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Ciências da Saúde, Universidade Federal do Amazonas, Manaus, Brazil

¤ Current address: Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine,

London, United Kingdom

* Alexandra.kalbus@lshtm.ac.uk

Abstract

Introduction

Dengue fever is the most prevalent arboviral disease in the Brazilian Amazon and places a

major health, social and economic burden on the region. Its association with deforestation is

largely unknown, yet the clearing of tropical rainforests has been linked to the emergence of

several infectious diseases, including yellow fever and malaria. This study aimed to explore

potential drivers of dengue emergence in the Brazilian Amazon with a focus on

deforestation.

Methods

An ecological study design using municipality-level secondary data from the Amazonas

state between 2007 and 2017 (reported rural dengue cases, incremental deforestation,

socioeconomic characteristics, healthcare and climate factors) was employed. Data were

transformed according to the year with the most considerable deforestation. Associations

were explored using bivariate analysis and a multivariate generalised linear model.

Results

During the study period 2007–2017, both dengue incidence and deforestation increased.

Bivariate analysis revealed increased incidences for some years after deforestation (e.g.

mean difference between dengue incidence before and three years after deforestation was

55.47 cases per 100,000, p = 0.002), however, there was no association between the extent

of deforestation and dengue incidence. Using a negative binomial regression model

adjusted for socioeconomic, climate and healthcare factors, deforestation was not found to

be related to dengue incidence. Access to healthcare was found to be the only significant

predictor of dengue incidence.
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Discussion

Previous research has shown that deforestation facilitates the emergence of vector-borne

diseases. However, no significant dose-response relationships between dengue incidence

and deforestation in the Brazilian Amazonas state were found in this study. The finding that

access to healthcare was the only significant predictor of dengue incidence suggests that

incidence may be more dependent on surveillance than transmission. Further research and

public attention are needed to better understand environmental effects on human health

and to preserve the world’s largest rainforest.

Introduction

Dengue fever is a mosquito-borne viral disease, caused by the four dengue virus serotypes of

the family Flaviviridae (DENV1–4) [1]. Approximately 20% of infected humans show clinical

manifestations which range from mild febrile illness to severe and fatal health complications

[2, 3].

DENV is maintained in a transmission cycle between mosquitoes and, most commonly,

humans [4]. The most prominent vector of DENV is the female Aedes mosquito. Ae. aegypti,
regarded as the primary dengue vector, is highly adapted to urban living environments,

whereas another well-known vector species, Ae. albopictus, is mainly abundant in peri-urban

and rural areas [5, 6]. Both vectors are widespread in the tropics and subtropics, with Ae. albo-
pictus also emerging in temperate zones [7].

Dengue is endemic in more than 100 countries throughout the tropics and subtropics [8],

putting 3.83 billion people at risk and resulting in 390 million infections annually of which 96

million manifest symptomatically [9, 10]. In the Americas, the highest absolute numbers of

dengue cases have been reported from Brazil throughout the last two decades [11]. In 2019,

Brazil reported its highest number to date of more than 2.2 million suspected cases (1,038.4

cases per 100,000), compared to 2018 (124.9 per 100,000), 2017 (119.3 per 100,000) and 2016

(716 cases per 100,000) [11].

Climatic conditions known to influence the emergence of autochthonous dengue transmis-

sion include temperature, humidity, and rainfall [12–15]. Specifically, warm and wet climates

create suitable living and breeding habitats for vector mosquitoes that further affect mosquito

growth and length of the gonotrophic cycle, as well as the extrinsic DENV infection period

(EIP) [16–19]. In suitable climates, main drivers of dengue disease are urbanisation, globalisa-

tion and inefficient mosquito control [20]. Urbanisation, especially when rapid and unplanned,

may favour the establishment and further expansion of Aedes mosquitoes into urban settings in

close proximity to human settlements [20]. Within these settings, low socioeconomic conditions

have been associated with increased dengue transmission, in particular insufficient water sup-

plies resulting in water storage, inadequate sewage, and garbage management [21–23].

Moreover, the access to healthcare services may shape the local dengue burden in two

regards: on the one hand, more cases are detected in areas with sufficient healthcare capacities,

resulting in rigorous dengue surveillance and thus higher incidence. On the other hand, high-

quality care may reduce case fatalities resulting from severe dengue infections from over 20%

to less than 1% [24]. As argued by Carabalı́ and Hendrickx, an underperforming healthcare

system may lead to low and biased estimates of dengue incidence [25].

In addition to these determinants, there is increasing evidence that deforestation facilitates

the transmission of certain infectious diseases through affecting the vector ecology [26, 27].
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Despite the immense importance of tropical rainforest for the Earth’s climate and biodiversity,

much of it is lost due to deforestation, i.e. conversion of forest to another land use [28, 29].

The main drivers of deforestation are agricultural expansion, urban growth, infrastructure

development, and mining [30]. In the Brazilian Amazon, most anthropogenic land cover

changes and degradations occur in the southern and eastern areas, referred to as the "arc of

deforestation" [31]. Between 2007 and 2017, a total of 81,965 km2 forest was lost in the Legal

Amazon (average per year = 7,451 km2) [32]. The greatest annual loss (12,911 km2) was

reported in 2008, the lowest (4,571 km2) in 2012. From 2017 to 2018, 7,900 km2 of forest was

cleared in the Legal Amazon, 13.7% more than the preceding year. In this period, the Brazilian

state of Amazonas lost 1,045 km2 of forest land, corresponding to an increase in deforestation

of 4.4% compared to the previous 12 months and 13.2% of the total deforestation in the Legal

Amazon [32].

Interestingly, deforestation in the Amazon has been linked to vector-borne malaria, Lyme

disease, and yellow fever transmission [33–37]. However, the effects of deforestation may vary

for different diseases, including dengue, depending on disease ecology and transmission

cycles. There have been few studies investigating the relationship between deforestation and

dengue fever. Nakhapakorn and Tripathi found built-up and agricultural areas to be of high

and moderate risk for dengue, respectively, compared to forested areas in Thailand [38].

Another study which investigated drivers of dengue fever in Indonesia 2006–2016 revealed a

strong negative association between forest cover and dengue fever. The risk of dengue fever

decreased by 9% (95% CI 8.5–9.5%) with a 1% increase in forest cover [39].

To date, no association between deforestation and dengue could be determined in the Ama-

zon. Saccaro and colleagues assessed deforestation’s impact on several infectious diseases and

accidents caused by venomous animals in the Legal Amazon 2004–2012 [40]. They found that

deforestation led to an increase in the incidences of visceral and subcutaneous leishmaniasis

and malaria, but did not affect dengue fever. In addition, Bauch and colleagues investigated

the influence of ecosystem changes on infectious diseases in the Legal Amazon 2003–2006,

with findings revealing no association between deforestation and dengue fever [41]. However,

research exploring the relationship between deforestation and dengue fever is scarce. This

research seeks to address this knowledge gap in exploring the association between deforesta-

tion and dengue incidence in the Brazilian state of Amazonas.

Materials and methods

Amazonas is the largest state in Brazil, with a total area of 1,559,168.117 km2, and a total popu-

lation of 4,080,611 in 62 municipalities in 2018 [42, 43]. The state is characterised by an equa-

torial climate, with both high temperatures and rainfall [44]. Between 2010 and 2015, mean

annual temperature ranged from 23.43˚C to 26.24˚C with no clear trend indicated. Accumu-

lated rainfall was on average 2149 mm per year, with a maximum of 3023 mm in 2011 and a

drop to 1178 mm in 2015. Relative humidity averaged at 93.59% and displayed an increasing

trend until 2014, when a maximum of 97.04% was followed by a drop to 89.61% in 2015.

Data

Because dengue is known as an urban disease [3, 45], whereas deforestation occurs outside

from cities, this research focused on rural communities. The units of analysis were municipali-

ties and years. Data on dengue cases per municipality from 2007 to 2017 were retrieved from

SINAN, Brazil’s Notifiable Disease Information System (http://portalsinan.saude.gov.br/).

Cases included all records of reported cases of classical dengue fever, dengue fever with com-

plications, dengue haemorrhagic fever or dengue shock syndrome. All classifications followed
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the corresponding recommendations of the World Health Organization (WHO) [46]. Cases

were furthermore differentiated in rural, peri-urban and urban, according to the classification

by the Brazilian Institute of Geography and Statistics (IBGE) [47]. Peri-urban cases were com-

bined with rural cases, amounting to 5,077 (2.96%) of the 164,671 valid cases. Three munici-

palities were found to have incomplete records: Pauini had no record for 2007–2013,

Tonantins and Nhamundá had no records for 2014–2018. For these, the available years were

treated as the study period. Inclusion criteria of cases were the presence of information about

urban/rural status and their respective municipality. Sizes of the rural population per munici-

pality were derived from the 2000 and 2010 IBGE population censuses [48] and determined

for the years in between and after 2010 using linear inter- and extrapolation. Dengue fever

incidence was then calculated per 100,000 population. Population estimates for each munici-

pality were assessed for completeness and consistency, with only the municipality Iranduba

indicating inconsistent estimates. Due to a sharp decrease in population size from 2000 to

2010, extrapolation yielded very small to negative population counts resulting first in overesti-

mating and then negative incidences. Hence, the municipality was excluded from the analysis.

For the purpose of this study, deforestation is described as the incremental forest loss from

one year to another (in km2) and as a proportion of the total forest area of the preceding year.

Deforestation per municipality was obtained from the Project for Monitoring Deforestation in

the Legal Amazon (PRODES) by the National Institute for Space Research (INPE) [49]. Rela-

tive deforestation rates compared to the 2007 forest area were calculated.

The following socioeconomic indicators were included: Mean monthly household income

per capita, the proportion of poor population and population living in households with semi-

adequate sanitation [48], and the Municipal Human Development Index (MHDI) [50]. Except

for the last, all indicators refer to the rural population. To approximate the likelihood of case

notification through the healthcare system, the Performance Index of the Unified Health Sys-

tem (Índice de Desempenho do SUS [IDSUS]) was included in the study [51]. The IDSUS

includes 24 indicators to assess the potential access, the access obtained, and the effectiveness

of health system services. Access to and effectiveness of healthcare were included in the analy-

sis. The variable access to healthcare encompasses 16 indicators of basic health assistance,

reflecting both the potential and actually obtained access to the public health system. The effec-

tiveness variable describes the performance of the public health system through eight indica-

tors. Both variable indicators range from 0 to 10, with higher values indicating a better

performance [52]. As climatic conditions are known to influence DENV transmission [10],

mean annual temperature (˚C), relative humidity (%) [53], and annual cumulative precipita-

tion (mm) [54] for 2010–2015 were included. S1 Table provides a detailed variable

description.

For each municipality, the year with the highest absolute forest loss was determined to

define deforestation events for further analysis. That way, dengue incidences one year before

and 1–5 years after deforestation were compared. If the year with the highest absolute forest

loss did not meet one or more of the following inclusion criteria, the year with the next most

significant loss was selected: (a) Dengue incidence data were available in the years following

the deforestation event, (b) the latest possible year of a deforestation event was determined by

the respective outcome (incidence 1–5 years later, i.e. 2016 was the latest possible year for inci-

dence after one year), (c) for analyses that entail the comparison of dengue incidence before

and after deforestation, the earliest possible year of deforestation was 2008, and (d) if two or

more years which all meet the above criteria present the same, greatest absolute forest loss,

then the later year was considered.

The authors employed exclusively historical secondary, publicly available data for the pres-

ent analysis. Thus, no ethical clearance was required.

PLOS ONE Deforestation and dengue fever incidence

PLOS ONE | https://doi.org/10.1371/journal.pone.0242685 January 7, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0242685


Statistical analysis

Statistical analysis was performed using R (packages dplyer, ggplot2, sandwich, AER, MASS)

[55–59]. Significance level for all statistical tests was set to p< 0.05.

Baseline information was presented on all studied variables. The influence of deforestation

on dengue incidence was first approached descriptively.

Bivariate analyses comprised Pearson correlation and paired samples t-tests. Pearson corre-

lation analyses were used to determine associations of all study variables with mean rural den-

gue incidence. Such tests were also performed with the transformed data to test for possible

dose-response relationships between deforestation and dengue incidence 1–5 years later,

respectively. These tests were furthermore stratified according to whether a dengue outbreak

took place (2011 & 2014) the year before and the respective year after the year of the greatest

deforestation event. Dependent t-tests were conducted to determine whether there was a dif-

ference between dengue incidence before and after the deforestation event. Five tests using the

transformed data were performed comparing the mean dengue incidence before the deforesta-

tion event with the incidence of 1–5 years after the deforestation event. A subsequent analysis

comprised five paired samples t-tests of dengue incidences with a lag of 2–6 years around ran-

domly selected years. These tests were performed to explore a potential underlying time trend

which may affect observed effects when assessing the changes in incidence in the years follow-

ing a deforestation event.

Finally, multivariate generalised linear models were performed to assess how the distribu-

tion of mean dengue incidence is affected by the extent of deforestation during the study

period while controlling for other variables. As dengue incidence was presented as count data

and followed a Poisson-like distribution, a Poisson regression model approach was considered

suitable for the analysis. However, due to significant overdispersion (variance unequal to the

mean), modification of the Poisson regression model was required. Two common ways to

address over-dispersed count outcome variables are quasi-Poisson and negative binomial

regression. Because the relationship between mean and variance corresponds to a negative

binomial (non-linear relationship) rather than quasi-Poisson distribution (linear relationship),

a negative binomial regression approach was chosen. The selection of an appropriate predic-

tion model was based on an exploratory analysis using different subsets of variables, including

the assessment of the model fit with and without the predictor variables. Model selection crite-

ria included AIC and BIC, the total number of predictor variables as well as the number of sig-

nificant predictor variables included in the model, considering the theoretical context of this

research. The chosen model had the lowest possible AIC as well as BIC value with an adequate

number of relevant environmental and sociodemographic predictor variables to be included

in the analysis (mean relative forest loss, MHDI, access to healthcare and mean annual

temperature).

Results

A description of the study variables is given in Table 1. The mean MHDI was 0.57, reflecting a

low development. The mean monthly household income per capita was R$147.6 (� US$84),

while 87.8% of the population was considered poor. 14.7% had semi-adequate sanitation facili-

ties. Amazonas had an average temperature of 24.9˚C, mean annual precipitation of 2149 mm,

and 93.6% mean relative humidity. The effectiveness of healthcare index was 7.95 on average,

corresponding to a good performance, whereas the access to healthcare index was less

(mean = 2.95).

The average annual incidence of reported rural dengue cases in Amazonas was 57.84 per

100,000 during the study period. A mean of zero rural cases was reported from the
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municipalities Amaturá, Eirunepé, Envira, and Santa Isabel do Rio Negro, whereas Manaus

reported the highest average incidence (636.9 per 100,000). Average dengue incidence was

13.49 cases per 100,000 rural population in 2007, increased in 2010 and peaked in 2011 at

138.97 cases per 100,000 (see Fig 1). After a decrease in 2012, incidence again reached a peak

in 2014 which was lower than in 2011 (94.74 cases per 100,000). Since then, incidence dis-

played a decreasing trend with an especially steep drop to 52.31 cases per 100,000 rural popula-

tion in 2017.

In 2007, an average of 77.79% of the municipalities’ surface was covered by forest. Ipixuna

had the highest forest cover with 97.30%, Urucurituba the lowest with 4.51%. The most signifi-

cant absolute total loss during the study period occurred in Lábrea (1532.7 km2), the greatest

relative total loss in Careiro da Várzea (12.3%). The average absolute and relative deforestation

during the study period was 10.1 km2 and 0.09%, respectively. Fig 2 displays the trajectories of

absolute and relative forest loss during the study period. The average absolute annual forest

loss in Amazonas was 8.8 km2 forest loss per municipality in 2007, with its low of 5.6 km2 in

2009. Since 2012 (7.7 km2), incremental absolute deforestation on the municipality level

increased up to 16.9 km2 in 2017, about twice the deforestation levels from 2007. Incremental

relative deforestation, i.e. the loss compared to the area of the preceding year, was 0.04% on

average per municipality. The highest relative deforestation on the municipality level followed

an initial peak in 2008 (0.06%) during the study period, with 0.07% forest loss per municipality

in 2010. Since then, the deforestation rate declined to 0.03% in 2013, with an upward trend to

0.06% until 2017.

When assessing the mean annual dengue incidence and deforestation rates in the study

region, no similar patterns of rural dengue incidence could be described. However, municipal-

ities in the central region tend to have higher incidences, while municipalities in the south and

east of Amazonas experienced more significant deforestation than the rest of the state. S2

Table 1. Description of the study variables.

Variable n Mean (± SD) Median Min Max

Sociodemographic Characteristics

Municipality Human Development Index 62 0.57 (± 0.05) 0.56 0.45 0.74

Household income per capita (R$) per month 62 147.6 (± 56.37) 132.0 73.0 357.0

Proportion (%) of poor population 62 87.81 (± 7.15) 89.21 60.01 96.21

Proportion (%) of population with semi-adequate sanitation 62 14.72 (± 12.05) 11.26 0.36 53.18

Dengue Incidence

Mean incidence of dengue fever per 100,000 58 57.84 (± 107.02) 16.54 0.00 636.90

Deforestation

Mean annual forest loss (km2) 62 10.09 (± 23.13) 3.09 0.41 139.34

Mean annual forest loss (%) 62 0.089 (± 0.165) 0.032 0.002 1.121

Total loss of forest area (km2) 62 110.97 (± 254.42) 33.90 4.50 1532.70

Total forest loss (% of 2007 area) 62 0.98 (± 1.81) 0.36 0.02 12.33

Climatic and Environmental Factors

Temperature (˚C) 62 24.88 (± 0.63) 25.08 23.43 26.24

Precipitation (mm) 61 2149 (± 365.24) 2113 1178 3023

Relative humidity (%) 62 93.59 (± 1.27) 93.64 89.61 97.04

Healthcare Indicators

Access to healthcare 62 2.95 (± 0.80) 3.00 1.38 4.71

Effectiveness of healthcare 62 7.95 (± 0.53) 7.93 6.86 9.07

SD = Standard deviation

https://doi.org/10.1371/journal.pone.0242685.t001
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Table provides the mean dengue incidence per 100,000 and mean deforestation rate during

the study period 2007–2017 for each municipality.

The greatest forest loss per municipality was 75% higher on average than the mean annual

deforestation during the study period. S3 Table shows the highest forest loss compared to the

mean annual loss throughout the study region.

Most municipalities experienced an increase in incidence during the years following defor-

estation. S4 Table shows the differences between the dengue incidence one year before, and

the incidence one, two, three, four, and five years after deforestation per municipality. Overall,

later years after deforestation tend to present stronger increases in dengue incidence.

Pearson correlation tests between average annual dengue fever incidence and the chosen

study variables revealed significant associations of dengue incidence with MHDI (r = 0.51,

p<0.001), the proportion of poor population (r = -0.28, p = 0.034), the average monthly house-

hold income (r = 0.33, p = 0.012), and the access-related performance of healthcare systems

(r = 0.45, p<0.001) (Table 2). No climatic variable, and neither absolute nor relative average

annual forest loss, correlated significantly with average dengue incidence. The extent of neither

forest loss variable appeared to be associated with dengue incidence one to five years after the

deforestation event. Stratification for outbreaks occurring in the respective year after defores-

tation (2011, 2014) yielded similar results. Furthermore, access to healthcare was positively

associated with the household income per month (r = 0.441, 95% CI 0.215–0.622, p<0.001),

MHDI (r = 0.638, 95% CI 0.462–0.766, p<0.001) and inversely associated with the proportion

of poor population (r = -0.394, 95% CI -0.586–-0.160, p = 0.002).

Paired samples t-tests demonstrated significant mean differences of the dengue incidence

one year before deforestation and two years (31.27 per 100,000, p = 0.004), three years (55.47

per 100,000, p = 0.002), and five years after deforestation (67.71 per 100,000, p = 0.035)

Fig 1. Dengue incidence per 100,000 in Amazonas 2007–2017.

https://doi.org/10.1371/journal.pone.0242685.g001
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(Table 3). All tests with randomly selected years except for one showed no significant differ-

ences, indicating the absence of an underlying secular trend.

Given the results of the multivariate negative binomial regression analysis, access to health-

care was found to be the only covariate coefficient significantly different from zero. The

parameter estimates and standard errors for the variables included in the final model are given

in Table 4. Mean annual forest loss, MHDI and mean annual temperature were no significant

predictors of dengue incidence. Access to healthcare was found to be significantly and posi-

tively related to dengue (Estimate = 0.691, SE = 0.246, p = 0.005).

Discussion

This study aimed to explore the rural dengue fever incidence in relation to deforestation in

Amazonas between 2007 and 2017. During the study period, dengue incidence followed an

overall increasing trend, with peaks in 2011 and 2014 and a slight decrease in 2017. The

municipalities with the highest dengue fever burden (Manaus, Guajará and Tefé) appear to be

scattered throughout the state. Absolute forest loss increased considerably since 2013, while

relative forest loss reached its highest level in 2010 and, after a sharp decrease, demonstrated a

steep increase since 2013. Most affected municipalities are located in the south and east of

Fig 2. Annual forest loss in Amazonas 2007–2017 (left: km2, right: % of 2007 area; shaded areas indicate 95% confidence

intervals).

https://doi.org/10.1371/journal.pone.0242685.g002

Table 2. Pearson correlations of mean dengue incidence with study variables.

Variable n Pearson r p

Municipality Human Development Index 58 0.512 <0.001�

Household income per capita (R$) per month 58 0.328 0.012�

Proportion (%) of poor population 58 -0.279 0.034�

Proportion (%) of population with semi-adequate sanitation 58 0.234 0.076

Annual forest loss (km2) during the study period 58 0.029 0.829

Annual forest loss (%) during the study period 58 -0.047 0.724

Temperature (˚C) 58 -0.009 0.948

Precipitation (mm) 57 -0.184 0.170

Relative humidity (%) 58 -0.031 0.816

Access to healthcare 58 0.449 <0.001�

Effectiveness of healthcare 58 0.044 0.744

� significance on the p < 0.05 level

https://doi.org/10.1371/journal.pone.0242685.t002
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Amazonas. The comparison of dengue incidences before and one to five years after major

deforestation events indicated increases in incidence two, three, and five years after deforesta-

tion. The comparison of incidences with the same lag times independently from deforestation

by selecting years randomly did not reveal significant differences, indicating an absence of

underlying time trends. However, when assessing the influence of higher deforestation levels

on increasing dengue fever incidence during the study period while controlling for other vari-

ables, no association could be found. Instead, the findings of the analysis reveal that access to

healthcare was the only significant predictor of dengue incidence. Access to healthcare was

also found to be associated with socioeconomic markers, namely MHDI, proportion of poor

population and income, all of which were correlated with dengue incidence in the bivariate

analysis.

In order to verify the trends seen in the historical health data derived for Amazonas, the

study data were compared to the epidemic trends seen in the American region. Brazil and

other Latin American countries faced dengue fever epidemics in 2010/2011 and 2015/2016

[60]. The 2010/2011 epidemic is also recorded in the Amazonas data, mainly in 2011, whereas

a second outbreak in 2014 can rather be suspected. A drop in the 2017 dengue incidence is in

line with reports on the American region provided by the WHO [24], with different potential

reasons debated in the literature. In 2015/2016, Zika virus (ZIKV, Flaviviridae family) caused a

major epidemic in the Americas, which the WHO declared a Public Health Emergency of

International Concern in early 2016. Like DENV, ZIKV shares the same mosquito vector Ae.
aegypti [61], shows a similar clinical picture and complicates accurate DENV serological diag-

nostics because of serological cross-reaction with other flaviviruses [62–64]. Moreover, Rico-

Mendoza et al. concluded that a decrease in dengue cases seen in Colombia after co-circulation

of dengue, Zika and chikungunya viruses could yield cross-protection against each of the

Table 3. Paired samples t-tests for dengue incidence 1 year before and 1–5 years after deforestation and corresponding random years.

N Mean of the differences 95% CI t df p

1 year after deforestation 57 56.64 -34.26–147.55 1.25 56 0.217

Random 2-year time lag 61 65.52 -4.39–135.43 1.87 60 0.066

2 years after deforestation 59 31.27 10.21–52.22 2.99 58 0.004�

Random 3-year time lag 61 16.77 -41.32–74.86 0.58 60 0.566

3 years after deforestation 59 55.47 20.60–90.35 3.18 59 0.002�

Random 4-year time lag 58 41.63 1.28–81.97 2.07 57 0.043�

4 years after deforestation 58 57.60 -0.90–116.10 1.97 57 0.054

Random 5-year time lag 60 18.13 -18.09–54.35 1.00 59 0.321

5 years after deforestation 58 67.71 4.78–130.63 2.15 57 0.035�

Random 6-year time lag 60 27.26 -6.63–61.15 1.61 59 0.113

� significance on the p < 0.05 level

https://doi.org/10.1371/journal.pone.0242685.t003

Table 4. Parameter estimates for covariates.

Covariate Coefficient estimate Standard error 95% Confidence Interval Prob>|z|

Mean annual forest loss (%) -1.136 0.919 -2.938–0.666 0.217

MHDI 0.511 0.306 -0.088–1.110 0.095

Access to healthcare 0.691 0.246 0.208–1.174 0.005�

Mean temperature -0.055 0.283 -0.608–0.498 0.845

�significance on the p < 0.05 level.

https://doi.org/10.1371/journal.pone.0242685.t004
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Aedes-borne viruses [65]. On the backdrop of the Zika outbreak in Brazil in 2015/2016 [66],

the impact of cross-protection but also cross-reactivity in diagnostic testing should be investi-

gated further to understand the epidemiological trends of co-circulating DENV and ZIKV.

A similar comparative approach was followed for the deforestation data. This study points

to the south and south-east of Amazonas to experience most deforestation. These locations

correspond to Amazonas’ borders to Pará, Mato Grosso and Rondônia, all known as states

with high deforestation levels [32].

Within the context of this study, the findings support the results of Nakhapakorn et al., who

found no association between deforestation and dengue fever in Thailand [38], as well as Sac-

caro et al., who used PRODES data to examine the effect on deforestation on multiple infec-

tious diseases across the Legal Amazon [40]. However, the association of healthcare access and

dengue incidence as found in this study may point to an important limitation when using his-

torical health report data available for Amazonas. Reported dengue incidence may be consid-

erably more dependent on the capacities and quality of the reporting system than the real

disease burden, as dengue data presented through passive surveillance are known to be subject

to underreporting and inequality [25, 67, 68]. The associations of the socioeconomic indicators

MHDI, proportion of poor population and income with access to healthcare identified in this

study further suggest that patterns in reported dengue incidence are primarily driven by sur-

veillance rather than transmission dynamics. There is a need for more comprehensive analysis

and field research to better understand the relationship between deforestation events and den-

gue transmission.

Limitations

This study has potential limitations concerning the data and methods employed.

Choosing an ecological study design with aggregated data poses a potential threat of eco-

logical fallacy and impedes the consideration of population dynamics such as age as well as

interannual climatic variations, both relevant for DENV transmission [67, 68]. There may fur-

ther be disparities in the timely fit of data when using deforestation data (assessed mid-year),

census data (2010 reports), and climatic data (only available for 2010–2015).

Furthermore, there is potential inaccuracy in deforestation levels reported through the for-

est monitoring system. Richards et al. compared the deforestation of Amazon rainforest for

the years 2008–2012 captured by PRODES with the forest loss captured by remotely-sensed

datasets (Global Forest Change dataset and Fire Information for Resource Management Sys-

tem) [69] and found considerable divergence with an estimated 9,000 km2 forest loss that was

not captured by PRODES, especially in Pará, Mato Grosso and Rondônia. In Amazonas, the

highest divergence was found in the north-east, which corresponds to the areas of highest rela-

tive forest loss found in this study (see S2 Table). With the overall divergence being low in this

state, deforestation can be interpreted with reasonable confidence, bearing in mind that actual

deforestation in the most-affected areas was higher than the data suggest.

Finally, this study investigated the influence of deforestation on dengue cases in rural set-

tings, which is less than 3% of all dengue cases in Amazonas. Hence, generalising conclusions

from these findings must be drawn with caution as rural dengue incidence only a small pro-

portion of the dengue burden in Amazonas.

This research presents the following methodological limitations: First, the difference in

dengue incidence following deforestation events resulting from t-tests could be a consequence

of an underlying trend rather than a direct effect of deforestation. Although testing randomly

selected years with corresponding time lags did not suggest any underlying trends, other envi-

ronmental or socioeconomic factors may influence the observed effects. Another limitation of
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the t-tests is the selected baseline year, which was compared with the year after the primary

deforestation event and was set as the year prior to the event. Due to interannual variability in

dengue incidence levels, the baseline levels could be considerably higher or lower than in other

years, hence biasing the comparison with later years after the deforestation event. Second,

overdispersion seen in the Poisson model, which was addressed by a negative binomial

approach, could indicate the absence of important other influencing factors. Those include,

for example, the implementation of prevention and mitigation strategies, the presence of dif-

ferent DENV serotypes throughout the study area, population immunity levels, urbanisation

across municipalities or fine-scale climate information, which were not accessible for this

study. Incorporating further information in an advanced statistical framework could enhance

our understanding of dengue fever distribution in Amazonas and its link to deforestation.

Third, the variables chosen in this study are mean incidence and mean deforestation rates,

which do not account for trends over time. An approach with finer time scales would allow for

a more comprehensive understanding of potential associations between deforestation events

and temporal changes in dengue incidences.

Despite these limitations, this study entails a novel approach to avoid the bias of investigat-

ing urban disease epidemiology associated with a rural explanation. Urban populations are

mostly in no contact with forests (and hence, deforestation), yet suffer from a higher dengue

burden than rural populations [24]. Focusing the analysis on rural and peri-urban dengue

transmission areas corresponds to deforestation, as these populations are in closer proximity

to forests, and thus more likely to be affected by changes to the sylvatic environment than

urban populations. To the authors’ best knowledge, this is the first analysis of the effect of

deforestation on dengue fever in Amazonas, Brazil, using an ecological study design that

excludes urban incidence numbers. Moreover, the comprehensive approach of this study is of

significant advantage, as most research performed on the burden of dengue fever and other

mosquito-borne diseases focused solely on climatic factors or climatic and sociodemographic

influences [15, 17, 70]. Multiple perspectives need to be considered to explore disease dynam-

ics more profoundly, including climate, socioeconomics, urbanisation, and vector distribution

[71].

Implications of the study and directions for future research

This study could not identify a link between deforestation and dengue fever incidence in the

rural areas of the Brazilian Amazon. However, deforestation could be linked to other vector-

borne infectious diseases in the Amazon, such as malaria, leishmaniasis and yellow fever [43,

72]. They are complemented by other emerging diseases of public health relevance which have

been linked to deforestation, including Oropouche fever, the second most prevalent arboviral

disease in Brazil, maintained in both an urban and sylvatic transmission cycles [73, 74], and

Mayaro fever, which is usually vectored by forest mosquitoes but can also be transmitted by

Aedes mosquitoes [75].

Due to the presence of sylvatic DENV transmission cycles in Africa and Asia, deforestation

may have a strong impact on disease transmission in these regions [76]. Given that there is lit-

tle to no adaptive barrier of sylvatic strains to infect humans, new DENV strains could add to

the current burden, maintaining the disease even if tetravalent vaccines would be implemented

[77]. Integrated vector control and effective surveillance are thus crucial to control these dis-

eases on the backdrop of increasing deforestation rates.

The findings of this study serve as a starting point for further research by highlighting

potentials and challenges as well as indicating areas of future research. Key challenges of an

ecological study design are a lack of granularity and conflicts in data harmonisation, especially
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when using Open Data. More fine-scaled but sufficiently structured temporal and spatial

information is needed to disentangle trends and associations of potential drivers of dengue

emergence in the Brazilian Amazon, with a focus on deforestation. One possibility is to use

fine-scale data, for example, on household levels and evaluate dengue incidence and deforesta-

tion levels within 200 m on a weekly basis. Data may then be analysed using a time-sensitive

approach, such as time series analysis, that may be better suited to follow changes in dengue

incidence and its relation to changes in deforestation rates over time. Another challenge in

researching environmental influences is of a conceptual nature. Environmental factors are

known to affect the distribution and behaviour of insect vectors, and to some extent, pathogen

performance, which both shape disease dynamics in human populations [37]. As consistent

mosquito surveillance data were not available, this analysis took advantage of proxy data of

dengue transmission hotspots using reported dengue incidences. Deforestation can further be

considered as an approximation because the land use subsequent to forest clearing (e.g. agri-

culture, settlements, infrastructure) is an important dengue risk factor [76]. For example, two

studies evaluated the health effects of land uses in the Brazilian Amazon, including protected

areas, indigenous reserves, roads, agriculture and mining [41, 78]. Although neither studied

dengue fever, both constitute good examples for integrating land use in addition to deforesta-

tion levels in the research frame. Urbanisation, which may follow the clearing of forest, is

thought to be a risk factor for dengue transmission [79]. This is mainly due to higher popula-

tion density, increased contact among susceptible populations, and increasing sources of artifi-

cial water [20].

Thus, the following recommendations result from this study: Research should (1.) be con-

ducted using more fine-scaled temporal and spatial data, (2.) incorporate data on the imple-

mentation of preventive and control measures, circulation of DENV serotypes and population

immunity levels, (3.) consider multiple steps on the causal chain with special regard to land

use following deforestation, and (4.) consider three indicators of DENV transmission: (a.) den-

gue incidence, (b.) mosquito abundance (e.g. surveillance in areas with and without deforesta-

tion), and (c.) DENV data (e.g. estimates of EIP before and after deforestation, or viraemia in

infected mosquitoes, humans, and potential reservoir hosts).

Conclusion

The consequences of deforestation are manifold and complex, and their effects reach from cli-

mate change and biodiversity to significant human health impacts. This study did not find an

association of deforestation of tropical rainforest on dengue fever incidence in the Brazilian

state of Amazonas. Although a potential link was indicated through the descriptive and bivari-

ate analysis, a subsequent multivariate approach did not support these findings. The challenges

of investigating their effect on dengue fever in the Brazilian Amazon were highlighted and rec-

ommendations for future research were derived. The more is known about the links between

forest ecosystems and human health, and the better such knowledge is communicated, the bet-

ter these forests can be protected.
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