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ABSTRACT 

Modern data linkage and technologies provide a way to reconstruct detailed longitudinal 

profiles of health outcomes and predictors at the individual or small-area level. While these 

rich data resources offer the possibility to address epidemiologic questions that could not be 

feasibly examined using traditional studies, they require innovative analytical approaches. 

Here we present a new study design, called case time series, for epidemiologic investigations 

of transient health risks associated with time-varying exposures. This design combines a 

longitudinal structure and flexible control of time-varying confounders, typical of aggregated 

time series, with individual-level analysis and control-by-design of time-invariant between-

subject differences, typical of self-matched methods such as case–crossover and self-

controlled case series. The modeling framework is highly adaptable to various outcome and 

exposure definitions, and it is based on efficient estimation and computational methods that 

make it suitable for the analysis of highly informative longitudinal data resources. We assess 

the methodology in a simulation study that demonstrates its validity under defined 

assumptions in a wide range of data settings. We then illustrate the design in real-data 

examples: a first case study replicates an analysis on influenza infections and the risk of 

myocardial infarction using linked clinical datasets, while a second case study assesses the 

association between environmental exposures and respiratory symptoms using real-time 

measurements from a smartphone study. The case time series design represents a general and 

flexible tool, applicable in different epidemiologic areas for investigating transient 

associations with environmental factors, clinical conditions, or medications. 

Keywords: study design; self-matched; self-controlled; case-only; time series; 

epidemiological methods; longitudinal data; AirRater.  
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BACKGROUND 

Observational studies aim to discover and understand causal relationships between exposures 

and health outcomes through the analysis of epidemiologic data.1 Paramount to this objective 

is removing biases due to the non-experimental setting, in the first place confounding. It is, 

therefore, no surprise that traditional approaches based on cohort and case–control methods 

have been complemented with, and extended by, alternative study designs and statistical 

techniques applicable in specific contexts. An active area of research is so-called self-

matched studies, which investigate acute effects of intermittent exposures by comparing 

observations sampled at different times within the same unit. These include individual-level 

designs such as the case–crossover,2 the case-only,3 the case–time–control,4 the exposure–

crossover,5 and the self-controlled case series,6 among others. An alternative but related 

epidemiologic method for aggregated data is the time series design, applied in particular in 

environmental studies.7 A thorough overview of self-matched methods is provided in a recent 

publication by Mostofsky and colleagues.8 

This landscape is likely to be transformed further by ongoing technologic and methodologic 

developments in data science, which offers unique opportunities for epidemiologic 

investigations, for instance through electronic health records linkage,9 exposure modeling,10 

and real-time measurements technologies.11,12 Ultimately, these data resources can be used to 

reconstruct detailed longitudinal profiles with repeated measures of health outcomes and 

various risk factors, offering the chance to investigate complex aetiological mechanisms and 

to test elaborate causal hypotheses. However, existing self-matched methods present 

limitations in this context, and new analytical techniques must be developed for 

epidemiologic investigations in these intensive longitudinal and big data settings.13  

In this contribution, we present the case time series design, a novel self-matched method for 

the analysis of transient changes in risk of acute outcomes associated with time-varying 
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exposures. This innovative design combines the longitudinal modeling structure of time 

series analysis with the individual-level setting of other self-matched methods, offering a 

flexible and generally applicable tool for modern epidemiologic studies. First, we introduce 

the case time series design and its features, including the design structure, modeling 

framework, estimation methods, and key assumptions. Later, we assess the methodology in a 

simulation study that evaluates its performance under various data generating scenarios. 

Then, we demonstrate its application through two real-data epidemiologic analyses. In a final 

discussion section, we describe the epidemiologic context, advantages, and limitations, and 

areas of further development. We add documents for reproducing real-data examples and the 

simulation study as eAppendix 1-3 in the online supplementary material; 

http://links.lww.com/EDE/B841, with an updated version complemented with and R scripts 

available at the personal website and GitHub webpage of the author (see ‘Data and Code’). 

A NOVEL SELF-MATCHED DESIGN 

The study design proposed here, called case time series, is a generally applicable tool for the 

analysis of transient health associations with time-varying risk factors. This novel design 

considers multiple observational units, defined as cases, for which data are longitudinally 

collected over a pre-defined follow-up period. The main design feature that defines the case 

time series methodology is the split of the follow-up period in equally spaced time intervals, 

which results in a set of multiple case-level time series. Data forming the series can originate 

from actual sequential observations or be reconstructed by aggregating or averaging 

longitudinal measurements, but, eventually, they are assumed to represent a continuous 

temporal frame. A graphical representation is provided in Figure 1, showing case-specific 

time series data with various types of measurements of outcome and exposure collected for 

multiple subjects. 
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The case time series data setting provides a flexible framework that can be adapted for 

studying a wide range of epidemiologic associations. For instance, outcomes, exposures, and 

other predictors can be represented by either indicators for events, episodes, or continuous 

measurements that vary across units and times, as in Figure 1. The time intervals can be of 

any length (from seconds to years), depending on the temporal association between outcome 

and exposures and on practical design considerations. A case is a general definition, and it 

can represent a subject or other entities such as a geographic area to which observations are 

assigned, thus allowing analyses to be conducted either at individual level or with aggregated 

data. Eventually, the case time series structure combines characteristics of various other study 

designs: it allows individual-level analyses of transient risk associations as in traditional self-

matched methods, but it retains the longitudinal temporal frame typical of time series data, 

with ordered repeated measures of outcomes, exposures, and other predictors. As discussed 

below, this flexible design setting offers important advantages. 

Modeling Framework 

A case time series model can be written in a regression form by defining the expectation of a 

given health outcome 𝑦𝑖𝑡 for case 𝑖 at time 𝑡 in relation to a series of predictor terms. 

Algebraically, the model can be written as:

𝑔[E(𝑦𝑖𝑡)] = 𝜉𝑖(𝑘) + 𝑓(𝑥𝑖𝑡, ℓ) + ∑ 𝑠𝑗(𝑡) +

𝐽

𝑗=1

∑ ℎ𝑝(𝑧𝑖𝑝𝑡)

𝑃

𝑝=1

 (1) 

The definition in Eq. (1) resembles a classic time series regression model traditionally used in 

environmental epidemiology, where the ordered and sequential nature of the data allows the 

application of cutting-edge analytical techniques.7 Specifically, the function 𝑓(𝑥, ℓ) specifies 

the association with the exposure of interest 𝑥, defined either as a binary episode indicator or 

as a continuous variable, optionally allowing for non-linearity and complex temporal 
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dependencies along the lag dimension ℓ. These complex relationships can be modeled 

through distributed lag linear and non-linear models, which can flexibly define cumulative 

effects of multiple exposure episodes.14 The term(s) 𝑠𝑗 represent functions expressed at 

different timescales to model temporal variations in risk associated to underlying trends or 

seasonality, among others.15 Other measurable time-varying confounders 𝑧𝑝 can be modeled 

through functions ℎ𝑝, and these can include for instance age or time since a specific 

intervention. The two sets of terms 𝑠𝑗 and ℎ𝑝 ensure a strict control of temporal variation in 

risks over multiple time axes. The outcome 𝑦 can represent binary indicators, counts of rare 

or frequent events, or continuous measures. The analysis can be performed on multiple cases 

𝑖 = 1, … , 𝑛, with intercepts 𝜉𝑖(𝑘) expressing baseline risks for different risk sets, optionally 

stratified further in time strata 𝑘 = 1, … , 𝐾𝑖 nested within them, allowing an additional 

within-case control for temporal variations in risk. 

Estimation 

The estimation procedures in case time series analyses rely on estimators and efficient 

computational algorithms provided by the general framework of fixed-effects models.16 

These were developed in econometrics and often applied in panel studies with repeated 

observations.10,17 Fixed-effects methods allow the estimation of coefficients for the various 

functions in Eq. (1), without including the potentially high number of case/stratum-specific 

intercepts 𝜉𝑖(𝑘), treated as nuisance (or incidental) parameters.16 

Fixed-effects estimators are available for the three main types of outcomes and distributions 

within the extended exponential family of generalized linear models (GLMs). Specifically, 

for continuous outcomes with a Gaussian distribution, the estimation procedure involves 

mean-centring and a simple correction of the degrees of freedom. For event-type indicator or 

count outcomes following a Bernoulli and Poisson distribution, respectively, estimators for 

fixed-effects models with canonical logit and log links can be defined through conditional 
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likelihoods for logistic and Poisson regression.18,19 These are forms of partial likelihoods that 

are derived by defining reduced sufficient statistics for 𝜉𝑖(𝑘), obtained by conditioning on the 

total number of events within each of the 𝑛 cases or 𝑛 × 𝐾 strata.  

The main advantage of fixed-effects models is that the effect of any unmeasured predictor 

that does not vary within each risk set is absorbed by the intercept 𝜉𝑖(𝑘), and therefore the 

related confounding effect is controlled for implicitly by design, as in other self-matched 

methods.8 In addition, the within-case design offers important computational advantages, 

especially from a big data perspective. First, the analysis is restricted to informative strata, 

i.e. cases and risk sets with variation in both outcome and exposure. Second, the estimators 

are based on efficient computational schemes, where the conditional or fixed-effect 

likelihood is defined by the sum of parts related to multiple risk sets, and the corresponding 

nuisance parameters 𝜉𝑖(𝑘) are not directly estimated. 

Key assumptions and threats to validity 

As discussed above, the case time series framework has interesting design and modeling 

features that offer important advantages. On the other hand, its self-controlled structure, 

while appealing, only operates within an elementary causal framework and requires relatively 

strict assumptions to protect against key threats to validity. Specifically, the main 

requirements are the following: 

1. Distributional assumptions on the outcome. The outcome 𝑦𝑖𝑡 must represent 

conditionally independent observations originating from one of the standard family 

distributions, for instance, Poisson counts, Bernoulli binary indicators, or Gaussian 

continuous measures. 

2. Outcome-independent follow-up period. The period of observation for each case 𝑖 

must be independent of a given outcome, meaning that the follow-up period cannot be 

defined or modified by the outcome itself. 
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3. Outcome-independent exposure distribution. The probability of the exposure 𝑥𝑡 must 

be independent of the outcome history prior to 𝑡, meaning that the occurrence of a 

given outcome must not modify the exposure distribution in the following period.  

4. Constant baseline risk conditionally on measured time-varying predictors. The 

baseline risk along the (strata of) follow-up period of each case 𝑖 must be constant, 

meaning that variations in risks must be fully explained by model covariates. 

These requirements enable valid conditional comparison of observations at different times 

within the follow-up of each case. Departures from these assumptions can produce 

imbalances in the temporal distribution of the outcome, the exposure, or unmeasured risk 

factors, thus determining spurious associations. 

Some of these assumptions have been separately described in the literature of self-matched 

designs and fixed-effects models.20-23 Specifically, Assumption 1 dictates that outcomes must 

occur independently, and in particular that the occurrence of a given outcome level or event 

must not modify the risk of following outcomes.24 This assumption indirectly implies that 

outcomes are recurrent, and non-recurrent events can only be analysed if rare in the 

population of interest.25,26 Assumptions 2 and 3 are those posing more limitations to the 

application of self-matched methods, as for many associations of interest an outcome can 

modify both the follow-up period and exposure distribution.27,28 These requirements often 

restrict the case time series designs to the analysis of exogenous exposures, which are by 

definition outcome-independent, and for which the observation period can be extended even 

beyond a terminal event, as in bi-directional case–crossover schemes.29 Assumption 4  

requires a constant baseline risk to ensure conditional exchangeability between observations 

within each risk sets,20,30,31 requiring that relevant time-varying confounders are included and 

all the terms in Eq. (1) are correctly specified. 
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Importantly, the design setting described above is not suited to represent complex causal 

scenarios characterised by dynamic mechanisms between time-varying terms. Specifically, 

feedback between outcomes and between outcome and exposure are forbidden by 

Assumptions 1 and 3, respectively, while more generally exposure–confounder feedback 

cannot be validly handled through traditional regression-based methods for longitudinal 

data.32  

SIMULATION STUDY 

We evaluated the performance of the case time series design in a set of simulated scenarios 

that involved various data-generating processes and assumptions (Table). Detailed 

information on the simulation settings, definitions, and additional results are provided in 

eAppendix 3 (online supplementary material; http://links.lww.com/EDE/B841). Briefly, we 

simulated and analysed data for 500 subjects followed up for one year, testing the method in 

terms of relative bias, coverage, and relative root mean square error (RMSE) in 50,000 

replications. The basic scenario involves an outcome represented by repeated event counts 

and binary indicators of exposure episodes associated with a constant increase in risk in the 

next 10 days. 

The first part of the simulation study (Scenarios 1-10) evaluates the performance of the new 

design in recovering the true association under increasingly complex data settings. 

Specifically, the scenarios depict different outcome and exposure types, the presence of 

common or subject-specific trends, time-invariant and time-dependent confounders, and more 

complex lag structures. Results in the Table indicate that the case time series design provides 

correct point estimates and confidence intervals in almost all ten scenarios. The small 

underestimation in Scenario 2 is consistent with the asymptotic bias of maximum likelihood 

estimators originating from the extreme unbalance of expected events between risk and 

control periods, previously described and defined analytically in the self-controlled case 
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series literature.33 eFigure 1 (online supplementary material; 

http://links.lww.com/EDE/B841) shows that the case time series models can correctly 

recover the true association, both in the basic Scenario 1 with constant risk and no 

confounding, and in the more complex Scenario 10 representing varying lag effects, strong 

temporal trends, and highly correlated confounders. 

The second part of the simulation study (Scenarios 11-14) illustrates basic applications, but 

where each of the four assumptions, in turn, does not hold. Specifically, Scenario 11 

describes the case where the occurrence of an outcome can change the risk status of a subject 

and temporally reduce their underlying risk. This can occur for instance when the event 

results in the prescription of drugs or therapies. This induces a form of dependency in the 

outcome series that violates Assumption 1 and, in this example, results in a negative bias 

(Table). Scenarios 12 simulates a different situation, namely when the outcome event carries 

a risk of censoring the follow-up, for instance, if it increases the probability of death. This 

contravenes Assumption 2 and generates a bias in the opposite direction. In Scenario 13, the 

outcome event reduces instead the probability of exposure episodes in the following two 

weeks, a situation that can occur for example if the event results in hospitalization or lifestyle 

changes. Here Assumption 3 does not hold, and the estimators are again biased upward. 

Finally, Scenario 14 illustrates the case of unobserved periods of lower baseline risk within 

the follow-up, for instance corresponding to holiday periods with a reduced probability of an 

outcome being reported. This undermines the conditional exchangeability requirements of 

Assumption 4 and induces a large positive bias. 

ILLUSTRATIVE EXAMPLES 

This section illustrates the application of the case time series design in two real-data 

examples. These case studies are described here only for illustrative purposes, and they are 

not meant to offer substantive epidemiological evidence on the associations under study. 

ACCEPTED

Copyright © Wolters Kluwer Health, Inc. All rights reserved. Unauthorized reproduction of this article is prohibited



12 
 

Detailed information on the setting and sources of data can be found in the cited references. 

Documents in the online supplementary material; http://links.lww.com/EDE/B841 

(eAppendix 1 and 2) provide notes and R code that reproduce the steps of these analyses 

using simulated data, and they offer details on the specific modeling choices.  

Flu and Myocardial Infarction 

The first example replicates a published analysis that assessed the role of influenza infection 

as a trigger for acute myocardial infarction (acute MI).34 The data, retrieved by linking 

electronic health records from primary care and cohort databases for England and Wales, 

include 3,927 acute MI cases with at least one flu episode in the period 2003-2009. A 

representation of a sub-interval of the follow-up for six subjects is reported in eFigure 2 

(online supplementary material; http://links.lww.com/EDE/B841). The original analysis 

relied on the self-controlled case series design to examine the association, using exposure 

windows in the 1-91 days after each flu episode and controlling for trends using 5-year age 

strata and trimester indicators. Limitations of this approach are the use of stratification to 

describe smooth continuous dependencies and the fact that multiple flu episodes experienced 

by some subjects resulted in the long exposure windows to overlap (see eFigure 2; 

http://links.lww.com/EDE/B841), requiring ad-hoc fixes that can generate biases.35 

Conversely, the rarity of the exposure, with most of the subjects experiencing a single flu 

episode, prevents the application of the case–crossover design, as most control sampling 

schemes would generate non-discordant case–referent sets. 

We replicated the analysis with a case time series design, splitting the follow-up period of 

each subject into daily time series (see eAppendix 1, online supplementary material; 

http://links.lww.com/EDE/B841). We fitted a fixed-effects Poisson model to estimate the flu–

acute MI association while controlling for underlying trends across multiple time scales. The 

model includes smooth functions to define the baseline risk, specifically using natural splines 
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(with two knots at the interquartile range) for age and cyclic splines (with three degrees of 

freedom) for seasonality. More importantly, we applied distributed lag models defined by 

either splines (with knots at 3, 10, and 29 lags) or step functions (with strata 1-3, 4-7, 8-14, 

15-28, and 29-91 lags) to describe temporal effects along with the exposure window. 

Results are reported in Figure 2. The left and middle panels display the variation in risk of 

AMI by age and season, showing how the case time series design allows modeling baseline 

trends fluctuating smoothly across multiple time axes. The right panel illustrates the risk after 

a flu episode within the selected lag period, as estimated using a distributed lag model with 

spline functions. The graph indicates a high risk in the first days after a flu episode, which 

then attenuates and disappears after approximately one month. The same panel also includes 

the fit of the alternative DLM defined by step functions, which assumes a constant risk within 

exposure windows (see also eFigure 3 in the online supplementary material; 

http://links.lww.com/EDE/B841). This specification matches the stratification approach in 

the original self-controlled case series analysis,34 although the case time series design with 

distributed lag models accounts for cumulative effects of potentially overlapping periods of 

flu episodes. 

Environmental exposures and respiratory symptoms 

The second example illustrates a preliminary analysis of the role of multiple environmental 

stressors in increasing the risk of respiratory symptoms using smartphone technology. Data 

were collected within AirRater, an integrated online platform operating in Tasmania that 

combines symptom surveillance, environmental monitoring, and real-time notifications.12 A 

smartphone app allowed the self-reported recording of respiratory symptoms and the 

reconstruction of personalized exposure series by linking geo-located positions with high-

resolution spatio-temporal maps derived from environmental monitors (see Figure 3). 

Standard cohort analyses based on between-subject comparisons are unsuitable in this 
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complex study setting, characterized by continuous recruitment, high dropout rates, and 

intermittent participation (see eFigure4 in the online supplementary material; 

http://links.lww.com/EDE/B841). Similarly, the frequent and highly seasonal outcome pose 

problems in adopting a case–crossover design, with issues in selecting control times and 

about the assumption of constant within-stratum risk. Finally, the presence of multiple 

continuous exposures prevents the application of the self-controlled case series design, either 

in its standard or extended forms.36,37 

We, therefore, applied a case time series design (see eAppendix 2, online supplementary 

material; http://links.lww.com/EDE/B841). The analysis included 1,601 subjects followed 

between October 2015 and November 2018, with a total of 364,384 person–days. The event-

type outcome was defined as daily indicators of reported respiratory symptoms and 

associated with individual exposure to pollen (grains/m3), fine particulate matter (PM2.5, g/ 

m3), and temperature (C) (Figure 3). We modeled the relationships using a fixed-effects 

logistic regression over a lag period of 0-3 days, using an unconstrained DLM for the linear 

association with PM2.5, and bi-dimensional spline distributed lag non-linear models for 

specifying non-linear dependencies with pollen and temperature.14,38 A strict temporal control 

was enforced by using subject/month strata intercepts, natural splines of time (with 8 

df/year), and indicators of the day of the week, thus modeling individually varying baseline 

risks on top of shared long-term, seasonal, and weekly trends. 

Figure 4 shows the preliminary results, with estimated associations reported as odds ratios 

(ORs) from the model that includes simultaneously the three environmental stressors. The 

graphs display the overall cumulative exposure-response relationships (top panels), 

interpreted as the net effects across lags, and the full bi-dimensional exposure-lag-response 

associations (bottom panels)14,38. The lefthand panels indicate a positive association between 

risk of allergic symptoms and pollen, with a step increase in risk that flattens out at high 
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exposures, and a lagged effect up to 2 days. The middle panels suggest an independent 

association with PM2.5, where the risk is entirely limited to the same-day exposure. Finally, 

results in the righthand panels show a positive association with high ambient temperature, 

with the OR increasing above 1 beyond daily averages of 15°C. 

DISCUSSION 

The novel case time series methodology offers a general modeling framework for the analysis 

of epidemiologic associations with time-varying exposures. The design is adaptable to 

various data settings for the analysis of highly informative longitudinal measurements, and it 

is particularly well-suited in applications with modern data resources such as individual-level 

exposure models and real-time technologies. 

The main feature of methodology is a flexible scheme that embeds a longitudinal time series 

structure in a within-subject design, providing unique modeling advantages. For instance, the 

sequential order of observations offers the opportunity to assess complex temporal 

relationships with multiple exposures, where patterns of cumulative effects for linear or non-

linear exposure-response dependencies can be easily modeled. Furthermore, the time series 

and self-controlled features offer a structure that enables strict control for confounding: time-

invariant and time-varying factors can be adjusted for by stratifying the baseline risk between 

and within subjects, respectively, while residual temporal variations can be directly modeled 

through time-varying predictors that represent confounders or shared trends across multiple 

time axes.  

The new design complements and extends the already rich set of self-matched methods for 

observational studies described in the epidemiological literature.8 Previous methodological 

contributions have highlighted links and similarities between various designs,18,21,29,30,39-41 

and ultimately these can be seen as alternative approaches to model the same risk 

associations. However, each method relies on different sets of assumptions and modeling 
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choices, which explain in part their separate areas of application. The case time series 

methodology, nevertheless, offers a general framework that combines and extends features of 

existing designs, with important advantages. For example, it borrows flexible modeling tools 

from aggregated-data time series design, but it implements them in individual-level analyses 

that allow a finer reconstruction of outcomes, exposures, and other risk factors. It is 

applicable to assess associations with multiple continuous predictors as the case–crossover 

design, and it can model recurrent events, either common or rare, as the self-controlled case 

series analyses, but it can be extended to the analysis of outcomes represented by binary 

indicators or continuous measures, simply assuming different distributions. Finally, its time 

series structure allows the application of sophisticated techniques such as smoothing methods 

and distributed lag models, characterized by well-defined parameterizations, computational 

efficiency, and standard software implementations. A thorough and critical comparison of the 

case time series methodology with alternative approaches will be provided in future 

contributions. 

Together with other self-matched methods, the new case time series design is based on strict 

assumptions to protect against key threats to validity. However, these conditions are not 

always met in practice, and their violations can lead to important biases. Specifically, the 

requirement that both exposures and follow-up periods are independent of the outcome poses 

severe limitations to the application of the method, in particular in clinical and pharmaco-

epidemiologic studies. In fact, the temporal distribution of endogenous predictors such as 

behaviours, clinical therapies, or drug prescriptions are often modified by an outcome event. 

In contrast, the case time series and other self-controlled designs are well suited for the 

analysis of exogenous exposures such as environmental factors, as discussed before. 

Extension to test and relax these strong assumptions have been developed for the self-

controlled case series design,27,28 but further research is needed to implement and assess their 
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validity in case time series models. Conversely, the new design is well suited to control for 

temporal confounding that can invalidate the assumption of constant baseline risk, through 

the stratification of the follow-up period and the inclusion of lagged and smooth continuous 

terms in the model.  

Other limitations and areas of current research must be discussed. First, as a method based on 

a within-subject comparison, the case time series design is ideal for investigating phenomena 

with short-term changes in risk relative to the study period, while it is less suitable for the 

analysis of long-term effects and chronic exposures. In fact, while it is in theory possible to 

extend indefinitely the lag period within the follow-up interval, there is a limit to which the 

model can disentangle long-lagged effects from seasonal and other trends.42 In addition, the 

splitting of the follow-up period in individual-level time series produces a substantial data 

expansion, with considerable computational demand especially in the presence of a high 

number of subjects or long study periods. Schemes based on risk-set sampling, previously 

proposed for cohort and nested case–control studies,43-45 are currently under development to 

address this issue. Finally, the simulation study and the two real-data examples presented 

basic epidemiological relationships between time-varying variables. However, more complex 

causal dependencies, involving, for instance, dynamic feedback or multiple pathways, 

explicitly violate the strict assumptions underpinning the case time series design, and cannot 

be modeled in the proposed framework. The definition, limitations, and potential extensions 

of fixed-effects models and related designs within a general causal inference setting is an area 

of current research.23 

In conclusion, the case time series design represents a novel epidemiologic method for the 

analysis of transient health associations with time-varying exposures. Its flexible modeling 

framework can be adapted to various contexts and research areas, for instance in clinical, 
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environmental, and pharmaco-epidemiology, and it is suitable for the analysis of intensive 

longitudinal data provided by modern data technologies.   
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FIGURES 

FIGURE 1. Graphical representation of data configurations for the case time series design 

applied in the analysis of transient health risks of time-varying exposures. The figure 

represents three examples of data for three subjects (cases) followed for a period of time, 

with equally spaced measures of outcome and exposure that form case-level time series. This 

setting allows the definition of predictors and time axes as unique and sequential 

observations. The three examples illustrate different measures of outcome and exposure. The 

former is represented as counts (top), a binary indicator (middle), or a continuous measure 

(bottom). Similarly, exposure can be represented by a simple binary episode indicator (top), 

or continuous term (middle and bottom). Continuous variables are represented by shaded 

colours. The graphical representation demonstrates the potential of the case time series design 

to be applied in various research areas for modeling associations defined by different types of 

measurements. 

FIGURE 2. Results of the analysis on the association between influenza infection and 

myocardial infarction (AMI), as relative risk (RR) and 95% confidence intervals. The three 

panels show the AMI risk by age (left) and by season (middle), and the lag-response curve 

representing the risk in the 1-91 days after a flu episode (right). The latter is estimated in the 

main model using natural splines (continuous red line), with superimposed the results from 

an alternative model using step functions (dashed grey line). 

FIGURE 3. Graphical representation of the individual time series of a subject participating 

in the AirRater study on the association between environmental exposures and respiratory 

symptoms. The four panels (from top to bottom) display the daily series of counts of allergic 

events and levels of the three environmental stressors, represented by pollen (grains/m3), 

PM2.5 (μg/m3), and temperature (°C). 
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FIGURE 4. Results of the analysis on the association between environmental exposures and 

respiratory symptoms, as odds ratio (OR) and 95% confidence intervals. The three columns 

of panels show estimated associations with pollen (left, grains/m3), PM2.5 (middle, μg/m3), 

and temperature (right, °C). The top row of panels displays the net risk cumulated in the lag 

period 0-3 days as overall cumulative exposure-response associations, assumed linear for 

PM2.5 and non-linear for pollen and temperature. The bottom row of panels shows instead the 

full exposure-lag-response associations, represented as the bi-dimensional risk surface for 

pollen and temperature or the lag-specific risks for a 10 μg/m3 increase in PM2.5. 
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TABLES 
 
TABLE. Results of the simulation study, with nine scenarios representing increasingly complex data 
settings (Scenarios 1-10), and four additional scenarios simulating data where the key design 
assumptions are violated (Scenarios 11-14). The table reports empirical figures of relative bias (%), 
coverage, and relative root mean square error (RMSE, %) in 50,000 replications. A detailed description 
of the scenarios, definitions, and additional results and graphs are provided in the supplementary 
material [Appendix A]. 

 
SCENARIO RELATIVE 

BIAS 
COVERAGE 

RELATIVE 
RMSE 

SCENARIO 1: BASIC 0.0% 0.951 8.8% 

SCENARIO 2: RARE OUTCOME/EXPOSURE -4.5% 0.951 86.0% 

SCENARIO 3: CONTINUOUS EXPOSURE -0.1% 0.950 15.2% 

SCENARIO 4: BINARY OUTCOME 0.3% 0.949 9.1% 

SCENARIO 5: CONTINUOUS OUTCOME 0.0% 0.950 14.7% 

SCENARIO 6: COMMON TREND -0.1% 0.950 28.8% 

SCENARIO 7: SUBJECT-SPECIFIC TREND 0.1% 0.948 35.2% 

SCENARIO 8: UNOBSERVED BASELINE CONFOUNDER 0.2% 0.951 25.8% 

SCENARIO 9: TIME-VARYING CONFOUNDER -0.2% 0.949 35.1% 

SCENARIO 10: COMPLEX LAG STRUCTURE 0.0% 0.950 29.2% 

SCENARIO 11: OUTCOME-DEPENDENT RISK -18.9% 0.738 24.7% 

SCENARIO 12: OUTCOME-DEPENDENT FOLLOW-UP 16.8% 0.797 22.7% 

SCENARIO 13: OUTCOME-DEPENDENT EXPOSURE 11.1% 0.744 14.4% 

SCENARIO 14: VARIATION IN BASELINE RISK 40.7% 0.222 43.3% 

 

  

ACCEPTED

Copyright © Wolters Kluwer Health, Inc. All rights reserved. Unauthorized reproduction of this article is prohibited



27 
 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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