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Abstract

Background

The force of infection, or the rate at which susceptible individuals become infected, is an

important public health measure for assessing the extent of outbreaks and the impact of

control programs.

Methods and findings

We present Bayesian methods for estimating force of infection using serological surveys of

infections which produce a lasting immune response, accounting for imperfections of the

test, and uncertainty in such imperfections. In this estimation, the sensitivity and specificity

can either be fixed, or belief distributions of their values can be elicited to allow for uncer-

tainty. We analyse data from two published serological studies of dengue, one in Colombo,

Sri Lanka, with a single survey and one in Medellin, Colombia, with repeated surveys in the

same individuals. For the Colombo study, we illustrate how the inferred force of infection

increases as the sensitivity decreases, and the reverse for specificity. When 100% sensitiv-

ity and specificity are assumed, the results are very similar to those from a standard analysis

with binomial regression. For the Medellin study, the elicited distribution for sensitivity had a

lower mean and higher variance than the one for specificity. Consequently, taking uncer-

tainty in sensitivity into account resulted in a wide credible interval for the force of infection.

Conclusions

These methods can make more realistic estimates of force of infection, and help inform the

choice of serological tests for future serosurveys.

Introduction

The force of infection, or the rate at which susceptible individuals become infected, is an

important public health measure of the speed and extent of an epidemic. It can be used to

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0247255 March 4, 2021 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Alexander N, Carabali M, Lim JK (2021)

Estimating force of infection from serologic

surveys with imperfect tests. PLoS ONE 16(3):

e0247255. https://doi.org/10.1371/journal.

pone.0247255

Editor: Mohammad Mehdi Feizabadi, School of

Medicine, Tehran University of Medical Sciences,

IRAN, ISLAMIC REPUBLIC OF

Received: September 6, 2020

Accepted: February 4, 2021

Published: March 4, 2021

Copyright: © 2021 Alexander et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: This work was supported by a Fundação
de Amparo à Pesquisa do Estado de São Paulo

(FAPESP, www.fapesp.br, 2018/14389-0) and UK

Medical Research Council (MRC) award (mrc.ukri.

org, MR/S0195/1) to the CADDE Centre (www.

caddecentre.org), principal investigators Ester

Sabino and Nuno Faria. NA receives salary support

from the MRC and the UK Department for

https://orcid.org/0000-0002-6707-7876
https://doi.org/10.1371/journal.pone.0247255
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247255&domain=pdf&date_stamp=2021-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247255&domain=pdf&date_stamp=2021-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247255&domain=pdf&date_stamp=2021-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247255&domain=pdf&date_stamp=2021-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247255&domain=pdf&date_stamp=2021-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247255&domain=pdf&date_stamp=2021-03-04
https://doi.org/10.1371/journal.pone.0247255
https://doi.org/10.1371/journal.pone.0247255
http://creativecommons.org/licenses/by/4.0/
https://www.fapesp.br
https://www.caddecentre.org
https://www.caddecentre.org


quantify the impact of disease control programs, and prioritize and identify geographical

regions requiring further measures, such as vaccine implementation [1–5]. For infections

inducing a lasting immune response, the force of infection is usually estimated via serological

surveys (‘serosurveys’) of immunological status. Ideally, assays used in such surveys should

be highly sensitive and specific, while also suitable for high throughput in terms of cost and

personnel requirements [6–11]. In practice, however, available assays may not completely

meet all these criteria, as is currently evident with severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2), the virus responsible for coronavirus disease (COVID-19) [12]. The

greater the imperfections in sensitivity and specificity, the less accurate will be the corre-

sponding estimates of the force of infection, as long as such imperfections are not taken into

account.

The force of infection may be estimated from single or repeated serosurveys. In the for-

mer case, the simplest analysis is to assume that the force of infection was constant over cal-

endar time and age, and consider each person’s age to be their duration of exposure [13].

More sophisticated models allow for changing force of infection over time, or over age, or

even allow for the presence of maternal antibodies if infants are included [4, 14]. Carrying

out more than one survey in the same individuals provides more robust estimates of the

force of infection during a given study period [4, 7]. Using repeated surveys, rate ratios can

be obtained from binomial regression with complementary log-log link and the logarithm of

the time between surveys as an offset [13]. While age is used as the time at risk in the analysis

of a single survey, in repeated surveys it can be considered a risk factor like any other. How-

ever, whatever the number of surveys, errors in test status are usually ignored, whether ana-

lysing one or more surveys. In particular, for repeated surveys, individuals testing positive at

baseline are usually considered no longer at risk [1, 4, 7], ignoring the possibility that they

were false positives.

The choice of assay may substantially affect the study’s interpretation [15]. Various methods

have taken into account certain kinds of test imperfection, for either single or repeated surveys.

In particular, Trotter & Gay [16] developed a compartmental model of multiple surveys, in

which the force of infection and imperfect sensitivity were estimated for Neisseria meningitidis.
For a single survey, Alleman et al. [17] and Hachiya et al. [18] estimated the force of infection,

and simultaneously test sensitivity for rubella and measles, by assuming that imperfect sensi-

tivity was the reason for seroprevalence not necessarily reaching 100% at the highest ages. Tan

et al. [19] used a model for dengue, in which sensitivity reduces over time as antibody levels

decrease, applied to two independent population serosurveys from blood donors. Olive et al.

[20] estimated the force of infection for Rift Valley fever based on fixed values of sensitivity

and specificity for a single survey.

Here we provide methods to estimate force of infection, from a single serosurvey or two ser-

osurveys in the same individuals, accounting for imperfections in sensitivity and/or specificity,

and for uncertainty in these parameters.

Methods

We started from methods for estimating prevalence based on an imperfect diagnostic test, as

reviewed by Lewis & Torgerson [21], and use similar notation. Estimation is done using a

Bayesian framework and Markov chain Monte Carlo (MCMC) [22]. We assume that the

immune response being measured is long-lasting so that, for example, apparent seroreversions,

i.e. changes over time from positive to negative, are due to test errors, rather than loss of

immunity. We use “seroprevalence” to mean the proportion of individuals with the underlying

immune response, which the diagnostic tests measure with error.

PLOS ONE Estimating force of infection from serologic surveys with imperfect tests

PLOS ONE | https://doi.org/10.1371/journal.pone.0247255 March 4, 2021 2 / 13

International Development (DFID, www.gov.uk/

government/organisations/department-for-

international-development) under the MRC/DFID

Concordat agreement, which is also part of the

EDCTP2 programme supported by the European

Union, grant reference: MR/R010161/1, principal

investigator Helen Weiss.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0247255
https://www.gov.uk/government/organisations/department-for-international-development
https://www.gov.uk/government/organisations/department-for-international-development
https://www.gov.uk/government/organisations/department-for-international-development


Model for single serosurvey

For a diagnostic test, the sensitivity is the proportion of true positives that are correctly identi-

fied by the test, and the specificity is the proportion of true negatives that are correctly identi-

fied by the test [23]. The probability of testing positive (T+) is specified as a function of the

unobserved true status (π), and the assumed values for sensitivity (Se) and specificity (Sp):

ProbðTþÞ ¼ Sepþ ð1 � SpÞð1 � pÞ

Then, representing a constant seroconversion rate, a binomial regression is specified with a

complementary log-log link, and the logarithm of age as an offset. The only other term in the

model is an intercept, which is the logarithm of the force of infection [13]. As a rate, the force

of infection can take non-negative values, possibly greater than 1 [24]. A vague prior distribu-

tion—Gaussian with mean zero and standard deviation 1,000—is specified for the logarithm

of the force of infection. Example data from a single serosurvey of dengue are from Colombo,

Sri Lanka, which used a capture enzyme-linked immunosorbent assay (ELISA) to detect

immunoglobulin G (IgG) [14, 25]. Here we omit individuals aged less than six months in

order to limit the influence of maternal antibodies.

Model for two consecutive serosurveys in the same individuals

For two repeated serosurveys, priors are placed on the seroprevalences, and the values of inter-

est are related via standard identities. The baseline seroprevalence is assigned a beta distribu-

tion with both parameters equal to 1, i.e. uniform on the interval [0, 1]. The prior for the

second seroprevalence is the same except that, consistent with the above assumptions, it is con-

strained to be at least as high as the baseline seroprevalence. For each survey, the positive and

negative predictive values (PPV and NPV, respectively) are defined in terms of the seropreva-

lence and the assumed sensitivity and specificity [26]:

PPV ¼
Sep

Sepþ ð1 � SpÞð1 � pÞ

NPV ¼
Spð1 � pÞ

ð1 � SeÞpþ Spð1 � pÞ

The probability of each person being truly seropositive, Prob(D+), is then PPV if the test

is positive, and 1 − NPV if the test is negative. The probabilities of testing positive or negative

are functions of sensitivity and specificity, in the same way as for a single survey. Finally, the

numerator of the force of infection is estimated as the increase in expected number of true pos-

itives from the first to the second survey, and the denominator is estimated as the expected

person-time at risk, calculated as the sum of the individual times between the surveys,

weighted by each individual’s probability of being seronegative at baseline. This is shown in

the following equation, where the sum is over all individuals in both surveys, and the sub-

scripts on D indicate the first or second survey:

Force of Infection ¼
P
fProbðDþ

2
Þ � ProbðDþ

1
Þg

P
fðtime at riskÞ � ð1 � ProbðDþ1 ÞÞg

This is shown schematically, as a Directed Acyclic Graph [27], in Fig 1. Example data are

from a community-based study of dengue in Medellin, Colombia, using a commercially avail-

able IgG indirect ELISA test [25] (S5 File). Residents were randomly selected, and tested in up

to five surveys over time. For the current purpose, we use only the first survey, done in 2011,

and the last one, done in 2014, approximately 26 months later.
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In the standard binomial regression model for seroconversion across paired surveys,

those individuals positive at baseline are assumed to be not at risk, i.e. there is no allowance

for measurement error in the serostatus. By contrast, as well as seroconversion, the current

model allows seroreversion, i.e. for individuals to change from seropositive to seronegative

status.

Uncertainty in sensitivity and specificity

Fixed values for sensitivity and specificity can be used for the repeated surveys, as described

above for a single one. However, there may be reasonable doubt as to the exact values of sensi-

tivity and specificity, e.g. because of cross-reacting pathogens circulating to an unknown

extent. This uncertainty may have been quantified by systematic reviews, although their gener-

alizability to a given setting may be doubtful. Another way to quantify uncertainty is in terms

of expert opinion, e.g. via the Delphi technique [28]. Here we follow the elicitation method of

Johnson et al. [29]. For each parameter, each expert is presented with a range of values. For the

current purpose, the parameters are sensitivity and specificity, each with a range of 0 to 100%,

in intervals (“bins”) of 5%. Each expert is invited to i) make a point or “average” estimate of

the parameter in question, then ii) indicate the upper and lower limit of their estimate, then

iii) indicate their weight of belief by allocating a total of 100% over the bins, between the upper

and lower limits, in units of 5%. So we have a total of six questions: three each for sensitivity

and specificity. Johnson et al., used paper questionnaires and stickers for the units of 5%

Fig 1. Directed Acyclic Graph (DAG) for the model for repeated serosurveys. The large rectangles show individuals nested within surveys. Both

surveys and individuals have multiple stacked rectangles to show that there is more than one of each. The smaller rectangles represent data (results and

times of tests) or model inputs (sensitivity and specificity). The other nodes are functions of the data, or of the unobserved seroprevalence, which is

given a beta(1,1), i.e. uniform, prior. For individuals, Prob(T+) indicates the probability of a positive test result and Prob(D+) indicates the probability of

being truly seropositive.

https://doi.org/10.1371/journal.pone.0247255.g001
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weight of belief. We adapted this to a spreadsheet in Microsoft Excel (S1 File). This approach

could also be applied to the analysis of a single survey.

For the current study, beliefs were elicited from three dengue researchers whose published

work includes results of diagnostic tests. Two of these (JKL & MC) were also investigators of

the serological study in Medellin [25]. In the case of dengue, one important consideration is

whether the test in question may cross-react with other flaviviruses [30], or have lower speci-

ficity in those who have been vaccinated against them [31]. The elicited distributions for sensi-

tivity and specificity are used here to illustrate the current method and are not conclusive in

terms of the performance of the test in question. Also, the belief distributions for other diag-

nostic tests and other settings will vary.

The beliefs of the three experts were summarized as a single distribution using linear pool-

ing [32], and a smooth distribution between 0 and 1 was fitted to the result. Both beta and

logistic-normal distribution families were used: each has two parameters, which were fitted by

the method of moments [33]. The beta distribution was used for the estimation of the force of

infection.

More broadly, some models for sensitivity and specificity are unidentifiable [34, 35], i.e. not

all the parameters can be estimated independently. For the current purpose, the estimated

force of infection is evidently strongly associated with the sensitivity and specificity. Although

posterior likelihoods of sensitivity, specificity and force of infection could be obtained from a

formally consistent Bayesian model, the identifiability of such a model would need to be dem-

onstrated. Our interest here is in information on sensitivity and specificity as inputs, not out-

puts. Hence, we have not referred to the elicited beliefs for sensitivity and specificity as

“priors”. Although these beliefs are used in Monte Carlo simulation, posterior likelihoods are

not obtained for them. Rather, values are repeatedly sampled from the fitted beta distributions

of sensitivity and specificity, then MCMC estimation is done based on those values.

Credible intervals for a parameter are estimated as quantiles of samples drawn, via MCMC,

from its Bayesian posterior distribution. Confidence intervals (as opposed to credible intervals)

are quoted from frequentist analyses which were carried out for comparison.

Software

We use the “rjags” package in R (version 3.6.3; The R Foundation for Statistical Computing).

This package requires a separate installation of the JAGS package [36]. R code is provided in

S2–S4 Files. For the analysis of the Colombo survey, for each value of sensitivity and specificity

used, a burn-in of 1,000 iterations was used, with estimates of the force of infection based on

50,000 iterations thinned by 10 (i.e. keeping every 10th result). For the analysis of the repeated

surveys in Medellin, the following was done separately for sensitivity and specificity: 2,000

draws were made from the fitted beta distribution then, for each draw, there was a burn-in of

2,000 and the force of infection was estimated from 5,000 iterations thinned by 50. This was

done separately for three scenarios): i) with sensitivity varying while holding specificity at

100%, ii) the reverse, and iii) with both parameters varying. Hence the distribution of the force

of infection was estimated from 20,000 values. Assessment of convergence was done visually.

For all MCMC models, the point estimate is taken to be the median of the iterative values and

the 95% credible interval is from the 2.5th to 97.5th percentiles.

Ethical considerations

This Medellin study obtained ethical approval from the Ethics Committee of the University of

Antioquia (reference 11-5-362) and the International Vaccine Institute (IVI, reference 2011-
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011). Data were made available without identifying information. Data from the Colombo

study are included from a table in the previously published report [14].

Results

Single serosurvey

For the dengue study in Colombo [14], Fig 2 shows the fitted proportions of seropositive by

age. Values of 85% sensitivity or specificity have been chosen to illustrate the method rather

than on the basis of expert opinion or of comparison against a gold standard. However, they

are in the range found for other dengue IgG ELISAs [37, 38]. As expected, imperfect sensitivity

implies higher seroprevalence, and imperfect specificity the reverse. The consequences of

other values of sensitivity and specificity are shown in Fig 3. The confidence bands reflect

Fig 2. Proportion seropositive for dengue by age in Colombo [14]. The data point from the six-month old children in the published table

are included, but not those aged less than six months, due to maternal antibodies in the younger group. The solid line is the fit from a standard

analysis assuming a perfectly sensitive and specific test. The upper dashed line is from an analysis assuming 85% sensitivity and 100%

specificity, and the lower dashed line with these values exchanged.

https://doi.org/10.1371/journal.pone.0247255.g002
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sampling variability in the data rather than uncertainty in the values of sensitivity and specific-

ity. From a standard frequentist analysis with binomial regression, the estimated force of infec-

tion is 13.7% per year (95% confidence interval 12.4-15.2%). Fig 3 shows that, as expected, the

results from the current model approach those from the standard analysis as sensitivity and

specificity tend to 100%. For 100% sensitivity, the results from the current model are the same,

and for 100% specificity, the point estimate is the same and the credible interval is 0.1% lower

(12.3-15.1%).

Two consecutive serosurveys

In Medellin, 705 people had test results available for both surveys [25]. Of these, 260 originally

tested negative, of whom 31 (11.9%) were positive on the second survey, approximately 26

Fig 3. Relation between force of infection, sensitivity and specificity in the Colombo data. The force of infection is estimated for each value of

sensitivity or specificity, considered fixed. In this figure, when sensitivity is less than 100% then specificity is assumed to be 100%, and conversely. The

grey zones are the 95% credible intervals. As sensitivity and specificity approach 100%, to the right side of the plot, the credible intervals approach the

95% confidence interval from standard binomial regression (vertical dashed line).

https://doi.org/10.1371/journal.pone.0247255.g003
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months later. The remaining 445 originally tested positive, and all but four of these tested posi-

tive on the second survey. A standard frequentist binomial regression analysis, which was nec-

essarily restricted to the 260 presumed at risk, estimates the force of infection as 5.9% per year,

with a 95% confidence interval from 4.0 to 8.2%.

Fig 4 shows the elicited distributions for the sensitivity and specificity of the dengue IgG

ELISA used in the Medellin study, summarizing the beliefs of the three experts by linear pool-

ing. The distribution for specificity is closer to 100% and with lower variance than that for sen-

sitivity. The figure also shows the fitted beta and logistic-normal distributions, the former of

which was used to generate the force of infection results in Fig 5.

Fig 4. Uncertainty in a) specificity and b) sensitivity for Medellin study.

https://doi.org/10.1371/journal.pone.0247255.g004

Fig 5. Posterior distributions of force of infection under a) varying specificity and b) varying sensitivity.

https://doi.org/10.1371/journal.pone.0247255.g005
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Results from the force of infection model are shown in Fig 5. As expected from Fig 4, the

distribution of the force of infection taking into account uncertainty in specificity (Fig 5a) has

smaller variation than that for sensitivity (Fig 5b). For the former, the point estimate of the

force of infection is 4.8% per year, with a 95% credible interval from 3.7 to 6.2%. For varying

sensitivity, the point estimate is much higher, at 13.4% per year, and the credible interval

much wider: 5.5% to 43.1%. With sensitivity and specificity both varying, the results are quali-

tatively similar to Fig 5b (S1 Fig), the point estimate is 13.3% per year, and the credible interval

is from 4.6% to 43.0%.

Discussion

The current method is applicable to infections which induce a lasting immune response,

which includes many viral pathogens, such as rubella and measles [18], hepatitis B and C, HIV

[39], as well as dengue. Not all assays are suitable for serological surveys. For example, the

World Health Organization discourages the use of rapid tests in such studies of dengue [5],

and the utility of serological assays for SARS-CoV-2 is currently being debated [12, 40]. Statis-

tical methods can help quantify the degree of uncertainty that would arise from the use of any

given test. Previous studies have simultaneously estimated test sensitivity and force of infection

for single or repeated surveys [16–18], and estimated the force of infection subject to fixed val-

ues for sensitivity and specificity in a single survey [20]. Here we present more general meth-

ods for estimating the force of infection taking into account imperfect sensitivity and/or

specificity, and uncertainty in these parameters, for either single or repeated surveys. Should

well-established and generalizable values of sensitivity and specificity be available, they can

be used in the methods described here. However, this is not always the case. For example, for

dengue, there may be cross-reaction with other flaviviruses [30], whose occurrence varies

geographically.

The single serosurvey model, applied to the dengue study in Colombo [14], showed how

the estimated force of infection depends on the assumed sensitivity and specificity. When per-

fect sensitivity and specificity are assumed, the results are effectively identical to those from the

standard binomial regression. For the example of repeated serosurveys in Medellin [25], the

elicited expert belief for the specificity was relatively precise, resulting in a fairly precise esti-

mate of the force of infection (95% credible interval 3.7 to 6.2% per year). The belief for sensi-

tivity was less precise and resulted in an interval estimate that was so wide (5.5 to 43.1%) as to

potentially lack utility. The results from these two studies illustrate the method, but the force

of infection values should not be taken as authoritative for the study settings.

We have opted for estimation in a Bayesian framework by MCMC [22]. The model for a

single serosurvey is similar to that of Lewis et al. for prevalence [21], and may be soluble by

direct application of maximum likelihood, hence avoiding the need for iterative sampling. The

identifiability of some Bayesian models for the estimation of prevalence is affected by the

choice of priors for sensitivity, specificity and other parameters: unsuitable priors can then

give rise to erroneous conclusions [34]. Although it may be possible to ‘learn’ about both a)

sensitivity and specificity and b) the force of infection, here we have avoided identifiability

concerns via Monte Carlo simulation of uncertainty in sensitivity and specificity. In effect, the

elicited distribution is both the prior and posterior distribution. This approach was shown for

the model for repeated surveys but could equally be applied to the one for a single survey. It

was illustrated by eliciting beliefs about sensitivity and specificity from three experts: to reach

substantive conclusions on dengue, a wider and more systematic exercise would be required

[29]. Estimates from systematic reviews could be used instead of expert opinion if they were

generalizable to a given study area.
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Future work could seek models with Bayesian priors for sensitivity and specificity, while

still correctly estimating the force of infection. In the meantime, the use of Monte Carlo in an

outer loop, with MCMC estimation each time, makes the analysis relatively time-consuming.

Also, a reformulation would be required to allow the inclusion of covariates. The method is

shown for two surveys, studies with more than two could be included, with each being con-

strained to have a seroprevalence no lower than the previous. Another limitation is the

assumption that each individual has long-lasting immunity, so that apparent seroreversions

are due to test errors rather than waning immunity. The validity of this assumption will

depend on the infection in question, and possibly factors such as the time between surveys,

and the age and immunocompetence of the participants.

In conclusion, the methods presented here can make more realistic estimates of force of

infection, and can help inform the choice of serological tests for future serosurveys.

Supporting information

S1 File. Excel file for use in eliciting beliefs.

(XLSX)

S2 File. R code for analysis of a single survey. This uses data previously published from

Colombo [14].

(R)

S3 File. R code for analysis of repeated surveys. This uses data from the study in Medellin

[25] which are included in S5 File.

(R)

S4 File. R utility functions used by the code in S2 and S3 Files.

(R)

S5 File. CSV file with paired serological status data from the first and last surveys of the

Medellin study. The file has one row per person. The first column, “test0” is the ELISA result

at the first survey (code 0 for negative, 1 for positive) and the second, “test1” is the result at the

last survey.

(CSV)

S1 Fig. Estimation of the force of infection in the Medellin study [25], with uncertainty in

both sensitivity and specificity.

(TIF)
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