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A B S T R A C T

Urbanisation generates greater population densities and an increase in anthropogenic heat generation. These
factors elevate the urban–rural air temperature (Ta) difference, thus generating the Urban Heat Island (UHI)
phenomenon. Ta is used in the fields of public health and epidemiology to quantify deaths attributable to heat in
cities around the world: the presence of UHI can exacerbate exposure to high temperatures during summer
periods, thereby increasing the risk of heat-related mortality. Measuring and monitoring the spatial patterns of
Ta in urban contexts is challenging due to the lack of a good network of weather stations. This study aims to
produce a parsimonious model to retrieve maximum Ta (Tmax) at high spatio-temporal resolution using Earth
Observation (EO) satellite data. The novelty of this work is twofold: (i) it will produce daily estimations of Tmax

for London at 1 km2 during the summertime between 2006 and 2017 using advanced statistical techniques and
satellite-derived predictors, and (ii) it will investigate for the first time the predictive power of the gradient
boosting algorithm to estimate Tmax for an urban area. In this work, 6 regression models were calibrated with 6
satellite products, 3 geospatial features, and 29 meteorological stations. Stepwise linear regression was applied
to create 9 groups of predictors, which were trained and tested on each regression method. This study de-
monstrates the potential of machine learning algorithms to predict Tmax: the gradient boosting model with a
group of five predictors (land surface temperature, Julian day, normalised difference vegetation index, digital
elevation model, solar zenith angle) was the regression model with the best performance (R² = 0.68, MAE =
1.60 °C, and RMSE = 2.03 °C). This methodological approach is capable of being replicated in other UK cities,
benefiting national heat-related mortality assessments since the data (provided by NASA and the UK Met Office)
and programming languages (Python) sources are free and open. This study provides a framework to produce a
high spatio-temporal resolution of Tmax, assisting public health researchers to improve the estimation of mor-
tality attributable to high temperatures. In addition, the research contributes to practice and policy-making by
enhancing the understanding of the locations where mortality rates may increase due to heat. Therefore, it
enables a more informed decision-making process towards the prioritisation of actions to mitigate heat-related
mortality amongst the vulnerable population.

1. Introduction

In 2018, 83.4 % of the UK population resided in urban areas; this
proportion is projected to reach 90.2 % by 2050 (UN DESA, 2018).
Urbanisation leads to greater population densities, reductions in urban
greenspace, and an increase in anthropogenic heat sources in cities
worldwide. The Urban Heat Island (UHI), a phenomenon where the
temperature in urban areas is elevated compared to surrounding rural
areas, is one of the consequences of urbanisation that directly impact
the urban population (Grimmond et al., 2016). Air temperature (Ta) is a
key variable in a wide range of research applications, such as climate
change and global warming (Intergovernmental Panel on Climate

Change (IPCC, 2018), energy management (Zakšek and Schroedter-
Homscheidt, 2009), indoor comfort (Mavrogianni et al., 2012; Bechtel
et al., 2017), and human health (Armstrong et al., 2011; Hondula et al.,
2012; Macintyre et al., 2018; Nichol and Hang, 2012). Ta is used in the
fields of public health and epidemiology to analyse temperature–-
mortality associations, since it has been demonstrated to be a sig-
nificant driver of mortality (Gasparrini et al., 2015). UHI exacerbates
exposure to high temperatures during summer periods, thereby in-
creasing the risk of heat-related mortality. Typically, Ta is either mea-
sured from networks of meteorological stations or simulated by climate
models (Fu and Weng, 2018).

Meteorological stations can provide long-term observational
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weather data; however, their ability to describe the spatial variation of
Ta in heterogeneous areas (such as cities) is limited due to their lack of
appropriate spatial coverage (Ding et al., 2018; Fu and Weng, 2018;
Nichol and Hang, 2012). Several publications have also reported pro-
blems with missing Ta values caused by disrupted recordings, poor
spatial coverage or a total lack of weather stations, such as in parts of
West Africa (Stisen et al., 2007). These problems might be caused by the
elevated cost of installation and maintenance of the measurement
equipment (Zakšek and Schroedter-Homscheidt, 2009), and sometimes
by vandalism. Weather station data can be supplemented by other field
measurement approaches; for instance, sensors mounted on lamp posts
(Levermore et al., 2012), vehicle-traverses (Hart and Sailor, 2009;
Nichol et al., 2009), remotely sensed airborne transects (Lee and
Sharples, 2008), and fixed and mobile amateur weather stations
(Chapman et al., 2017; Ho et al., 2014; Kloog et al., 2014).

Climate models can simulate long-term spatiotemporal Ta changes
over large areas of the Earth. These models can generate grids of me-
teorological data at varying resolutions. Global Climate Models are used
for climate predictions at very low spatial resolution (100–250 km²)
with high temporal resolution (e.g. hourly). Due to the low spatial re-
solution, they are not able to supply temperature information at city
scale (Huth et al., 2015; Wilby and Wigley, 1997). Regional Climate
Models are capable of estimating Ta in spatial resolutions of 25–50 km²;
however, they provide only a coarse estimate of the urban climate,
since they have a very simplified representation of the urban influence
on the model (Levermore et al., 2012). Mesoscale models, with the
addition of urban surface representations inside the model, are able to
simulate climates at more local levels (1–5 km²) (Bohnenstengel et al.,
2011). Unfortunately, only a few simulated Ta data sets are freely
available and open access. The data request is usually made to order for
a specific location and time, and the modelling service is very expensive
for a small-grant project. Simulation approaches are limited by the need
of historical observational data for some locations, the long processing
time, the model-code complexity, and computational demand.

For decades, earth observation (EO) satellites have monitored the
Earth’s changes, building an unprecedented spatiotemporal data set.
This data is collected by a variety of sensors on board satellites, which
capture the interaction of solar energy with the Earth’s surface in the
form of reflected, absorbed, and emitted radiation. The need for ap-
propriate spatiotemporal Ta data has driven many researchers to ex-
plore new methods to retrieve Ta using EO satellite data for large and
small areas (countries and cities, respectively). Land Surface
Temperature (LST) is widely reported to be the most relevant satellite
predictor for Ta estimation (Benali et al., 2012; Chen et al., 2016; Ho
et al., 2014; Vancutsem et al., 2010; Weng, 2009; Xu et al., 2014; Yang
et al., 2017; Yoo et al., 2018; Zakšek and Schroedter-Homscheidt, 2009;
Zhu et al., 2013). There are three main approaches based on LST:

(1) The Temperature-Vegetation Index (TVX) assumes that vege-
tated areas have lower temperatures than those without vegetation; this
is expressed by the Normalized Difference Vegetation Index (NDVI).
Therefore, the surface temperature of the vegetation canopy will be
very similar to the surrounding Ta, since areas covered just by leaves
actually consist mostly of air (Liu et al., 2016; Nieto et al., 2011;
Prihodko and Goward, 1997; Weng, 2009; Zhu et al., 2013). However,
in urban areas, the focus on retrieving Ta from remote sensing is ac-
tually the opposite; that is, data from unvegetated surfaces. Therefore,
this method is unsuitable for cities (Agam et al., 2007; Stisen et al.,
2007). (2) Energy balance approaches are grounded in thermo-
dynamics, where the Ta is retrieved by analysing the energy exchanges
from the urban land surfaces using LST (Hou et al., 2013; Sun et al.,
2005), emissivity, sensible heat flux, latent heat flux and solar radia-
tion. The implementation of this method requires variables that are not
measured by satellites (Benali et al., 2012).

(3) Statistical techniques can be divided into two groups: (i) spatial
interpolation methods, by which Ta can be predicted at any neigh-
bourhood location within a fixed time, and (ii) regression methods, by

which Ta can be predicted at any location and time. The first group is
composed of deterministic methods (e.g. Inverse Distance Weighting
(IDW) and polynomial functions) and stochastic methods (e.g. kriging-
based methods and Geographic Weighted Regression (GWR)) (Chen
et al., 2015; Li et al., 2018; Ozelkan et al., 2015; Parmentier et al.,
2014, 2015). These methods can be successfully used when the study
area has a good distribution of weather stations and Ta is predicted at
the same point in time as the model equation is generated. However,
long-term daily observational periods would generate several model
equations, and study areas with irregular spatial coverage of weather
stations would weaken the accuracy of the Ta prediction (Florio et al.,
2004; Li et al., 2018; Vancutsem et al., 2010; Vogt et al., 1997). The
study area for this research is characterised by the latter scenario;
therefore, it is not feasible to predict London’s Tmax through the ap-
plication of spatial interpolation methods. The second group is com-
posed of simple (one feature) or multiple (two or more features) re-
gression approaches, which are recognised for retrieving Ta when
interpolation methods are not adequate. Most of the studies presented
in the literature explore different types of regression. These range from
parametric models such as Linear Regression (LR) (simple or multiple
predictors) (Bechtel et al., 2017; Good, 2015; Ho et al., 2014; Kloog
et al., 2014; Lin et al., 2012; Pichierri et al., 2012; Yan et al., 2009;
Yang et al., 2017; Xu et al., 2014; Zhang et al., 2016), and Stepwise
Regression (Lin et al., 2012; Pichierri et al., 2012); to more complex
statistical methods like Machine Learning (ML) methods, such as
Random Forest (RF) (Ho et al., 2014; Yoo et al., 2018; Xu et al., 2014;
Zhang et al., 2016), Support Vector Machine (SVM) (Ho et al., 2014;
Moser et al., 2015; Yoo et al., 2018; Zhang et al., 2016) and Neural
Networks (NN) (Jang et al., 2004; Zhang et al., 2016). Relying on a
satisfactory relationship between Ta and its predictors, empirical re-
gression algorithms use training and testing processes to learn how to
best estimate Ta, even in areas with the most heterogeneous landscape
characteristics.

Most of the previous studies focused on estimating Ta in hetero-
geneous areas have used general and advanced statistical approaches.
Yang et al. (2017) used multiple LR to estimate Ta during 2002–2016 in
north-east China. The study explored five products from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor on board the
Aqua satellite; six auxiliary data sets; and eight-day Tmax, Tmin, and
Tmean data from 123 meteorological ground stations. The best LR model
for eight-day Tmax run with LSTday, NDVI, mean day length, clear sky,
Julian day, and latitude achieved an Adjusted-R² of 0.90, RMSE of 4.63
°C, and MAE of 3.69 °C. Xu et al. (2014) applied LR and RF to estimate
daily Tmax for the summer period (June, July, and August) from 2003 to
2012 in British Columbia, Canada. As predictors, they selected five
products from Aqua MODIS, four auxiliary data sets, and data from 288
weather stations. RF presented the best performance model (MAE
=2.02 °C, R2 = 0.74) compared to the LR model (MAE =2.41 °C, R2 =
0.64). Benali et al. (2012) aggregated data from 106 meteorological
stations for eight-day periods between 2000 and 2009 to estimate
Portugal’s Tmax, using as predictors MODIS LST Day, MODIS LST Night,
and Day length. They obtained an RMSE of 1.83 °C.

The literature has so far discussed temperature–mortality associa-
tions at country (Guo et al., 2018), region (Armstrong et al., 2011), and
city levels (Gasparrini et al., 2015). The impasse in assessing summer
deaths attributable to high temperatures on a local scale is due to the
lack of Tmax measurements at the same spatio-temporal resolution as
mortality data; namely, daily records at census level. This study aims to
address the literature gap by investigating the most suitable method
and group of predictors to retrieve Tmax at an appropriate spatio-tem-
poral resolution for census-specific levels. This research brings two
novel contributions to knowledge: (i) the daily estimations of Tmax for
London at 1 km2 within 11 years (2006–2017) using advanced statis-
tical techniques and satellite-derived predictors, and (ii) the application
for the first time of the gradient boosting method to estimate Tmax for an
urban area.
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2. Study area

The study area is London, which is located in South East England
and has a population of nearly nine million (Office for National
Statistics (ONS, 2018 within an area of 1572 km². According to the
Köppen climate classification, the UK is defined as having a warm
temperate climate, fully humid with a warm summer Kottek et al.,
2006). The Meteorological Office (Met Office) divides the UK into 11
regional climates; each climate region has different maritime and lati-
tudinal influences. London is placed in Southern England (Met Office,
2018). It is located between latitudes 51°40′ and 51°1′ N and longitudes
0°30′ W and 0°20′ E; around 75 km from the English Channel (the UK’s
south coast), and 60 km from the North Sea (the UK’s east coast).
London’s topography is predominantly flat; excepting the North Downs
on the southern border, reaching up to 200 m above sea level, and the
Chiltern Hills on the north-western border, reaching up to 160 m. The
lowest areas are located in the London Basin, from the Thames estuary
(city centre) towards the eastern border (Grawe et al., 2013).

3. Data

3.1. Meteorological data

Daily Tmax records for June, July, and August between 2006 and
2017 from 29 weather stations were provided by the Met Office
Integrated Data Archive System (MIDAS) network (Met Office, 2006).
The Ta data was spatiotemporally adjusted with the predictors for the
learning process in the regression models. Due to the poor meteor-
ological network coverage, the original boundary of London had to be
expanded from 60 × 50 km to 100 × 100 km. (Fig. 1).

3.2. Earth observation satellite data

Terra sun-synchronous polar orbit satellite carries two sensors ex-
plored in this study: MODIS and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER). Table 1 shows the four
MODIS products version 6 level 3 used: Land Surface Temperature
(LST), Sun Zenith Angle (SZA), Normalised Difference Vegetation Index

(NDVI) (Fig. 2) and Black Sky Albedo (BSA)), and one ASTER product,
Digital Elevation Model (DEM) (Fig. 3) (Didan, 2015a, b; Schaaf and
Wang, 2015). BSA was selected as the albedo product since it represents
the total solar energy reflected by the Earth’s surface, also known as
directional-hemispherical reflectance (Abraha and Savage, 2008).

Some pre-processing steps were undertaken before the data syn-
chronisation. Daily LST pixels with an average error higher than 2 K or
cloud-contaminated were removed (Wan et al., 2015). BSA images
provided at 500 × 500 m and DEM images at 30 × 30 m were upscaled
using bilinear interpolation to match the spatial resolution of the other
predictors. Bilinear interpolation is often used to resample data that
does not have distinct boundaries (such as temperature, precipitation
and DEM) since it computes the average of the four nearest pixels,
avoiding assumption based on a single pixel (as the nearest neighbour
method).

3.3. Auxiliary data

Four auxiliary variables were also included based on their perfor-
mance reported in the literature. Distance to the coast (metres) was
calculated for each 1 km2 pixel inside the bounding box area (Fig. 1).
Julian day has been used in the literature to reflect temporal and sea-
sonal variations in Tmax (Jang et al., 2004; Noi et al., 2016; Yang et al.,
2017; Zeng et al., 2015). Latitude and longitude coordinates from each
1 km2 pixel were used as spatial components in the regression methods
(Benali et al., 2012; Ding et al., 2018; Good, 2015; Yang et al., 2017;
Zeng et al., 2015).

4. Methodology

4.1. Regression methods

Traditional statistical parametric regressions (i.e. LR) describes the
relationship between the dependent variable (Tmax) and the predictors
by using a known function, a fixed set of parameters, and predefined
assumptions about the data (for example, the mean and standard de-
viation of a normal distribution). Conversely, non-parametric regres-
sions (such as ML) make minimal assumptions about the data and try to
build the mathematical model (an optimal regression function for a
specific data) based on what the model has learnt from the training
samples.

A variable importance ranking was constructed using a stepwise
linear regression to explore the potential contribution of each predictor
to Tmax retrieval in each model. This regression was only used in this
study for this purpose; therefore, it was defined as Method 0. One
parametric regression and five ML regression methods are investigated
here to predict Tmax: (i) Method 1 – LR, (ii) Method 2 – Decision Trees
(DT), (iii) Method 3 – RF, (iv) Method 4 – Gradient Boosting (GB), (v)
Method 5 – SVM and (vi) Method 6 – NN.

Method 1 is an intrinsically linear model, where the relationship
between the dependent variable and the predictors can be explained by
a straight line. LR is the most common regression approach explored in
the literature to predict Ta since it produces a performance diagnostic
with many outputs. Although ML algorithms are best known for dealing
with complex nonlinear relationships, they can also be implemented to
enhance the understanding of linear relationships. Method 2 – DT is a
supervised, tree-building ML algorithm, designed to determine the most
logical data splits into smaller and smaller subsets. The first split con-
siders all predictors (but it might change within different optimisation
strategies) and the decision of which predictor should be selected in the
next split is based on the candidate with the lowest burden to the model
accuracy. This burden is measured by the cost function that tries to find
the predictor with less heterogeneity, which means with small varia-
bility. After the selection of the first predictor, the following splits will
perform under the same strategy. Method 3 – RF is a supervised, tree-
building ML algorithm which operates using many decision trees

Fig. 1. Location of the weather stations (red square markers) and bounding box
(green dashed square). The blue line is the nearest English coast to London (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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trained in parallel. Therefore, multiple independent decision trees
(known as bagging ensemble method) use training data provided from a
random sampling with replacement from the original training set. The
final accuracy results are the average of the performance of all decision
trees. This ML model is the second-most-common regression approach
in Ta estimation from satellite-derived products, after LR. This multiple
tree-based structure helps the model to become more robust, compared
to a single decision tree, and also reduces the chances of overfit on the
training data. Method 4 – GB is a supervised, tree-building ML algo-
rithm which operates using many decision trees trained in sequence.
Therefore, multiple dependent decision trees (known as boosting en-
semble method) use training data provided from a random sampling
with replacement from the original training set based on a weighted
condition. Differently from RF, each decision tree receives a perfor-
mance weight which is used to build the next decision tree model.
Models with low performance are assigned a lower weight, then the

subsequent decision trees concentrate on these weak learners during
their training. The final accuracy results are taken from the weighted
average of all decision trees’ performance.

Linear–SVM (Method 5) and LR (Method 1) are similar regression
methods since both methods try to explain the relationship between the
dependent variable and the predictors using a linear kernel. The dif-
ference is Linear–SVM algorithm adds two auxiliary straight lines to
define which are the training set points located on or close to the de-
cision boundaries. Therefore, the points that fall inside this margin are
those training samples already explained by the model and do not
generate any cost for the model performance. Therefore, the algorithm
focuses on those points outside the decision boundary to build the
model. Method 6 – NN is a ML method inspired by the biological
learning process of a complex set of interconnected neurons. A multi-
layer perceptron (MLP) is a class of feedforward NN composed of
multiple layers of computational units and utilises a supervised learning
algorithm technique called backpropagation. Each input (predictor) is
multiplied by a specific weight and the sum of these weighted inputs on
each hidden neuron is then multiplied by a specific bias. If this final
result from each hidden neuron passes the threshold defined by the
activation function, the information will then move towards the output
layer. All information that arrives on this last layer is summed up, re-
turning a prediction in the range of the dependent variable.

4.1.1. Model fitting
The 29 weather stations did not provide a complete time series of

Tmax measurements from 1 June 2006 to 31 August 2017 since some
weather stations were activated and others deactivated during the ob-
served period. Therefore, data collected from the weather stations and
the predictors were combined in a unique and large database to pro-
duce a robust sample size, providing enough training and testing ex-
amples for the regression models. All the Tmax measurements were
treated as independent observations where the latitude, longitude and
Julian day, were included as spatial and temporal components of the
measured Tmax.

4.1.2. Model calibration, validation, and accuracy
An exploratory analysis was initially conducted to compute the

predictors’ Pearson correlation coefficient (r). Sequentially, a stepwise
regression approach was performed to rank the predictors and verify
their significance for the model (Lin et al., 2012; Yoo et al., 2018; Zhang
et al., 2016). In all regression models, the data set was randomly split
into 70 % training (calibration) and 30 % testing (validation). In this
study, R squared (R2), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE) were used as metrics for validation and com-
parison of the six statistical models. These performance measurements
were adopted due to their universal use in the literature to compare
regression models within the same study or with other papers of the
same scope. The difference between MAE and RMSE depends on the
variance in the individual errors in the sample. Both metrics have the
same unit of the variable of interest; they are known as negatively or-
iented scores (Chai and Draxler, 2014).

Table 1
Summary of the satellite products used and the list of previous studies which have used them to predict Ta. London is spread over two MODIS tiles.

Product Name Pixel Size Temporal Granularity Total images Previous studies which have used the following satellite products

MODIS
LST MOD11A1 1 km² Daily 2208 Benali et al., 2012; Chen et al., 2016; Vancutsem et al., 2010; Yang et al., 2017; Zhu et al., 2013
SZA MOD13A2 1 km² 16-Day 144 Jang et al., 2004; Vancutsem et al., 2010; Zeng et al., 2015
NDVI MOD13A3 1 km² Monthly 72 Chen et al., 2016
BSA MCD43A3 500 m² Daily 2208 Chen et al., 2016; Ding et al., 2018; Noi et al., 2016; Yang et al., 2017
ASTER
DEM ASTGTM 30 m² Single (2011) 2 Chen et al., 2016; Jang et al., 2004; Noi et al., 2016; Yang et al., 2017; Zeng et al., 2015

Fig. 2. NDVI from the month of June 2013, obtained from MODIS sensor.

Fig. 3. DEM obtained from ASTER sensor.
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5. Results

5.1. Feature contribution

Table 2 presents the Pearson correlation results, showing the LST
was the predictor with the highest degree of correlation with London’s
Tmax, demonstrating a positive correlation of 0.74, followed by NDVI (r
= -0.21) and DEM (r = -0.158). Although the other predictors pre-
sented less than± 0.15 correlation, some of them demonstrated a sig-
nificant contribution to estimating Tmax in the regression models.

Using a forward selection approach, the stepwise process creates a
predictor ranking: a sequence of groups, starting with the first model
using only the predictor that had the smallest probability of F (ρ-value),
which in this study was LST, up to the total number of predictors
considered in the analysis. The summary of the stepwise regression
model is presented in Table 3. As can be noticed, even obtaining the
fourth-strongest correlation with Tmax, Julian day was considered as the
second-most relevant predictor. All predictors proposed in this study
were relevant to estimate London’s Tmax, using a confidence level of 95
%. The predictors’ list was ranked as follows: LST, Julian day, NDVI,
DEM, SZA, BSA, distance from the coast, latitude and longitude. The B
column contains the unstandardized coefficients which represent the
magnitude and direction (positive or negative) of the predictor’s effect
on the dependent variable. As demonstrated by Table 3, even latitude
and longitude having a significant association with Tmax, their effect on
the Tmax estimations was negligible.

A histogram of regression standardised residual (Fig. 4) and the
normal P-P Plot (Fig. 5) were created based on the regression model
performed with Model 9. As can be noticed, they presented a normal
distribution behaviour, with the classical bell shape and a linear pattern
plot, respectively.

5.2. Performance of models

Based on the stepwise regression results, nine groups of predictors
were created to check the performance of the six regression methods
using a sample size of 6.442 observations. For comparison purposes,
Table 4 shows the performance metrics (R², MAE, and RMSE) of the 54
regression models. The R² results from Method 0 are displayed together
with Method 1, since both are based on a linear regression approach.

The R² range of all models was between 0.32 (Method 2, Groups 2 and 3) and 0.68 (Method 4, Groups 4 and 5). The RMSE ranged from
2.99 °C (Method 2, Group 2) to 2.03 °C (Method 4, Group 5). The MAE
ranged from 2.27 °C (Method 2, Group 3) to 1.59 °C (Method 4, Group
4). The GB method outperformed all methods in all groups except
Group 1, where Methods 5 and 6 presented the lowest RMSE (2.46 °C)
and MAE (1.92 °C). The models using a single DT (Method 2) obtained
the worst performance of the 54 models, except for Method 2/Group 1,
which presented a close result but still lower than the other models. As
can be noticed, a single decision tree (Method 2) was unable to capture
the variability of Tmax; therefore, in the following comparative results,
the models performed with Method 2 were not considered. The method
and group combination which presented the best performance was
Method 4 (GB) and Group 5 (LST, Julian day, NDVI, DEM, and SZA)
with R² = 0.68, MAE = 1.60 °C, and RMSE = 2.03 °C. Although Group
9 offered good statistical results in almost all models, the parsimonious
model was achieved using fewer predictors, as in Group 5.

Table 2
Pearson correlation (r) results.

NDVI DEM Lat BSA SZA Long Coast Julian LST

−0.21 −0.158 −0.095 −0.074 −0.027 −0.001 0.069 0.127 0.74

Table 3
Stepwise regression results for the model with all predictors.

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.

B Std.
Error

Beta

(Constant) 15.592 1.624 9.599 0
LST 0.589 0.008 0.796 77.94 0
Julian day 0.037 0.002 0.265 20.344 0
NDVI 4.863 0.289 0.202 16.817 0
DEM −0.007 0.001 −0.105 −8.789 0
SZA −0.061 0.008 −0.095 −7.279 0
BSA −9.914 1.649 −0.063 −6.012 0
Distance from

the coast
−0.0390 0.004 −0.210 −9.254 0

Latitude −2.54E-11 0.000 −0.180 −8.652 0
Longitude 1.21E-11 0.000 0.083 6.655 0

Fig. 4. Histogram of regression standardized residual of a stepwise regression
model with all predictors included.

Fig. 5. Normal P-P Plot of regression standardized residual of a stepwise re-
gression model with all predictors included.
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5.3. Performance of the parsimonious model

Using the parsimonious model, Tmax predictions for two summer
days of 2013 were provided for all London’s grid cells. Fig. 6 shows the
distribution of predicted Tmax for 6 June, ranging from 19.90 °C to 24
°C, and Fig. 7 shows the distribution of predicted Tmax for 6 July, from
24.7 °C to 29.7 °C. In both figures, the light grey polygons are the
London boroughs and the green polygon is the Richmond Park (ap-
proximately 10 km2). The interesting finding in plotting daily Tmax was
the variability in the Tmax intensity inside the London boundary. The
Tmax predictions match with the physical and thermal characteristic of
the city.

Most of the grid cells located on the outskirts of the city presented
cooler Tmax and these areas are known as the London’s green belt
(London First, 2018). Other areas that also presented lower Tmax are

located at higher elevation (Fig. 3), for example those located at the
north of the Borough of Camden, the west of the Borough of Haringey,
the south of the Borough of Lambeth and Southwark, the west of Le-
wisham, and the majority of the grid cells inside the boroughs of Sutton,
Croydon and Bromley. Conversely, it is possible to recognise the urban
influence that has warmed up many grid cells throughout the city.
There is a noticeable difference in temperature amplitude between the
cooler pixels previously described and the warmer pixels located at
densely built-up areas spread out both north and south of the River
Thames.

Table 4
Performance results of 9 groups of predictors on each regression method, computing 54 regression models. The best result is highlighted in grey.

Fig. 6. Tmax predictions across London on 6 June 2013. The daily Tmax average
was 20.8 °C.

Fig. 7. Tmax predictions across London on 6 July 2013. The daily Tmax average
was 26.1 °C.
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6. Discussion

6.1. Variable importance and significance

According to Zakšek and Schroedter-Homscheidt (2009), Ta is in-
directly driven by the LST. The exploratory analysis showed that the
LST is the most relevant predictor for estimating London’s Tmax. This
strong relationship has also been found in many other studies which
have retrieved Ta from satellites (Benali et al., 2012; Chen et al., 2016;
Ho et al., 2014; Vancutsem et al., 2010; Weng, 2009; Xu et al., 2014;
Yang et al., 2017; Yoo et al., 2018; Zakšek and Schroedter-Homscheidt,
2009; Zhu et al., 2013). Due to the small number of investigated months
(only June, July, and August), the initial assumption was that Julian
day would not be a relevant predictor; however; it was found to be
more important than NDVI, DEM and SZA, in agreement with Jang
et al. (2004). The stepwise results also demonstrated that even latitude
and longitude being significant to Tmax estimations, their contribution
to predict Tmax for London was not relevant. As mentioned before,
climate is influenced by latitude, but its relevance as a predictor might
be associated with a study area of hundreds of thousands of kilometres.
The size of London (approx. 1.572 km2) is relatively small where not
much variability in the coordinate values is seen between 1 km2 pixels.
However, previous studies have presented evidence of the latitude and
longitude importance on providing Ta prediction for very large areas
(e.g. country level) (Benali et al., 2012; Ding et al., 2018; Good, 2015;
Yang et al., 2017; Zeng et al., 2015).

6.2. Performance comparison between models

Table 4 displays the performance results of 54 regression models
that were investigated to determine the parsimonious model to predict
Tmax for London. The hypothesis was that all the selected predictors
would be relevant to retrieving Tmax for London. This assumption was
confirmed through statistical investigations; however, the parsimony
principle relies on the selection of the simplest scientific explanation
that best illustrates a relationship, with the fewest assumptions and
variables but with high informative power (Forster, 1999). Therefore,
even though all the proposed predictors were significant, the selected
model was the one which required the smallest number of predictors to
perform Tmax estimation with the lowest accuracy error.

Method 1 was the only parametric regression method included,
where the description of the performance was already explained by
Method 0 since both are linear regression methods. Method 2 was the
first ML method implemented, which uses a single decision tree algo-
rithm and presented the lowest performance comparing to all other
regression methods. The underperformance and instability are often
mentioned in the literature when this method is compared to other tree-
building algorithms (Dwyer and Holte, 2007). The meaning of in-
stability is defined as the large difference in accuracy between the
training and testing sets. When using many predictors with a wide
range of values, the tree also becomes too large and deep which makes
the interpretation of each predictor’s effect more difficult, weakening
the strengths of the decision. The good performance demonstrated by
RF (Method 3) and GB (Method 4) models is explained by their ability
to use a combination (in parallel or in sequence) of hundreds or thou-
sands of trees to efficiently determine which are the strong and weak
training trees’ settings, allowing more opportunities to find the best
model fit and providing higher stability.

An additional examination was performed in four ML methods
(Method 2 was excluded from this analysis). Using the results presented
in Table 4, the first analysis was performed by column, keeping the
group of predictors for all methods constant. As evidenced, Method 4
had a higher performance than Methods 3, 5 and 6 for eight groups
(from Group 2 to Group 9). An examination of the groups provides
evidence of improvements in the models caused by the use of a ML
method (Methods 2–6) rather than a parametric method (Method 1). An

RMSE improvement of 10 % from the reference (Method 1) was defined
to determine in which models the use of ML methods was relevant,
based on the default parameters configuration of each algorithm.
Method 4 was the only ML method to present an RMSE improvement
above 10 % in all groups (except Group 1) with the highest improve-
ment on Group 5 (14.35 %). Method 3 reached the threshold on Groups
5–7, Method 5 on Groups 6–7 and Method 6 on Group 7. These results
explain why the linear regression approach is still the most popular
regression method implemented in the literature to predict Ta. The
reasons draw upon not only the small RMSE improvement from ML
methods, but mostly because it is easier to implement this parametric
regression method and to interpret the performance indicators. How-
ever, the disadvantage of this parametric method is in its default as-
sumptions about the data, for example, normality of residuals, constant
variance and a true linearity of the modelled relationship (Helsel and
Hirsch, 1992). In the cases where the relationship between the depen-
dent variable and the predictors is not linear, these default assumptions
cannot be accepted; therefore, the linear regression is not a suitable
method to perform the predictive analysis.

The second analysis was performed by row, keeping the regression
method constant for all groups. It is important to highlight that for
Group 1 the performance from Method 1 to Method 6 was very similar.
Analysing the results based on this horizontal structure, the out-
performance of ML methods in relation to the parametric method is
evident. Method 1 did not improve with the addition of more predictors
from Group 1 to Group 9, with the RMSE falling by 4 %. However,
Method 4 obtained 16 %, the second-highest RMSE improvement
(Method 3 was 21 %), followed by Method 5 (12 %) and Method 6 (11
%). Evaluating the RMSE improvements group by group, it was found
that the addition of Julian brought the biggest improvements for
Methods 3–4 (around 10 %) while it was only around 3 % for Methods 5
and 6. The addition of NDVI and DEM also generated a bigger im-
provement to all methods (around 7 % and 3 %). After LST, NDVI is the
most common variable used in LST-based modelling approaches: (i)
TVX models (Agam et al., 2007; Vancutsem et al., 2010; Zhu et al.,
2013), (ii) energy balance models (Zakšek and Schroedter-Homscheidt,
2009; Sun et al., 2005) and (iii) advanced analytic models (Chen et al.,
2016; Didari et al., 2017; Ding et al., 2018; Lin et al., 2012; Noi et al.,
2016; Yan et al., 2009; Yang et al., 2017). After Group 5, the addition of
a new predictor produced only small improvement in RMSE. The var-
iation in the method performance between groups demonstrates that
each ML method has a different learning process and a different way to
understand the data, and each of them provide their own predictive
algorithm which best approximates to the real estimations.

6.3. Comparison with previous studies

The examination of the remote sensing literature shows that none of
the studies using satellite-based ML models to predict Ta are exactly the
same, mostly because of the following differences: (i) Ta type (Tmean,
Tmax, or Tmin), (ii) geographical location, (iii) size of the case study, (iv)
statistical modelling approach, (v) temporal resolution (daily and
monthly), (vi) predictors type and source, and (vii) observation period
(Bechtel et al., 2017). Therefore, it is difficult to compare the results
with previous studies. However, the literature uses similar statistical
metrics (R2, RMSE and MAE) to report the results.

The literature on the use of satellite-based ML models is con-
centrated on providing Ta prediction for very large areas (hundreds of
thousands of square kilometres) by reason of the coverage limitations of
meteorological stations (Benali et al., 2012; Chen et al., 2016; Jang
et al., 2004; Kloog et al., 2014; Vancutsem et al., 2010; Xu et al., 2014;
Yang et al., 2017; Zhang et al., 2016; Zhu et al., 2013). However, these
studies did not extract a smaller area to discuss their results at local
level. Inside the hundreds of thousand km2, there are several cities
(such as London with 1.569 km²) for which the Ta pattern, intensity and
variation could be reported and compared with other cities from the
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same country. Only a few studies have investigated urban areas using
satellite-based ML models to retrieve Ta (Ho et al., 2014; Yoo et al.,
2018).

Ho et al. (2014) used LST, DEM, solar view factor, solar radiation
and normalised difference water index to predict daily Tmax for Greater
Vancouver (Canada) (2.700 km²). The data set was built based on Tmax

records from 59 weather stations for the summertime period between
2001 and 2010. The study explored three regression models and RF
presented the best results (RMSE = 2.3 °C), which was higher com-
paring the RMSE obtained for London using the novel approach (gra-
dient boosting (Method 4), RMSE = 2.03 °C) and the RMSE obtained by
the Method 3 (RF, RMSE = 2.13 °C). Yoo et al. (2018) used a RF
method to estimate daily Tmax for two cities: (i) Los Angeles (USA), with
1.290 km², and (ii) Seoul (South Korea), with 650 km². Their temporal
coverage (July and August from 2006 to 2016) was similar to the ob-
servational period used for London (which is June, July and August
from 2006 to 2017). Yoo et al. (2018) also used LST, NDVI, DEM, la-
titude and longitude as Tmax predictors; however, eight types of LST
images were included per day from different Terra and Aqua passing
times. Since LST is the most important variable to predict Tmax, the
addition of multiple-types of LST will increase the model accuracy;
therefore, as the result their model presented an RMSE lower than 2 °C.
However, there is a trade-off between the RMSE improvement, by
adding more LST types, and the sample size reduction since the pre-
diction can only be performed if all LST types are cloud-free for each
grid cell. Based on the parsimony principle, the most suitable model to
predict London’s Tmax did not only have to present the lowest accuracy
error, as the majority of the studies in the literature aimed, but also to
provide the maximum number of 1 km2 grid cells able to have the Tmax

predicted by the model.

6.4. Spatial distribution of Tmax

Figs. 6 and 7 showed the spatial distribution of London’s predicted
Tmax on 6 June and 6 July 2013, respectively. The results provide
evidence of the cool and warm effects from land cover elements on the
Tmax variability at the local level. Examples of cooler influence include
high elevation, large vegetation coverage (such as Richmond Park), and
water bodies (such as rivers, canals, and reservoirs). Examples of
warmer influence include built-up areas and intense traffic that where
located at the west of the reservoirs, in the Boroughs of Enfield and
Haringey, as well as to the east in the borough of Waltham Forest. These
areas have high population density. Along the west side of the re-
servoirs there are also a lot of manufacturing sites, which are embedded
within the housing stock. This high density of residential addresses
continues towards the River Thames, extending across the boroughs of
Hackney, Islington, Tower Hamlets, and Newham. The lowest-elevation
areas are located in the London Basin, from the Thames estuary (city
centre) towards the eastern border. The River Thames is an important
pervious surface that crosses London from west to east; however, its
daytime contribution on the Tmax predictions is not evidenced along all
its path. Two hypotheses are highlighted as plausible explanations.
First, the river’s width is only 250 m at Tower Bridge (between the
Boroughs of Tower Hamlets and Southwark) and less than 100 m next
to Richmond Park; therefore, the heat mitigation caused by the river
might have been lost in a 1 km2 grid cell, not being able to compute its
effects on the surrounding areas. Second, the intensity of traffic flows
and densely built-up areas along the river (a mix of residential, com-
mercial, and industrial uses) might have inhibited the cooling effects
from this water body during the day.

7. Conclusion

This research analysed the performance of 54 regression models,
assembled from 6 regression models, 6 satellite products, 3 geospatial
features, and 29 meteorological stations, to select the parsimonious

model to retrieve daily Tmax for London. It contributes to the literature
through the development of a novel ML approach, by utilising for the
first time the GB algorithm calibrated with EO data to retrieve Tmax at
high spatio-temporal resolution in an urban area. The predictive errors
of the parsimonious model (MAE = 1.60 °C and RMSE = 2.03 °C) are
comparable to those reported in previous studies, despite the small
study area and the small number of weather stations. The contribution
of satellite products has proven to be crucial for the estimation of es-
sential climate variables; therefore, more research attention must be
given to the exploration of these data sources.

The research findings provide benefits for public health policies
regarding adaptation and mitigation responses to climate change. They
will assist epidemiologists and health professionals to improve their
estimations of the mortality burden attributed to high temperatures at
intra-city levels. Practitioners and policymakers can also rely on this
data set to better understand the spatial distribution of Tmax and detect
UHI anomalies, allowing the prioritisation of actions to mitigate heat-
related mortality amongst the vulnerable population.

Future research on advanced statistical techniques might explore
the development of an appropriate Tmax data set for census-specific
levels, aiming to provide correct local climate data for epidemiological
studies on the associations between temperature and mortality.
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