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Abstract

Background: Routine asymptomatic testing using RT-PCR of people who interact with vulnerable populations, such
as medical staff in hospitals or care workers in care homes, has been employed to help prevent outbreaks among
vulnerable populations. Although the peak sensitivity of RT-PCR can be high, the probability of detecting an
infection will vary throughout the course of an infection. The effectiveness of routine asymptomatic testing will
therefore depend on testing frequency and how PCR detection varies over time.

Methods: We fitted a Bayesian statistical model to a dataset of twice weekly PCR tests of UK healthcare workers
performed by self-administered nasopharyngeal swab, regardless of symptoms. We jointly estimated times of
infection and the probability of a positive PCR test over time following infection; we then compared asymptomatic
testing strategies by calculating the probability that a symptomatic infection is detected before symptom onset and
the probability that an asymptomatic infection is detected within 7 days of infection.

Results: We estimated that the probability that the PCR test detected infection peaked at 77% (54–88%) 4 days
after infection, decreasing to 50% (38–65%) by 10 days after infection. Our results suggest a substantially higher
probability of detecting infections 1–3 days after infection than previously published estimates. We estimated that
testing every other day would detect 57% (33–76%) of symptomatic cases prior to onset and 94% (75–99%) of
asymptomatic cases within 7 days if test results were returned within a day.

Conclusions: Our results suggest that routine asymptomatic testing can enable detection of a high proportion of
infected individuals early in their infection, provided that the testing is frequent and the time from testing to
notification of results is sufficiently fast.
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Background
Detection of current infection with severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) is a crucial
component of targeted policy responses to the COVID-
19 pandemic that involve minimising infection within
vulnerable groups. For instance, residents and staff in
care homes may be tested regularly to minimise out-
breaks among elderly populations [1]. Alternatively,
healthcare workers (HCWs) may be routinely tested to
prevent nosocomial transmission to patients who may
have other comorbidities [2, 3]. Both of these popula-
tions have a substantially higher risk of fatality from
COVID-19 infection than the general population [4, 5].
In the UK, testing commonly uses polymerase chain

reaction (PCR) to detect the presence of viral ribonucleic
acid (RNA) in the nasopharynx of those sampled [6].
The sensitivity of PCR tests at any given point during in-
fection depends upon the amount of viral RNA present;
this increases at the start of the infection up to the peak
viral load, which appears to occur just before, or at, the
time of symptom onset [7–9]. Viral load then decreases,
but infected individuals continue to shed viral RNA for
an average of 17 days after initial infection (but this can
be far longer than the average, the longest observed
duration has been 83 days) [10]. A greater severity of
illness is frequently associated with a significantly lon-
ger duration of viral shedding [11–13]. Asymptomatic
infections have been found to have similar viral loads
to symptomatic cases around the time of infection,
but instead exhibit shorter durations of viral shedding
in some studies [14].
Estimates of temporal variation in the probability of

detecting infections by PCR are crucial for planning ef-
fective routine asymptomatic testing strategies in set-
tings with vulnerable populations. The testing frequency
required to detect the majority of infections before they
can transmit onwards will depend on both how soon—
and how long—an individual remains positive by PCR
test. Measuring the probability that testing will detect
SARS-CoV-2 at a given time-since-infection is challen-
ging for two main reasons. First, it requires knowledge
of the timing of infection, which is almost always unob-
served. Second, it requires a representative sample of
tests done on people with and without symptoms per-
formed at many different times with regards to the time
of infection. Testing is usually performed on symptom-
atic infections after symptom onset, leading to an unrep-
resentative sample [15].
To address these challenges, we analysed data that

covered the regular testing of healthcare workers in
London, UK. We inferred their likely time of infection
and used the results of the repeated tests performed over
the course of their infection to infer the probability of
testing positive depending on the amount of time

elapsed since infection. This overcame the bias towards
testing around the time of symptom onset, although we
focused on data from symptomatic infections so that the
timing of symptom onset could be used to infer the
likely time of infection.

Methods
We used data from the SAFER study [16] conducted at
University College London Hospitals between 26 March
and 5 May 2020, which repeatedly tested 200 patient-
facing HCWs by PCR and collected data on COVID-19
symptoms at the time of sampling [16]. Samples were
tested utilising the pipeline established by the COVID-
Crick-Consortium. Individuals were asymptomatic at en-
rolment and were tested for SARS-CoV-2 antibodies at
the beginning and end of the study period. During the
study, HCWs were asked to try and provide two samples
per week. Out of the 200 HCWs enrolled in the study, 46
were seropositive at the first antibody test, which occurred
some time between 27 March and the 6 April. Out of the
remaining HCWs, 36 seroconverted over the study period,
and 42 returned a positive PCR test at some point during
the study (a detailed analysis of the characteristics of this
HCW cohort can be found in Houlihan et al. [16]). We fo-
cused on a subset of 27 of these HCWs that seroconverted
during the study period and reported COVID-19 symp-
toms at one or more sampling times (Fig. 1); the other 15
seropositive individuals were excluded because they had
asymptomatic infections. Combining data on 241 PCR
tests performed on self-administered nasopharyngeal sam-
ples from these 27 individuals, we estimated the time of
infection for each HCW as well as simultaneously estimat-
ing the probability of a positive test depending on the time
since infection.
We developed a Bayesian model to jointly infer both the

likely infection time for each individual and the probability
of a positive PCR test depending on the time since infec-
tion across all individuals. We used a likelihood function
specifically for inferring parameters from censored data
[17] to derive a posterior distribution for the time of infec-
tion. This accounts for the fact that the true onset time is
censored, i.e. symptom onset for each individual could
have occurred anywhere between their last asymptomatic
report and their first symptomatic report. Specifically, in-
dividual i has their likely infection time, Ti, inferred based
on the interval between their last asymptomatic report,

tlasti , and their first symptomatic report, tfirsti . The log-
likelihood for the infection time for person i is as follows:

L Tijtfirsti ; tlasti

� �
¼ log F tfirsti −Ti

� �
−F tlasti −Ti

� �� �

where F is the cumulative density function of the lognor-
mal distribution for the incubation period of COVID-19
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as estimated in Lauer et al. [18]. For a detailed descrip-
tion of the procedure used to arrive at the onset times
from the censored data and list of the sources of uncer-
tainty in our model, see Additional file 1: Section D.
For a given inferred infection time for person i, the re-

lationship between the time since infection and a posi-
tive PCR test on person i, PCRþ

n;i , administered at time
tn, i is given by a piecewise logistic regression model with
a single breakpoint:

PCRþ
n;i � Bernoulli logit‐1 β1 þ β2xþ β2β3xI xð Þ� �� �

;

x≔tn;i−Ti−C;

where C is the time of the breakpoint, x is the amount
of time between infection and testing minus the value of
the breakpoint, I(x) is a step function that equals 0 if x <
0 or equals 1 if x > 0, and the β terms define the

regression coefficients fit across all tests and people (see
Table 1 for parameter details).
To ensure biological plausibility, each individual was

assumed to have a negative result at their precise time of
infection to constrain the PCR positivity curve to have 0
probability of detection at 0 days since infection. We fit-
ted the model using R 4.0.3 [19] and Stan 2.21.2 [20];
the data and the code required to reproduce the figures
and results of this study can be found at the public
github repository: https://github.com/cmmid/pcr-profile.
We ran four Markov chain Monte Carlo chains for 2000
samples each, discarding the first 1000 samples from
each chain as warm-up iterations. Convergence of the

chains was assessed using the R-hat statistic being R̂ < 1
:05 for each model parameter.
We also performed a sensitivity analysis whereby the

testing data for one HCW at a time was left out from

Fig. 1 Testing and symptom data for the 27 individuals used in the analysis. Each point represents a symptom report and PCR test result. The
border of the point is green if the PCR test result was positive and purple if it was negative. The inside of the point is red if the individual
reported symptoms and white if they did not. Black crosses show the date of the initial negative serological test. Points are aligned along the x-
axis by the timing of each participant’s last asymptomatic report

Table 1 Summary of model parameters and the median and 95% credible interval from their fitted posterior distributions

Parameter Description Interpretation Posterior median
(95% credible interval)

C Breakpoint of piecewise regression The time at which PCR positivity peaks 3.18 days post-infection
(2.01 to 5.11)

β1 Intercept of both regression curves N/A 1.51 (0.80 to 2.31)

β2 Slope of 1st regression curve The rate of increase in percentage of infections
detected after exposure

2.19 (1.26 to 3.47)

β3 Slope of 2nd regression curve The rate of decrease in the percentage of infections
detected, after the curve peaks

− 1.1 (− 1.2 to − 1.05)
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the model fitting procedure to see if the PCR testing
data for any individual HCW had an undue influence on
the overall regression fit (results are shown in Add-
itional file 1: Fig. S2).
We looked at two different ways of assessing the

performance of different routine asymptomatic testing
frequencies. Firstly, we calculated the probability that
a symptomatic case would be detected before symp-
tom onset; this demonstrates the ability of testing to
catch infections before people eventually self-isolate
due to symptoms (by which point they may already
have infected someone). Secondly, we calculated the
probability that an asymptomatic case is caught
within 7 days of infection, estimating how frequently
testing would need to be to detect asymptomatic in-
fections in a timely manner. The mathematical equa-
tions used to calculate each of these probabilities are
shown in Additional file 1: Section C.

Results
The model found that the majority of individuals in-
cluded in this analysis were infected around the begin-
ning of the study period in late March (Fig. 2). This
corresponds with a period of greatly increased hospital-
isation in London, which could potentially mean much
higher exposure to infectious COVID-19 patients. How-
ever, this analysis cannot say for certain where these
HCWs were infected.
We estimated that the peak median posterior probabil-

ity of a positive PCR test is 77% (54–88%) at 4 days after
infection. The median posterior positivity curve is
smoother than any individual posterior sample; this is
why this peak does not match the median value for the
breakpoint parameter, C, in Table 1 (see Additional file 1:
Fig. S3 for examples of unsmoothed posterior positivity
curve samples). The probability of a positive PCR test
then decreases to 50% (38–65%) by 10 days after

Fig. 2 The posterior of the infection time (Ti) of each participant. The posterior distribution of the infection time for each participant (purple)
alongside the censored interval within which their symptom onset occurred (green dashed lines). The square points show the results of PCR tests
on each individual; black points denote negative tests and red points denote positive tests
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infection and reaches virtually 0% probability by 30 days
after infection (Fig. 3a, b). Summary statistics for the
posterior distributions of the piecewise logistic regres-
sion parameters are shown in Table 1. We compared
our results for the probability of detection throughout
infection to previous results in Additional file 1: Section
A; we found a greater probability of detection 1 to 3 days
after infection and a consistently lower probability of
detection around 10 to 30 days after infection when
compared with previous results.
Our routine asymptomatic testing scenarios estab-

lished that the higher the frequency of testing, the higher
the probability that a symptomatic case will be detected
before symptom onset (Fig. 3c) and the higher the prob-
ability that an asymptomatic case is detected within 7
days (Fig. 3d). If there is a 1-day delay from performing
the test to delivering the result, then increasing the test-
ing frequency from every 4 days to every 2 days increases
the probability of detecting an asymptomatic infection
within 7 days from 76% (59–87%) to 95% (86–98%). A 2-
day delay between testing and notification compared to
a 1-day delay led to reduced probability of timely

detection in both testing scenarios (Fig. 3c, d). For ex-
ample, when testing every 2 days, the probability of de-
tecting a symptomatic infection before symptom onset is
58% (CI 40–74%) with a 1-day delay and 42% (CI 27–
57%) with a 2-day delay. This is because a longer delay
means that an infection must be caught earlier to allow
for a longer period of time between a test being adminis-
tered and the infected person being notified of the re-
sults. An increased delay from testing to notification
caused a greater relative reduction in the probability of
detecting an asymptomatic case within 7 days of infection
when the testing frequency was lower (Fig. 3d). Consider-
ing a smaller window of detection for asymptomatic infec-
tions (i.e. within 5 days rather than 7 days) resulted in
reduced probability of detecting asymptomatic infections
within such a window (see Additional file 1: Fig. S4).
When considering what is an acceptable testing fre-

quency for detecting a desired proportion of symptom-
atic cases prior to their symptom onset, there may be a
trade-off between testing frequency and the delay from
testing to notification. For example, the probability of
detecting a symptomatic case prior to onset is very

Fig. 3 Estimation of positivity over time, and probability that different testing frequencies with PCR would detect infection. a Ct value data for
the PCR tests in the SAFER trial. This plot does not show data for every individual included in the analysis. The x-axis shows a time since infection
using the median infection date inferred by the model. Points below the threshold of 37, indicating a positive result, are shown in red. Negative
results above 37 are shown in black. All negative results for which there is no ct value specified are given the value of 40. b Temporal variation in
PCR-positivity based on time since infection. The grey interval and solid black line show the 95% uncertainty interval and the mean, respectively,
for the empirical distribution calculated from the posterior samples of the times of infection (see Additional file 1: Section D for methodology).
The blue interval and dashed black line show the 95% credible interval and median, respectively, of the logistic piecewise regression described
above. c Probability of detecting virus before expected onset of symptoms, based on curve in b, assuming delay from test to results is either 1 or
2 days. Dashed black box shows a site of possible trade-off between testing frequency and results delay discussed in the text. d Probability of
detecting an asymptomatic case within 7 days, based on curve in b, assuming delay from test to results is either 24 or 48 h
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similar for a 2-day testing frequency with a 2-day notifi-
cation delay (42%, 27–57%) compared to a 4 day testing
frequency with a 1-day notification delay (40%, 27–53%).
This trade-off is depicted graphically in the dashed black
box in Fig. 3b.
During 2020, lateral flow tests (LFTs) with a turn-

around time of roughly 30 min for the detection of
SARS-CoV-2 have been developed and evaluated [21].
Such tests typically have a lower mean sensitivity than
standard PCR tests. However, the faster turnaround time
can aid the logistical challenge posed by rapid large-
scale testing. Thus far in our analysis, a positive PCR test
has been defined by a cycle threshold (Ct) value of less
than or equal to 37. However, given that Ct values are
also available for the tests in our dataset, we were able
to redefine test outcomes using different Ct value
thresholds that reflect the potential sensitivity of the
more recent LFTs, which can generally detect infectious-
ness (when viral loads are high) but not always infection
(when viral loads may be lower) [22].

The model was re-fitted using two potential LFT-like
definitions of a positive test: a Ct value of less than or
equal 28, or less than or equal to 25. The newly defined
test outcomes are shown in panel a of Figs. 4 and 5, along
with the corresponding estimates of test sensitivity as a
function of time since infection in panel b. We then used
the sensitivity curves in the symptomatic and asymptom-
atic testing scenarios with frequent testing, assuming no
delay between rapid test and result (reflecting the imag-
ined use case of LFTs, results shown in panels c and d).
For the hypothetical LFT test scenario compared to

the PCR tests, the peak probability of detection is lower,
with a peak probability of detection of 64% (33–85%) at
4.3 days after infection and 42% (13–70%) at 3.8 days
after infection for Ct values of 28 and 25, respectively.
The probability of detection by LFT also declines to neg-
ligible values far sooner after infection, by around 18
days, compared to around 30 days for PCR. However,
the uncertainty in the probability of detection curve is
wider for these hypothetical LFT tests compared to PCR

Fig. 4 A copy of Fig. 3 using a Ct value of 28 (instead of 37) to classify a test as positive or not. This is instructive of how a lateral flow test (LFT)
might perform as they seem to be less sensitive to infections with lower viral loads than PCR tests. In c and d, the probabilities of detection are
now considered with a 0-day delay since LFTs give results within minutes that can be passed on to the person being tested quickly
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because there were fewer positive tests to fit to overall.
The probability of detecting symptomatic cases before
symptom onset, or asymptomatic cases within 7 days of
infection, decreases when the Ct threshold for a positive
test is lower (panels c and d of Figs. 4 and 5). When the
Ct threshold is defined to be 25, even testing every 2 days
yields a median probability of detecting symptomatic
cases before onset below 50%.

Discussion
The ongoing COVID-19 pandemic has led to increasing
focus on routine asymptomatic testing strategies that
could prevent sustained transmission in hospitals and
other defined settings with at-risk individuals such as
care homes. Using data on repeated testing of healthcare
workers, we estimated that peak positivity for PCR tests
for SARS-CoV-2 infections occurs 4 days after infection,
which is just before the average incubation duration, in
agreement with other studies finding that viral load in
the respiratory tract is highest at this point [23, 24]. We

show the sensitivity of the results to the choice of incu-
bation period distribution in Additional file 1: Fig. S5.
We found a substantially higher probability of detec-

tion by PCR between 1 and 3 days after infection than a
previous study [25]. The low detection probabilities esti-
mated in the previous study for the period 1 to 3 days
after infection were fitted to very small amounts of data:
one observed negative test on each of 1, 2, and 3 days
after infection. Due to the fact that HCWs in the SAFER
study were repeatedly tested even when asymptomatic,
many of the tests took place close to the inferred infec-
tion times. This provided more test data for our model
to fit to for the period just after infection. We provide a
more rigorous exploration of the differences between
our results and existing work in Additional file 1:
Section A.
Our model also estimated much lower probabilities of

detection between 7 and 30 days after infection com-
pared to the models by Kucirka et al. and Hay and
Kennedy-Schaffer et al. A plausible explanation for this

Fig. 5 A copy of Fig. 3 using a Ct value of 25 (instead of 37) to classify a test as positive or not. This is instructive of how a lateral flow test (LFT)
might perform as they seem to be less sensitive to infections with lower viral loads than PCR tests. In c and d, the probabilities of detection are
now considered with a 0-day delay since LFTs give results within minutes that can be passed on to the person being tested quickly
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difference could be due to the sample collection method
and disease severity of the people being tested, leading
to different observed viral load dynamics. The SAFER
study data used here was collected from self-
administered tests by HCWs and the symptoms re-
corded were those that were compatible with SARS-
CoV-2 according to Public Health England, including a
‘new continuous cough or alteration in sense of taste or
smell’ [16]. Conversely, the datasets used for fitting the
Kucirka model consist mainly of HCW-administered
tests on hospitalised patients who are likely to have
more severe infections, a factor that has been associated
with a longer duration of viral shedding [10] in some
studies. As such, our curve for the probability of detec-
tion by PCR may constitute a closer approximation of
PCR test sensitivity over time in individuals with mild
symptomatic infections. This would make it particularly
useful for estimating the effectiveness of routine asymp-
tomatic testing strategies, which would seek to detect all
infections, not just the most severe.
Incorporating our estimates of PCR detection prob-

ability into a model of routine asymptomatic testing
strategies, we found that there is the potential for a
trade-off between the turnaround time for test results
and testing frequency (example in dashed black box,
Fig. 3c). This could be particularly relevant for settings
that do not have the resources or capacity for very high
frequency testing but could ensure prompt results. Al-
though our analysis focuses on the probability of testing
positive, any potential testing and isolation strategy
would also need to consider the potential for false posi-
tives, particularly at low prevalence [26].
The maximum probability of detection of 77% shown

by the curve in Fig. 3b refers to the whole population
and does not imply that an individual person’s peak
probability of being detected by a PCR test is 77%. The
curve is fitted to combined test results for many individ-
uals, each of whom will have had variation in the timing
of their particular peak probability of detection. This
variation is smoothed out over all individuals to lead to
the curve shown in Fig. 3b.
To explore the potential for rapid testing of individ-

uals, we examined how the curve in Fig. 3b would
change if the cycle threshold used to define a positive re-
sult was lowered, which mimics the detection capabil-
ities of lateral flow tests that are less able to detect
infections at higher Ct values [22, 27]. We estimated that
the probability of detection post-infection still peaks
around 4 days after infection, but that the peak probabil-
ity of detection is lower and the probability of detection
declines much faster after the peak. The reduced period
of time after infection during which a case might be de-
tected in our hypothetical LFT scenario compared to
PCR may help to explain some of the low sensitivities

for LFTs reported during the evaluation of LFT testing
programmes such as in Liverpool, where LFTs detected
only 48.89% of the infections that were later confirmed
by PCR [28]. In general, our estimates correspond with
previous observations that infections with lower viral
loads (which are likely to be older infections and will
have higher Ct values) are less likely to be detected by
LFTs compared to PCR.
We assumed that symptoms reported during the study

were due to clinical episodes of COVID-19 infection,
and not due to other respiratory infections with similar
symptoms. All individuals in the analysis seroconverted
over the course of the study, suggesting that such symp-
toms were likely to be associated with SARS-CoV-2
infection.
Our analysis is also limited by excluding asymptomatic

HCWs that seroconverted over the course of the study.
Symptomatic infections may have higher viral loads and
be more likely to be detected than asymptomatic infec-
tions, however this has not been found to be the case
elsewhere [14]. Our repeated testing model presents re-
sults for detecting asymptomatic infections that relies on
the assumption that the probability of detection over
time is the same for symptomatic and asymptomatic in-
fections. If asymptomatic infections are instead less likely
to be detected, then our estimate of the probability of
detection within 7 days of infection will be an
overestimate.

Conclusions
Routine asymptomatic testing is a crucial component of
effective targeted control strategies for COVID-19, and
our results suggest that frequent testing and fast turn-
around times could yield high probabilities of detecting
infections—and hence prevent outbreaks—early in at-
risk settings.
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