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ABSTRACT 

Observational studies of the effectiveness of vaccines to prevent COVID-19 are needed to 

inform real-world use. Such studies are now underway amid the ongoing rollout of SARS-CoV-2 

vaccines globally. While traditional case–control and test-negative design studies feature 

prominently among strategies used to assess vaccine effectiveness, such studies may encounter 

important threats to validity. Here we review the theoretical basis for estimation of vaccine direct 

effects under traditional case–control and test-negative design frameworks, addressing specific 

natural history parameters of SARS-CoV-2 infection and COVID-19 relevant to these designs. 

Bias may be introduced by misclassification of cases and controls, particularly when clinical case 

criteria include common, non-specific indicators of COVID-19. When using diagnostic assays 

with high analytical sensitivity for SARS-CoV-2 detection, individuals testing positive may be 

counted as cases even if their symptoms are due to other causes. The traditional case–control 

design may be particularly prone to confounding due to associations of vaccination with 

healthcare-seeking behavior or risk of infection. The test-negative design reduces but may not 

eliminate this confounding, for instance if individuals who receive vaccination seek care or 

testing for less-severe illness. These circumstances indicate the two study designs cannot be 

applied naively to datasets gathered through public health surveillance or administrative sources. 

We suggest practical strategies to reduce bias in vaccine effectiveness estimates at the study 

design and analysis stages. 
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BACKGROUND 

Non-randomized studies undertaken after vaccine authorization or licensure provide crucial 

information about real-world vaccine effectiveness (VE). Such studies may also address 

questions not answered by clinical trials, such as the duration of protection, the effectiveness of 

alternative dosing schedules, and protection against emerging variants or within various 

population subgroups.1,2 While prospective cohort studies provide an opportunity to compare 

outcomes among vaccinated and unvaccinated individuals, such studies may be logistically 

prohibitive due to their large size and the complexity of longitudinal follow-up. Thus, 

retrospective studies comparing prior vaccination among individuals with known clinical 

outcomes of disease or no disease (i.e. case–control VE studies) provide an efficient alternative.3  

Phase III randomized controlled trials (RCTs) have established efficacy of multiple vaccines 

against COVID-19,4–6 with others in progress. Observational VE studies have been prioritized by 

public health7,8 and regulatory9 authorities to inform real-world use. Traditional case–control and 

test-negative design studies are the primary retrospective frameworks for assessing VE.10 

However, these and other observational designs may differ with respect to measures of VE and 

risks of bias.2 

Here we lay out the theoretical basis for use of the traditional case–control and test-negative 

design in assessments of vaccine direct effects against SARS-CoV-2 infection and COVID-19. 

We highlight key assumptions and potential biases underlying VE estimates from the traditional 

case–control and test-negative design studies, and provide practical recommendations to support 

researchers designing, analyzing, and interpreting these studies. 
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OVERVIEW OF THE DESIGNS 

The traditional case–control and test-negative design derive VE estimates by comparing the odds 

of prior vaccination among individuals who, at the time of enrollment, are cases (experiencing 

the clinical endpoint against which VE is to be measured) or non-cases (controls). Cases are 

typically individuals who meet clinical criteria such as the presence of predefined symptoms 

together with laboratory-confirmed detection of a vaccine-targeted infectious agent.11 Under the 

traditional case–control, controls are selected from a pool of individuals who are not known to be 

experiencing the clinical endpoint of interest at the time of enrollment, but are members of the 

same population from which cases are identified. Such individuals may be community controls, 

selected from among asymptomatic individuals in the community; registry controls, selected 

from population-based registries; or healthcare controls, selected among patients experiencing an 

alternate disease unrelated to the pathogen and vaccine of interest.12   

The test-negative design is an alternative to the traditional case–control study that has gained 

popularity for studies of vaccines against influenza, rotavirus, and other pathogens.13 In the test-

negative design, both cases and controls are selected from among individuals who receive 

diagnostic tests for a pathogen of interest; conventionally, individuals are tested because they 

experience a clinical syndrome which may be caused by the vaccine-targeted pathogen or other 

agents. Cases are those testing positive, and controls are those testing negative, placing a heavy 

reliance on diagnostic accuracy.2,14,15 Since the test-negative does not require active selection of 

controls from the community or other settings, it may offer logistical advantages over the 

traditional case–control design. 
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Below we lay out the general framework for estimation of vaccine direct effects in traditional 

case–control and test-negative design studies. We will introduce relevant notation and 

assumptions and then extend this framework to address observations that may be expected in 

studies of SARS-CoV-2.  

IDENTIFICATION OF VACCINE EFFECTIVENESS UNDER TRADITIONAL CASE–

CONTROL AND TEST-NEGATIVE DESIGNS 

Consider the instantaneous risk (or prevalence) of a clinical condition of interest to be p (in an 

unvaccinated population), a value between 0-1 (Table 1). Consider that vaccination reduces 

individuals’ risk of the condition by a factor VE = (1 − 𝜃), such that the relative risk of the 

condition for vaccinated (versus unvaccinated) individuals is 𝜃; we define 1 − 𝜃 as the vaccine 

“direct effect” resulting from reduction in biologic susceptibility to the condition of interest due 

to vaccination. 

As measured, VE is a population-average treatment effect; at two extremes, individuals may 

experience uniform reductions in risk by a factor of (1 − 𝜃), or a proportion (1 − 𝜃) of 

recipients may experience perfect protection while others experience none. Unless otherwise 

noted, these differing mechanisms of vaccine action (elsewhere termed “leaky” and “all-or-

nothing” protection10, respectively) do not result in practical differences for measurement of VE 

under the scenarios we consider. 

Defining 𝜈 as the proportion of the population receiving vaccine, the probabilities of individuals 

falling into various case and control categories, given their vaccination status, is laid out in the 

two-by-two tables in Table 2. Under the traditional case–control design, 

VÊTCC = 1 −
𝑣𝜃𝑝 × (1 − 𝑣)(1 − 𝑝)

𝑣(1 − 𝜃𝑝) × (1 − 𝑣)𝑝
= 1 −

𝜃(1 − 𝑝)

(1 − 𝜃𝑝)
, 
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which, for rare outcomes (𝑝 ≈ 0), yields an unbiased estimate VÊTCC ≈ 1 − 𝜃 = VE. Alternative 

design approaches such as incidence density matching of cases and controls16 or inclusive 

sampling17 may reduce reliance on the rare outcome assumption; here for simplicity we focus on 

more general frameworks.  

Under the test-negative design, controls instead experience an outcome that is unaffected by 

vaccination against the pathogen of interest.14,15,18 Defining the risk of this outcome as k, 

regardless of vaccination (Table 2), and assuming a perfect diagnostic test, 

VÊTND = 1 −
𝜈𝜃𝑝 × (1 − 𝜈)𝑘

𝜈𝑘 × (1 − 𝜈)𝑝
= 1 − 𝜃 = VE, 

which does not require the rare-disease assumption. 

CLASSES OF VACCINE DIRECT EFFECTS 

Vaccine-conferred protection may impact multiple aspects of the natural history of infectious 

disease agents such as SARS-CoV-2, including but not limited to prevention of virus acquisition, 

reduced viral replication in the upper respiratory mucosa, earlier clearance of infection, and 

prevention of mild or severe symptoms. The differential effects of SARS-CoV-2 vaccines 

against infection and disease endpoints remain imperfectly understood19 and may vary by 

vaccine product and across virus variants.  

Typical estimands of traditional case–control and test-negative design studies are VE against 

symptomatic disease of any severity, or VE against severe disease. These are also typical target 

estimands in individually randomized vaccine efficacy trials.20 Define 𝜃𝑆 as the relative risk of 

infection for a vaccinated versus unvaccinated individual, resulting from reduced susceptibility 

to acquisition of SARS-CoV-2 or accelerated clearance of the pathogen.20 Define 𝜃𝑃 as the 

relative risk of COVID-19 (or COVID-19 meeting a particular severity threshold, e.g. 

hospitalization, intensive care unit admission, or mechanical ventilation) for an infected 
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vaccinated individual versus an infected unvaccinated individual. Protection resulting from 

prevention of both infection and progression is VE𝐷 = 1 − 𝜃𝑆𝜃𝑃; we assume VE𝐷 is the desired 

estimand and describe biases of VÊTCC and VÊTND relative to VE𝐷. Specialized designs would be 

required to isolate 𝜃𝑆 or 𝜃𝑃.  

OUTCOME MISCLASSIFICATION 

Etiologic detection 

Clinical outcomes of interest to researchers may range from laboratory confirmation of infection 

regardless of symptoms21–23 to laboratory-confirmed mild, moderate, or severe disease 

manifestations.20A positive test result may not specifically indicate the etiology of current 

symptoms, as SARS-CoV-2 genetic material can be shed for prolonged periods after infection.24 

Moreover, many acquisitions of SARS-CoV-2 may never cause symptoms.25  

Prolonged viral shedding and the presence of asymptomatic infection may introduce 

misclassification in both traditional case–control and test-negative design studies. For instance, 

traditional case–control studies enrolling controls selected from the community, from registries, 

or among patients seeking care for other (e.g., non-respiratory) diseases, may suffer from 

misclassification if a proportion of these controls are in fact infected with SARS-CoV-2, but not 

tested. Inclusion of infected individuals in the control group will diminish the apparent effects of 

vaccination, provided vaccine prevents infection. Likewise, in both traditional case–control and 

test-negative design studies, individuals who are shedding SARS-CoV-2 genetic material but 

experiencing illness due to another cause (e.g., another infection or a non-infectious process with 

overlapping symptoms such as chronic obstructive pulmonary disease) may be misclassified as 

cases. Misclassification of asymptomatically infected persons as controls, and of infected 
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symptomatic persons as cases when their illness is not caused by SARS-CoV-2, can be expected 

to increase with higher prevalence of infection in the community. 

To formalize resulting biases, consider separately the risks of SARS-CoV-2 acquisition and 

disease progression. Defining a as the instantaneous risk (prevalence) of being infected with 

SARS-CoV-2, at any time, and d as the instantaneous risk of experiencing symptoms, given 

infection, the risk of symptomatic and asymptomatic SARS-CoV-2 infections are 𝑎𝑑 and 𝑎(1 −

𝑑), respectively. We extend our contingency tables to accommodate test-positive symptomatic 

cases, asymptomatic controls, and test-negative symptomatic controls in Table 3; for simplicity 

we consider binary disease etiology as SARS-CoV-2 or other factors. Here, the traditional case–

control yields 

VÊTCC = 1 −
𝜃𝑆[𝜃𝑃𝑑 + (1 − 𝜃𝑃𝑑)𝑘](1 − 𝑎𝑑)

(1 − 𝜃𝑆𝜃𝑃𝑎𝑑)[𝑑 + (1 − 𝑑)𝑘]
, 

which remains subject to bias owing to the risk of symptoms due to causes other than SARS-

CoV-2 (k) and the prevalence of SARS-CoV-2 infection (a). However, these biases may be 

ignorable under several conditions. If prevalence of other conditions is negligible relative to the 

risk of COVID-19 for an infected individual (𝑘 ≪ 𝑑, if endpoints are chosen with high 

specificity for COVID-19), the traditional case–control design yields 

VÊTCC ≈ 1 −
𝜃𝑆𝜃𝑃(1 − 𝑎𝑑)

1 − 𝜃𝑆𝜃𝑃𝑎𝑑
. 

Such a design may under-estimate VE𝐷 if prevalence of SARS-CoV-2 infection (a) is high owing 

to inclusion of infected asymptomatic individuals in the control group. If prevalence of SARS-

CoV-2 infection in the community is low or negligible (𝑎 ≈ 0), VÊTCC ≈ 1 − 𝜃𝑆𝜃𝑃. 
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Comparing symptomatic individuals who test positive and negative for infection, the test-

negative design yields 

VÊTND = 1 −
𝜃𝑆[𝜃𝑃 𝑑 + (1 − 𝜃𝑃𝑑)𝑘](1 − 𝑎)

(1 − 𝜃𝑆  𝑎)[𝑑 + (1 − 𝑑)𝑘]
. 

The same conditions by which bias can be reduced under the case–control design reduce bias 

under the test-negative design. With 𝑘 ≪ 𝑑,  

VÊTND ≈ 1 −
𝜃𝑆𝜃𝑃(1 − 𝑎)

1 − 𝜃𝑆𝑎
, 

and with 𝑎 ≈ 0, VÊTND ≈ 1 − 𝜃𝑆𝜃𝑃. 

We illustrate the quantitative extent of bias under the traditional case–control and test-negative 

design in eFigure 1; http://links.lww.com/EDE/B808 and eFigure 2; 

http://links.lww.com/EDE/B808. Under most realistic situations, misclassification bias is low 

or negligible for both designs. While relatively insensitive to changes in prevalence of infection 

within ranges that have been reported for SARS-CoV-2, bias increases if the association of 

clinical case-defining symptoms with infection is weak (such that 𝑑 ≫ 𝑘 is false), potentially 

leading to substantial under-estimation of VE𝐷. 

Choice of diagnostic assays 

Multiple assays are available for SARS-CoV-2 detection, and use of assays with differing 

performance characteristics may influence the extent of biases identified above. Nucleic acid 

amplification assays such as polymerase chain reaction (PCR), for instance, have higher analytic 

sensitivity (i.e., likelihood of positive test for sample containing viral material at the minimum 

detectable concentration for which assay is designed), potentially leading to detection of SARS-

CoV-2 genetic material among individuals with low levels of virus-shedding. Antigen detection 

tests, with lower analytic sensitivity, may in contrast yield negative results for individuals with 
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low virus-shedding that remains detectable by molecular testing.26 In comparison to mild illness, 

both assays may have lower sensitivity for severe disease which can be delayed in presentation, 

occurring often during the second week after infection onset when viral shedding is lower.42   

Define 𝜎𝑃 and 𝜎𝑆 as the sensitivity of an assay for detecting SARS-CoV-2 among individuals 

experiencing COVID-19 and those not experiencing symptoms attributable to SARS-CoV-2, 

respectively. We limit our consideration to differences in test sensitivity, considering specificity 

to encompass the related issue of non-etiologic SARS-CoV-2 detections; under field conditions, 

antigen and molecular tests have been found to have similar analytical specificity.26,27 The 

limiting case of an assay which perfectly rules out SARS-CoV-2 detections that are not causing 

symptoms (𝜎𝑆 = 0) yields the contingency table presented in Table 4 for case and control groups 

(eTable 1; http://links.lww.com/EDE/B808 extends this for non-zero values of 𝜎𝑆).  

With 𝜎𝑆 = 0, the traditional case–control yields 

VÊTCC = 1 −
𝜃𝑆𝜃𝑃(1 − 𝑎𝑑)

1 − 𝜃𝑆𝜃𝑃𝑎𝑑
, 

removing the reliance on the assumption 𝑘 ≪ 𝑑, and allowing VÊTCC ≈ 1 − 𝜃𝑆𝜃𝑃 = VED if 

overall prevalence of infection is low (𝑎 ≈ 0). Under the test-negative design, 

VÊTND = 1 −
𝜃𝑆𝜃𝑃[𝑘 + (1 − 𝑘)𝑎𝑑(1 − 𝜎𝑃)]

𝑘 + (1 − 𝑘)𝜃𝑆𝜃𝑃𝑎𝑑(1 − 𝜎𝑃)
. 

Here, we obtain an unbiased estimate VÊTND ≈ 1 − 𝜃𝑆𝜃𝑃 = VED only with high sensitivity of the 

assay for individuals experiencing COVID-19 (𝜎𝑃 ≈ 1). Lower values of 𝜎𝑃 result in greater bias 

(eFigure 3; http://links.lww.com/EDE/B808, eFigure 4; http://links.lww.com/EDE/B808). 

Nonetheless, under a scenario where 𝜎𝑃 is high and asymptomatic SARS-CoV-2 detections are 

minimal (𝜎𝑆 ≈ 0; eFigure 3; http://links.lww.com/EDE/B808, eFigure 4; 

http://links.lww.com/EDE/B808), the extent of bias remains lower than what arises with perfect 
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detection of SARS-CoV-2 in both asymptomatic infection and COVID-19 (as plotted in eFigure 

1; http://links.lww.com/EDE/B808, eFigure 2; http://links.lww.com/EDE/B808), particularly 

for vaccines that primarily prevent infection (eFigure 3; http://links.lww.com/EDE/B808, 

eFigure 4; http://links.lww.com/EDE/B808).  

We note that no available assay enables perfect differentiation of COVID-19 from non-etiologic 

detections of SARS-CoV-2; statistical corrections for imperfect test sensitivity and specificity 

have been proposed to adjust final VE estimates.28 Further complicating the selection of assays, 

available data suggest similar viral loads and/or nucleic acid abundance among individuals with 

or without symptoms at similar stages of infection.29,30 However, onset of COVID-19 upper 

respiratory tract symptoms typically coincides with peak viral shedding. Thus, individuals 

seeking care for new-onset COVID-19 may generally have higher viral load than individuals 

experiencing symptoms owing to other causes, who may be at later stages of SARS-CoV-2 

shedding or molecular detection.31 This may drive an artefactual association of higher SARS-

CoV-2 shedding with COVID-19.  

HEALTHCARE-SEEKING BEHAVIOR 

Differential healthcare-seeking behaviors of individuals who can access and receive vaccines, 

versus others, may be another source of bias. The test-negative design aims to limit such bias by 

restricting enrollment to individuals who seek care and receive diagnostic testing for the same or 

similar clinical indications. In traditional case–control studies, there may be uncertainty about 

whether controls were truly disease-free, as some may not have sought care given symptoms. 

This may be particularly true if studies select controls from registries without direct outreach. 
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We may quantify the resulting bias by considering the number of controls who are misclassified 

when the probability of seeking care, given symptoms, is 𝜋𝑉 among the vaccinated and 

𝜋𝑈 among the unvaccinated. Defining eligible controls as individuals who do not become 

ascertained as cases (Table 5): 

VÊTCC = 1 −
𝜃𝑆[𝜃𝑃𝑑 + (1 − 𝜃𝑃𝑑)𝑘][1 − (𝑘 + (1 − 𝑘)𝑎𝑑)𝜋𝑈]

[𝑑 + (1 − 𝑑)𝑘][1 − (𝑘 + (1 − 𝑘)𝜃𝑆𝜃𝑃𝑎𝑑)𝜋𝑉]
×

𝜋𝑉

𝜋𝑈
. 

The resulting bias generally leads to under-estimation of true protection (VED) when the 

probability of seeking treatment is higher among vaccinated than unvaccinated persons, given 

the same status of being infected or symptomatic, owing to the disproportionately higher 

likelihood for vaccinated individuals to be ascertained as cases (eFigure 5; 

http://links.lww.com/EDE/B808, eFigure 6; http://links.lww.com/EDE/B808). Studies aiming 

to mitigate this bias by enrolling health facility controls may still encounter difficulty. If 

vaccination is associated with higher rates of healthcare seeking, prevalence of vaccination 

among controls seeking care for less-severe conditions may be inflated, leading to 

overestimation of VED. 

Applying the same formulation under the test-negative design, the terms 𝜋𝑉 and 𝜋𝑈 cancel out 

(Table 5). Nonetheless, in practical contexts, test-negative studies may enroll individuals across 

a spectrum of clinical severity. This may cause bias to persist if the probability of treatment-

seeking differs for vaccinated and unvaccinated individuals with relatively less severe or more 

severe illness.18 These considerations motivate approaches such as matching of cases and test-

negative controls (or cases and alternative-disease controls under the traditional case–control) on 

clinical severity. 
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Prevalence of other causes of illness leading to care-seeking (e.g., among alternative-disease 

controls under the traditional case–control and among test-negative controls under the test-

negative design) may vary considerably over time. If risk of disease due to these other causes is 

also associated with likelihood of vaccination, further bias may arise. Even under normal 

circumstances, disease etiology among controls can change within a season or from year to year. 

This variation is likely to be extreme over the time horizon that SARS-CoV-2 vaccines are rolled 

out, as non-pharmaceutical interventions targeting SARS-CoV-2 have affected circulation of 

other pathogens.32,33 As non-pharmaceutical interventions are rolled back, other causes of 

healthcare-seeking may surge. Since many infections causing respiratory symptoms (e.g., 

influenza, pneumococcus) are vaccine preventable, controls with these infections may be less 

likely to have sought vaccine. Accordingly, the ratio 𝜋𝑉/𝜋𝑈 may change over time. 

A CAUTIONARY NOTE  

Testing for SARS-CoV-2 is commonly undertaken for both clinical diagnostic and public health 

purposes. Thus, data on SARS-CoV-2 test results may encompass individuals tested because of 

clinical symptoms as well as those tested due to contact with a known or suspected COVID-19 

case, for purposes of screening before work or medical procedures, or for other indications. 

Stratifying analyses to address fairly homogeneous populations, or to individuals who receive 

SARS-CoV-2 testing with the same frequency or for the same indications, may be of 

considerable importance. 

Variation in the likelihood of seeking testing is expected to be greatest for cases of mild illness 

or among persons without symptoms. There may be substantial associations to test-seeking with 

individuals’ healthcare utilization, including the propensity to be vaccinated. In the most extreme 

case, populations targeted for vaccination may also be populations targeted for frequent testing, 
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such as healthcare providers, residents of long-term care facilities, and essential workers. 

Infections in these groups will be more likely to be detected relative to infections within groups 

without similar access to testing, who may also be less likely to be vaccinated. Here 𝜋𝑉 ≫ 𝜋𝑈, 

potentially leading to substantial under-estimation of VE. Similar bias may persist when vaccines 

are made more widely available if individuals with the greatest propensity to seek healthcare, 

given the same clinical presentation, including SARS-CoV-2 testing, are also more likely to be 

vaccinated. 

Thus, the test-negative design cannot be applied naively to SARS-CoV-2 testing datasets 

gathered through public health surveillance or administrative data sources. To adequately correct 

for potential differences in vaccinated and unvaccinated individuals’ likelihood of being tested, 

designs or analyses should compare individuals being tested for the same indications (e.g., 

fulfilling particular clinical criteria, known high-risk exposure to SARS-CoV-2, or routine 

screening), for instance by matching or stratifying on vaccine eligibility criteria. Bias may be 

further reduced in studies considering severe disease endpoints for which both vaccinated and 

unvaccinated individuals would be unlikely to defer treatment, regardless of their propensity to 

seek healthcare for less severe illness. 

ASSOCIATION OF VACCINE UPTAKE WITH DIFFERENTIAL RISK OF 

INFECTION 

Confounding in prevalence of infection and immunity 

Limited vaccine supplies are being targeted initially at groups most likely to be exposed to 

SARS-CoV-2 as well as those at greatest risk of severe COVID-19, if infected. Even when 

vaccines are more widely available, uptake of vaccination may be highest among individuals 

who adhered most strongly to non-pharmaceutical interventions. Accordingly, exposure to 
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infection and risk of progressing to severe disease will not be equal between vaccinated and 

unvaccinated groups. This differential extends not only to rates of new infection, but also to the 

prevalence of prior natural infection and immunity. As available evidence suggests naturally 

acquired immunity is strongly (~90%) protective against re-infection, there may be substantial 

differences in risk among vaccinated and unvaccinated individuals owing to factors other than 

vaccine-derived protection.34,35 

We extend the contingency tables laid out previously (Table 6) to incorporate 𝛽, the relative risk 

of SARS-CoV-2 infection among vaccinated (vs. unvaccinated) individuals due to factors other 

than vaccination, as well as 𝜔𝑉 and 𝜔𝑈, the proportions of the vaccinated and unvaccinated 

populations, respectively, that remain uninfected. For simplicity, we assume near-total protection 

against reinfection conferred by naturally acquired immunity. Under the two designs, 

VÊTCC = 1 −
𝜃𝑆𝛽[𝜃𝑃𝑑 + (1 − 𝜃𝑃𝑑)𝑘]𝜔𝑉(1 − 𝜔𝑈𝑎𝑑)

[𝑑 + (1 − 𝑑)𝑘]𝜔𝑈 (1 − 𝜃𝑆𝜃𝑃𝛽𝑎𝑑𝜔𝑉)
 

and 

VÊTND = 1 −
𝜃𝑆𝛽[𝜃𝑃𝑑 + (1 − 𝜃𝑃𝑑)𝑘]𝜔𝑉(1 − 𝑎𝜔𝑈)

[𝑑 + (1 − 𝑑)𝑘]𝜔𝑈(1 − 𝜃𝑆𝛽𝑎𝜔𝑉)
, 

which, with low prevalence of infection (𝑎 ≈ 0) and low risk of disease due to other causes (𝑘 ≪

𝑑), yield 

VÊTCC = VÊTND ≈ 1 − 𝜃𝑆𝜃𝑃 × 𝛽
𝜔𝑉

𝜔𝑈
. 

Here, differential risk of SARS-CoV-2 infection and prevalence of immunity among vaccinated 

and unvaccinated individuals lead to counteracting biases. With higher risk among individuals 

who receive vaccination (𝛽 > 1), we may expect higher prevalence of naturally acquired 

infection in this group and 𝜔𝑉 < 𝜔𝑈; bias is offset fully if 𝛽 = 𝜔𝑈/𝜔𝑉.  
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We plot conditions under which bias is driven predominantly by differential exposure to 

infection or by differential naturally acquired immunity in Figure 1. Considering the context of 

VE studies undertaken shortly after vaccine implementation, we may assume individuals’ time at 

risk is contributed primarily in the period before vaccination; with exponentially distributed 

infection times, and a cumulative force of infection 𝑐 exerted over the period at risk, we may 

define the remaining uninfected populations 𝜔𝑈 = exp (−𝑐) and 𝜔𝑉 = exp (−𝛽𝑐). Bias is fully 

offset with 𝑐 = log(𝛽) /(𝛽 − 1), yielding 𝜔𝑈 = 𝛽
1

1−𝛽 (Figure 1). Thus, the prevalence of pre-

existing naturally acquired immunity needed to offset bias resulting from differential exposure is 

high, at 33% and 56% for 𝛽 = 5 and 𝛽 = 1.5, respectively. 

Detailed risk factor data are likely necessary to address confounding associated with differential 

risk of infection among individuals receiving and those not receiving vaccination. While certain 

occupations (e.g. healthcare or other essential workers) may be associated with heightened risk 

of exposure relative to the general public, substantial variation in risk may exist within these 

categories owing to differences in the specific tasks conducted and availability of as well as 

adherence to infection control measures. Individuals may modify aspects of their behavior 

following vaccine receipt, further altering differences in risk of infection among vaccine 

recipients and non-recipients. Collection of questionnaire items addressing risk behaviors and 

exposures is thus of importance to mitigate confounding.  

Temporal considerations 

Tiered rollout of vaccination while disease incidence changes concurrently will cause the bias we 

have described above to vary over time. Thus, in addition to differential exposure or 

susceptibility, cohorts with earlier or later access to and uptake of vaccines may be exposed to 

differing risk of infection at equivalent time points after vaccination. Matching, stratification, or 
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statistical adjustment may be necessary to correct for temporal confounding of this nature, and to 

avoid spurious signals of time-varying VE. While we have focused here on studies undertaken 

shortly after vaccine rollout, prior work has considered differential accrual of natural immunity 

among vaccinated and unvaccinated individuals over longer periods of time.3,18,36,37 For vaccines 

conferring “leaky” protection, traditional case–control and test-negative design studies may 

underestimate true protection owing to higher rates of acquisition of naturally-acquired immunity 

among unvaccinated individuals. This bias does not arise, however, for vaccines conferring “all-

or-nothing” protection.3,18 

DISCUSSION 

Our analysis provides several practical insights to inform upcoming traditional case–control and 

test-negative design studies of SARS-CoV-2 vaccines. While we identify conditions and 

reasonable assumptions under which both designs can supply reliable VE estimates, several 

threats to validity should be taken into account in the design, analysis, and interpretation of 

traditional case–control and test-negative design studies. Below we offer considerations for 

researchers undertaking studies of either design to investigate vaccines against SARS-CoV-2: 

Use of severe COVID-19 clinical endpoints: Use of severe disease endpoints minimizes risk of 

misclassification and healthcare-seeking bias. To allow sufficient power, studies may need to 

enroll patients across multiple healthcare facilities, underscoring the need for standardized 

clinical criteria and case definitions. Studies addressing VE against common or less-severe 

clinical endpoints may benefit from using extended analytic methods that have been proposed 

previously for estimation of VE against diseases with non-specific diagnostic criteria.11,38,39 As 

these analysis methods must generally account for the strength of association between SARS-

CoV-2 infection and clinical symptoms, enrollment and testing of control groups without 
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symptoms related to SARS-CoV-2 infection may be of value for researchers studying VE against 

such endpoints. 

Use of molecular or antigen tests: Studies using SARS-CoV-2 detection assays with the highest 

analytic sensitivity may encounter the greatest risk of misclassifying symptomatic individuals at 

the end of their course of infection as cases, including when SARS-CoV-2 is not the cause of 

symptoms. This could be more problematic when prevalence of SARS-CoV-2 infection is high 

and outcomes of interest include non-severe or non-specific COVID-19 clinical manifestations, 

such as in outpatient settings. However, trade-offs associated with risk of bias must be balanced 

against assay specificity and test performance under varied prevalence and clinical settings. 

Where molecular assays with high analytical sensitivity are preferred for clinical care provision, 

researchers may consider analyzing quantitative cycle threshold data or collecting a second 

specimen for antigen-based testing. 

Collecting detailed information on clinical severity and testing indications: Reliance on clinic-

based testing under both designs makes it difficult to identify and correct for differences in the 

likelihood for vaccinated and unvaccinated individuals, given infection and symptoms, to be 

ascertained as cases. Collection of standardized data on specific clinical symptoms (and their 

duration) among both cases and controls may reduce the risk of bias related to vaccine-associated 

differences in healthcare access or healthcare seeking. This strategy further provides an 

opportunity to identify and exclude, if applicable, registry-based or community controls who 

were ill but did not seek care. If testing is conducted for multiple pathogens, researchers may 

also investigate bias by assessing VE against other illnesses not prevented by SARS-CoV-2 

vaccination as a “sham” analysis to indicate risk of bias.40,4140,41 
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Background immunity: Prevalent naturally acquired immunity may complicate the interpretation 

of results under both the traditional case–control and TND, potentially contributing to lower risk 

of infection and disease among individuals with the greatest risk of SARS-CoV-2 exposure. As 

initial vaccine doses will be prioritized to groups with high infection risk, individuals eligible to 

receive vaccine at the earliest opportunity may have higher prevalence of pre-existing naturally 

acquired immunity than those in lower-priority tiers. Studies may mitigate this bias, in part, by 

comparing individuals within the same prioritization groups, by collecting detailed risk factor 

data to control for variation in exposure, and through use of serological assays (if available) that 

differentiate vaccine-derived or naturally induced responses (e.g. to non-vaccine antigens). 
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FIGURE CAPTIONS 

Figure 1: Estimated vaccine effectiveness under the traditional case–control design and 

test-negative design with differential exposure to infection and prevalence of naturally 

acquired immunity among vaccinated and unvaccinated persons. We illustrate expected 

estimates of the odds ratio of vaccination given case versus control (or test-negative) status, 

under the limiting case of 𝑎 ≈ 0 and 𝑘 ≈ 0, under scenarios where  vaccination occurs among 

individuals with higher (left panel: 𝛽 = 2, solid lines; 𝛽 = 4, dashed lines) or lower (center 

panel: 𝛽 = 0.25, solid lines; 𝛽 = 0.5, dashed lines) risk of exposure to SARS-CoV-2. Colors 

correspond to differing proportions of the unvaccinated population remaining susceptible to 

infection (𝜔𝑈 = exp (−𝑐); we define the proportion of the vaccinated population remaining 

uninfected as  𝜔𝑉 = exp (−𝛽𝑐) for given values of 𝜔𝑈). Red diagonal lines across the left and 

center panels illustrate the true effect. The right panel illustrates threshold values of 𝜔𝑈
∗ = 𝛽

1

1−𝛽, 

at which the effects of differential exposure to SARS-CoV-2 and naturally-acquired immunity 

among vaccinated versus unvaccinated persons cancel out, resulting in a change in the direction 

of bias.  

ACCEPTED

Copyright © Wolters Kluwer Health, Inc. All rights reserved. Unauthorized reproduction of this article is prohibited.



28 
 

Table 1: Parameters and their definitions. 
Parameter Definition Range of values 

p Prevalence of a vaccine-preventable clinical condition of interest among 
unvaccinated individuals for the general setting of traditional case–control and 
test-negative design studies. 

0 to 1 

𝜃 Risk ratio for a clinical outcome of interest among counterfactually vaccinated 
versus unvaccinated individuals; we define 𝜃𝑆 as the risk ratio of shedding the 

pathogen (owing to differential acquisition among the vaccinated) and 𝜃𝑃 as 
the risk ratio of disease progression, given infection. Vaccine effectiveness is 
defined as VE = 1 − 𝜃 in the general case. The combined extent of protection 

resulting from prevention of shedding and progression is VE𝐷 = 1 − 𝜃𝑆𝜃𝑃. 

0 ≤ 𝜃 < 1 corresponds to the 
scenario of a protective vaccine 

𝜈 Vaccine uptake, or the proportion of the population being studied who have 
received vaccination. 

0 to 1 

𝑘 Prevalence of the clinical outcome of interest in the population being studied, 

attributable to causes other than the vaccine-targeted pathogen; ideally, 𝑘 ≈ 0 
or  𝑘 ≪ 𝑑. To illustrate the impact of this parameter, we consider three values 
corresponding to differing endpoints. We consider 𝑘 = 0.184 for the 
prevalence of any COVID-19-like symptoms among uninfected persons in a 

community sample 42. We consider 𝑘 = 0.0018 for the prevalence of 
hospitalization due to causes other than COVID-19, and 𝑘 = 0.00021 for the 
prevalence of intensive care utilization due to causes other than COVID-19, 
based the average number of occupied hospital and intensive care beds per 
capita in the US.43,44 

0 to 1 

𝑎 Prevalence of SARS-CoV-2 shedding among all members of the population 

being studied. Generally, 𝑎 ≤ 0.01 throughout the pandemic, although higher 
values have been reported in certain high-risk populations.42,45–47 To illustrate 

the impact of this parameter, we plot scenarios with low (𝑎 = 0.01) and high 
(𝑎 = 0.1) values.  

0 to 1 

𝑑 Proportion of infected persons experiencing the COVID-19 clinical outcome 
within the population being studied. To illustrate the impact of this parameter, 
we consider three values corresponding to differing endpoints. We assume 

𝑑 = 0.5 for any symptoms; 𝑑 = 0.029 for hospitalization 48; and 𝑑 = 0.012 for 
ICU admission.49 

0 to 1 

𝜎 Test sensitivity, or the probability of SARS-CoV-2 detection in an infected 
patient. We further define 𝜎𝑆 as sensitivity for detecting SARS-CoV-2 when 

the pathogen is not causing symptoms, and 𝜎𝑃 as sensitivity for detecting 
SARS-CoV-2 when the pathogen is the cause of symptoms. 

0 to 1 

𝜋 Probability that individuals who experience the clinical outcome of interest will 

receive a test. We define 𝜋𝑉 and 𝜋𝑈 for vaccinated and unvaccinated 
individuals, respectively, to account for potential differences in healthcare 
access or healthcare seeking associated with vaccination. 

0 to 1 

𝛽 Relative risk of SARS-CoV-2 infection among vaccinated (versus 
unvaccinated) individuals, owing the factors other than vaccination (e.g., 
differential exposure or susceptibility to infection). 

𝛽 > 1 corresponds to a scenario 
of higher risk among those who 
will receive vaccination; 0 ≤ 𝛽 <
1 corresponds to a scenario of 
lower risk among the vaccinated. 

𝜔 Proportion of the population that remains uninfected. We define 𝜔𝑉 and 𝜔𝑈 for 
vaccinated and unvaccinated individuals, respectively, to account for potential 
differences in risk of infection within these populations, apart from vaccine-
conferred immunity. For the case of exponentially distributed infection times, 
we consider 𝜔𝑈 = exp (−𝑐) and 𝜔𝑉 = exp (−𝛽𝑐). 

0 to 1 
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Table 2: Two-by-two tables for traditional case–control and test-negative design studies. 
Design Exposure Outcome 

Traditional case–control  Case Control 
 Vaccinated 𝜈𝜃𝑝 𝜈(1 − 𝜃𝑝) 
 Unvaccinated (1 − 𝜈)𝑝 (1 − 𝜈)(1 − 𝑝) 
Test-negative design    
  Test-positive Test-negative 
 Vaccinated 𝜈𝜃𝑝 𝜈𝑘 
 Unvaccinated (1 − 𝜈)𝑝 (1 − 𝜈)𝑘 

Contents of the table are probabilities of the various listed outcomes, accounting for vaccinated or unvaccinated status. Parameters: 
𝜈, proportion of the population vaccinated; 𝑝, risk of the outcome of interest; 𝑘, risk of the negative-control outcome; 𝜃, relative risk 
of the outcome of interest, given vaccination (see Table 1). 
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Table 3: Contingency tables for traditional case–control and test-negative design studies with 
outcome misclassification. 

Exposure Outcome 
 Test-positive case (symptomatic) Community control (asymptomatic) Test-negative control (symptomatic) 

Vaccinated 𝜈 𝜃𝑆𝑎[𝜃𝑃𝑑 + (1 − 𝜃𝑃𝑑)𝑘] 𝜈(1 − 𝑘)(1 − 𝜃𝑆𝜃𝑃𝑎𝑑) 𝜈(1 − 𝜃𝑆𝑎)𝑘 
Unvaccinated (1 − 𝜈)𝑎[𝑑 + (1 − 𝑑)𝑘] (1 − 𝜈)(1 − 𝑘)(1 − 𝑎𝑑) (1 − 𝜈)(1 − 𝑎)𝑘 

Contents of the table are probabilities of the various listed outcomes, accounting for vaccinated or unvaccinated status. Parameters: 
𝜈, proportion of the population vaccinated; 𝑎, prevalence of SARS-CoV-2 infection; 𝑑, risk of COVID-19 among those with SARS-

CoV-2 infection; 𝑘, risk of symptoms due to causes other than SARS-CoV-2 infection; 𝜃𝑆, relative risk of SARS-CoV-2, given 
vaccination; 𝜃𝑃, relative risk of COVID-19, among those with SARS-CoV-2 infection, given vaccination (Table 1). 
  

ACCEPTED

Copyright © Wolters Kluwer Health, Inc. All rights reserved. Unauthorized reproduction of this article is prohibited.



31 
 

Table 4: Contingency tables for traditional case–control and test-negative design studies with 
exclusion of SARS-CoV-2 shedding from COVID-19. 

Exposure Outcome 
 Test-positive case (symptomatic) Community control (asymptomatic) Test-negative control (symptomatic) 

Vaccinated 𝜈 𝜃𝑆𝜃𝑃𝑎𝑑𝜎𝑃 𝜈(1 − 𝑘)(1 − 𝜃𝑆𝜃𝑃𝑎𝑑) 𝜈[𝑘 + (1 − 𝑘)𝜃𝑆𝜃𝑃𝑎𝑑(1 − 𝜎𝑃)] 
Unvaccinated (1 − 𝜈)𝑎𝑑𝜎𝑃 (1 − 𝜈)(1 − 𝑘)(1 − 𝑎𝑑) (1 − 𝜈)[𝑘 + (1 − 𝑘)𝑎𝑑(1 − 𝜎𝑃)] 

Contents of the table are probabilities of the various listed outcomes, accounting for vaccinated or unvaccinated status. Parameters: 
𝜈, proportion of the population vaccinated; 𝑎, prevalence of SARS-CoV-2 infection; 𝑑, risk of COVID-19 among those with SARS-

CoV-2 infection; 𝑘, risk of symptoms due to causes other than SARS-CoV-2 infection; 𝜃𝑆, relative risk of SARS-CoV-2, given 
vaccination; 𝜃𝑃, relative risk of COVID-19, among those with SARS-CoV-2 infection, given vaccination; 𝜎𝑃, sensitivity for SARS-
CoV-2 detection among individuals experiencing COVID-19 (see Table 1). We present a more general contingency table for non-

zero values of 𝜎𝑆 (test sensitivity for SARS-CoV-2 infection among those not experiencing COVID-19) in eTable S1. 
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Table 5: Contingency table for traditional case–control and test-negative design studies with 
differential healthcare-seeking among the vaccinated and unvaccinated. 

Exposure Outcome 
 Test-positive case 

(symptomatic, healthcare 
sought) 

Community control (healthcare 
not sought) 

Test-negative control 
(symptomatic, healthcare 

sought) 

Vaccinated 𝜈 𝜃𝑆𝑎[𝜃𝑃𝑑 + (1 − 𝜃𝑃𝑑)𝑘]𝜋𝑉 𝜈[1 − (𝑘 + 𝜃𝑆𝜃𝑃𝑎𝑑(1 − 𝑘))𝜋𝑉] 𝜈(1 − 𝜃𝑆𝑎)𝑘𝜋𝑉 
Unvaccinated (1 − 𝜈)𝑎[𝑑 + (1 − 𝑑)𝑘]𝜋𝑈 (1 − 𝜈)[1 − (𝑘 + 𝑎𝑑(1 − 𝑘)𝜋𝑈] (1 − 𝜈)(1 − 𝑎)𝑘𝜋𝑈 

Contents of the table are probabilities of the various listed outcomes, accounting for vaccinated or unvaccinated status. Parameters: 

𝜈, proportion of the population vaccinated; 𝑎, prevalence of SARS-CoV-2 infection; 𝑑, risk of COVID-19 among those with SARS-
CoV-2 infection; 𝑘, risk of symptoms due to causes other than SARS-CoV-2 infection; 𝜃𝑆, relative risk of SARS-CoV-2, given 
vaccination; 𝜃𝑃, relative risk of COVID-19, among those with SARS-CoV-2 infection, given vaccination; 𝜋𝑉, probability of testing for 
symptomatic vaccinated individuals; 𝜋𝑈, probability of testing for symptomatic unvaccinated individuals (Table 1). 
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Table 6: Contingency table for traditional case–control and test-negative design studies with 
differential risk of current and prior infection among the vaccinated and unvaccinated. 

Exposure Outcome 
 Test-positive case (symptomatic) Community control (asymptomatic) Test-negative control (symptomatic) 
Vaccinated 𝜈 𝜃𝑆𝛽𝑎[𝜃𝑃𝑑 + (1 − 𝜃𝑃𝑑)𝑘]𝜔𝑉 𝜈(1 − 𝑘)(1 − 𝜃𝑆𝜃𝑃𝛽𝑎𝑑𝜔𝑉) 𝜈(1 − 𝜃𝑆𝛽𝑎𝜔𝑉)𝑘 
Unvaccinated (1 − 𝜈)𝑎[𝑑 + (1 − 𝑑)𝑘]𝜔𝑈 (1 − 𝜈)(1 − 𝑘)(1 − 𝑎𝑑𝜔𝑈) (1 − 𝜈)(1 − 𝑎𝜔𝑈)𝑘 

Contents of the table are probabilities of the various listed outcomes, accounting for vaccinated or unvaccinated status. Parameters: 
𝜈, proportion of the population vaccinated; 𝑎, prevalence of SARS-CoV-2 infection; 𝑑, risk of COVID-19 among those with SARS-

CoV-2 infection; 𝑘, risk of symptoms due to causes other than SARS-CoV-2 infection; 𝜃𝑆, relative risk of SARS-CoV-2, given 
vaccination; 𝜃𝑃, relative risk of COVID-19, among those with SARS-CoV-2 infection, given vaccination; 𝛽, relative risk of exposure or 
infection among vaccinated versus unvaccinated individuals attributable to factors other than vaccine-conferred immunity; 𝜔𝑉, 
proportion of vaccinated individuals who remain uninfected; 𝜔𝑈, proportion of unvaccinated individuals who remain uninfected 
(Table 1). 
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Figure 1 
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