environmental data in de�ning and identifying these regions.

Conclusions
Together, this study demonstrates the importance of spatial structure when designing mapping surveys
and highlights how using �ner scale implementation units can improve treatment classi�cation accuracy.
While the most substantial gains in accuracy result from sampling higher numbers of schools at
subdistrict levels, even sampling the same number of schools strati�ed by subdistrict improves overall
accuracy. Effects of these survey designs become more pronounced as focality and variance increases
and prevalence approaches the 10% threshold. By considering the speci�c goals of the control
programme, costs and likely spatial distributions within the study areas, this analysis can be used to
guide control programmes to develop appropriate sampling strategies.
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