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Abstract 

Background: Probabilistic linkage can link patients from different clinical databases without 

the need for personal information. If accurate linkage can be achieved, it would accelerate 

the use of linked datasets to address important clinical and public health questions. 

 

Objective: We developed a step-by-step process for probabilistic linkage of national clinical 

and administrative datasets without personal information, and validated it against 

deterministic linkage using patient identifiers.  

 

Study Design and Setting: We used electronic health records from the National Bowel Cancer 

Audit (NBOCA) and Hospital Episode Statistics (HES) databases for 10,566 bowel cancer 

patients undergoing emergency surgery in the English National Health Service.  

 

Results: Probabilistic linkage linked 81.4% of NBOCA records to HES, versus 82.8% using 

deterministic linkage. No systematic differences were seen between patients that were and 

were not linked, and regression models for mortality and length of hospital stay according to 

patient and tumour characteristics were not sensitive to the linkage approach.  

 

Conclusion: Probabilistic linkage was successful in linking national clinical and administrative 

datasets for patients undergoing a major surgical procedure. It allows analysts outside highly 

secure data environments to undertake linkage while minimising costs and delays, protecting 

data security, and maintaining linkage quality. 
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What is new? 

Key findings:  

Probabilistic linkage without the need for patient identifiers can be used as an alternative to 

deterministic linkage using patient identifiers, or as a method for enhancing deterministic 

linkage. 

 

What does this add to what is known?  

We developed and validated a step-by-step process for accurately linking national clinical 

datasets without the need for patient identifiers, providing guidance on selecting variables 

for linkage, estimating match weights, and choosing the probabilistic linkage threshold.  

 

What is the implication and what should change now?  

The use of probabilistic linkage without patient identifiers can increase capacity for linkage 

of clinical datasets and minimise costs and delays, while maintaining linkage quality and 

protecting data security. 
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1 Introduction 

Linkage of electronic health records from different sources is increasingly used to address 

important clinical and public health questions [1, 2]. However, linking datasets requires access 

to unique patient identifiers and/or personal information [3]. Alternative methods that do not 

require such information could provide linkage whilst preserving data security [4, 5]. There is 

limited evidence how well these methods perform. 

 

The two main linkage methods are deterministic, with rules to decide whether records in two 

datasets belong to the same individual, and probabilistic, where record pairs are given scores 

representing likelihoods of belonging to the same individual given strength of agreement of 

variables. 

 

Deterministic linkage often uses exact agreement on unique patient identifiers, such as the 

NHS number in the UK's National Health Service (NHS), and personal information, such as 

date of birth, residential address, and postcode [6, 7]. Since different patients rarely have 

identical sets of these direct patient identifiers, such methods have high specificity. If patient 

identifiers are missing or misclassified, deterministic linkage has reduced sensitivity (lower 

probability of correctly linking records belonging to the same individual) [8]. 

 

Probabilistic linkage typically has more flexibility, enabling improved linkage  when patient 

identifiers are missing or misclassified. It therefore tends to higher sensitivity, but lower 

specificity (higher probability of linking records not belonging to the same individual) than 

deterministic linkage [6, 9, 10, 11]. Furthermore, probabilistic linkage easily utilise a wider set 

of identifying variables, such as area of residence, age, treating hospital, and dates of 

admission/procedures/discharge [10]. These proxy and indirect identifiers can discriminate 

between records from different patients when used in combination, even if direct identifiers 

are unavailable [5]. Technically, it is possible to incorporate these variables (and 

similarity/distance in such variables between datasets) into a deterministic linkage strategy; 

however, this results in many possible deterministic rules requiring linkage decisions. 

 

Linkage without patient identifiers has potential benefits. First, anonymised/pseudonymised 

datasets could be linked by a wider group of analysts, not just those working in highly secure 

data environments. This reduces the need to transfer patient identifiers to trusted third 

parties, thus minimising delays, costs, and risk of disclosure of sensitive information. Second, 

it would improve analysts' understanding of linkage issues [3]. Third, it allows linkage of 

healthcare data even if patient identifiers are unavailable [4]. 
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We developed a step-by-step process for probabilistic linkage using indirect identifiers, 

clarifying methodological choices regarding selection of linkage variables, and estimating 

match weights. We illustrate our approach using clinical and administrative databases of 

bowel cancer patients undergoing emergency surgery in the NHS, validating against 

deterministic linkage using patient identifiers, executed by a third party.  

 

2 Methods 

2.1 Data sources and definitions 

2.1.1 National Bowel Cancer Audit 

National Bowel Cancer Audit (NBOCA) uses routinely collected patient characteristics, tumour 

pathology, processes of care and health outcomes for patients diagnosed with bowel cancer 

in NHS hospitals in England and Wales [12]. Our dataset includes adults (≥18 years), newly 

diagnosed in England with bowel cancer between 30 November 2013 and 31 March 2017. Of 

75,762 identified patients, 10,566 underwent urgent or emergency surgery (major bowel 

resection or stoma formation) (Appendix Figure A1). All  were expected to have corresponding 

Hospital Episode Statistics (HES) records.  

 

2.1.2 Hospital Episode Statistics 

HES records all English NHS hospital admissions for administrative/reimbursement purposes 

[13, 14]. Data includes dates and types of admission/procedure/discharge, patient 

characteristics, diagnoses, and Office of National Statistics mortality data [15]. 

 

We selected patients in HES to match NBOCA inclusion criteria as closely as possible. Surgical 

urgency was not recorded in HES, so all surgery patients were retained. We identified 

1,434,135 records for 103,094 patients with a hospital admission for bowel cancer between 

30 November 2013 and 31 March 2017, and no record of a bowel cancer diagnosis admission 

in the preceding five years. We defined primary procedure as the earliest major bowel 

resection or stoma formation within this period and not earlier than 30 days before date of 

diagnosis. The admission record containing the primary procedure was used to capture 

patient, tumour, and surgical procedure information from available records. The final cohort 

used for linkage consisted of 69,759 patients (Appendix Figure A2). 

 

2.1.3 Data item definitions 

The following data were obtained from both NBOCA and HES databases: age at diagnosis (in 

years), sex, Lower Super Output Area (LSOA; defined below), emergency admission, date of 

surgery, surgical procedure, responsible surgeon, hospital trust, Cancer Alliance, surgical 
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approach, cancer site, and distant metastases. American Society of Anesthesiologists (ASA) 

grade, performance status and cancer stage were obtained from NBOCA. Outcomes (90-day 

mortality, two-year mortality, length of stay) and number of comorbidities were obtained 

from HES. 

 

LSOA represent small geographical areas in England and Wales, defined by postcode (average 

672 households per LSOA) [16]. NHS hospital trusts (groups of hospitals) coordinate cancer 

care provision within 20 defined geographical areas called Cancer Alliances [17]. ASA grade 

categorises a patient’s physical status from one (healthy) to five (moribund) [18]. 

Performance status categorises functional ability from zero (normal activity) to four (no self-

care) [19]. 

 

In both datasets, diagnostic information used ICD-10 codes [20], categorised by cancer site, 

and surgical procedure used OPCS-4 codes [21] (see Appendix Table A1). Surgical approach 

(open or laparoscopic) was recorded in NBOCA and derived from OPCS-4 codes in HES 

(Appendix Table A1). Age at diagnosis was recorded in NBOCA and derived in HES from 

earliest admission with a bowel cancer diagnosis. Emergency admission was derived in each 

from method of admission. Cancer stage in four categories and distant metastases were 

derived from final pathology TNM staging in NBOCA [22]. Number of comorbidities was 

defined using ICD-10 codes in HES, according to the Royal College of Surgeons of England 

Charlson Score [23].  

 

2.1.4 Classification of variables 

Linkage variables were categorised as patient identifiers, proxy identifiers, or indirect 

identifiers. 

 

Patient identifiers are variables containing information that is explicitly collected so 

individuals can be identified. Deterministic linkage used NHS number, date of birth, and 

postcode. 

 

Proxy identifiers are variables derived from but less precise than patient identifiers. We 

considered age at diagnosis for date of birth and LSOA for postcode. 

 

Indirect identifiers are variables, not derived from patient identifiers, that can discriminate 

between patients for the purpose of record linkage. We considered sex, date of surgery, 

surgical procedure, responsible surgeon, hospital trust, surgical approach, cancer site, distant 

metastases, and emergency admission. 

 

https://www.bing.com/search?q=American+Society+of+Anesthesiologists&filters=sid%3ae0dd3717-f37a-6490-0f43-dd909961a737&form=ENTLNK


8 

2.2 Deterministic linkage using patient identifiers 

NHS Digital conducted deterministic linkage using NHS number, sex, date of birth, and 

postcode. A sequence of eight deterministic rules were applied (Appendix Figure A3). The 

stage at which records are linked, match rank, ranges from 1 (records agree on all four patient 

identifiers) to 8 (records agree on NHS number only). 

 

2.3 Probabilistic linkage methods 

Mimicking the situation where investigators have no patient identifiers, probabilistic linkage 

used indirect and proxy identifiers, taking NBOCA as the master dataset, and linking to HES.  

 

Probabilistic linkage uses two key quantities, m-probability (measure of data quality), and u-

probability (measure of chance agreement); definitions in Appendix B. Using subscripts 1 for 

NBOCA and 2 for HES, m-probability is the probability that a pair of records agree for linkage 

variable 𝑥, given records belong to the same individual, 𝑝𝑟𝑜𝑏(𝑥1 = 𝑥2|𝐼1 = 𝐼2) [24]. The u-

probability is the probability that a pair of records agree for 𝑥 , given records belong to 

different individuals, 𝑝𝑟𝑜𝑏(𝑥1 = 𝑥2|𝐼1 ≠ 𝐼2)  [24]. The match weight is the ratio of these 

quantities and reflects how well each variable discriminates between individuals [25].  

 

For record pairs agreeing on an identifier, the m/u ratio,  

𝑝𝑟𝑜𝑏(𝑥1 = 𝑥2|𝐼1 = 𝐼2) 𝑝𝑟𝑜𝑏(𝑥1 = 𝑥2|𝐼1 ≠ 𝐼2)⁄ , 

provides an agreement contribution to the match weight.  

 

For record pairs disagreeing, the m/u ratio, 

𝑝𝑟𝑜𝑏(𝑥1 ≠ 𝑥2|𝐼1 = 𝐼2) 𝑝𝑟𝑜𝑏(𝑥1 ≠ 𝑥2|𝐼1 ≠ 𝐼2)⁄ , 

provides a disagreement contribution to the match weight.  

 

In practice, to simplify computations, we use the log(base2)-transformation of these ratios, 

with the benefit that one unit increase in logged weight corresponds to doubling the ratio 

[25].  

 

Most probabilistic linkage approaches assume linkage variables are independent, conditional 

on match status of an individual [11, 24]. Hence transformed match weights can be summed 

over all linkage variables to obtain overall match weight.   

 

2.3.1 Calculation of overall match weights for each proxy and indirect identifier 

For linkage, we selected candidate identifiers, based on ability to discriminate between 

matches and non-matches, and completeness of records. First, for each identifier, 𝑥 , we 
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selected record pairs that agreed on all other proxy/indirect identifiers and estimated overall 

m-probability as the proportion of these record pairs that agreed exactly on 𝑥. For overall u-

probability, if 𝑥 had 𝐾 ≤ 10 possible categories, we calculated proportions in each category 

in NBOCA and HES and summed the products of these proportions across all possible values: 

∑ 𝑝𝑟𝑜𝑏(𝑥1 = 𝑘) × 𝑝𝑟𝑜𝑏(𝑥2 = 𝑘).

𝐾

𝑘=1

 

For identifiers with 𝐾 > 10 categories, we estimated overall u-probability using the 

reciprocal of number of distinct values, 1/𝐾. 

 

Overall agreement/disagreement contributions were estimated using these overall m/u-

probabilities. Selection of which proxy/indirect identifiers to use for linkage was based on the 

difference between overall agreement and disagreement contributions, amongst variables 

that were missing for <5% individuals. 

 

2.3.2 Linking individuals using match weights 

The match weights in the linkage algorithm were calculated as above, except for age, date of 

surgery, sex, and surgical procedure. For age and date of surgery, we estimated m/u-

probabilities for exact agreement and three levels of disagreement, to allow for varying 

differences in dates (Appendix C). For sex and surgical procedure, as individuals were not 

distributed evenly across categories, we estimated m/u-probabilities for each category 

(Appendix C). Match weight contribution was set to zero for missing values. 

 

In practice, comparing each NBOCA-HES record pair involved estimating over 737 million 

(10,566×69,759) potential links. We used three sequential blocking steps to reduce 

computational burden. First, records with exact agreement on Cancer Alliance underwent 

linkage, then unlinked NBOCA records with age difference ≤10 years, and finally, remaining 

unlinked NBOCA records with date of surgery within 180 days. 

 

In each blocking step, match weights were calculated for all possible record pairs and 

summarised by histogram, resulting in two overlapping distributions, one for true matches 

and one for non-matches. A threshold was chosen as the point where the distributions 

intersected.  

 

2.4 Validation 

Taking deterministic linkage as gold-standard, we calculated sensitivity and specificity of 

probabilistic linkage based on proxy/indirect identifiers and plotted a Receiver Operating 

Characteristic (ROC) curve across alternative thresholds of match weights. Where records 
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were linked by only one method, agreement on individual linkage variables were examined 

to assess likelihood of false links (non-matches that are linked) and missed links (true matches 

that are not linked).  

 

To explore potential sources of bias arising from linkage error, we compared characteristics 

for deterministically linked record pairs according to whether they were probabilistically 

linked. 

 

To assess sensitivity of statistical analyses to linkage method we fitted regression models to:  

90-day mortality (logistic), survival from surgery up to two years (Cox proportional hazards), 

and length of stay (LOS; linear). Independent variables included in all models were: age at 

diagnosis, comorbidities, ASA grade, cancer site, emergency admission, cancer stage, and 

surgical approach. 

 

3  Results 

3.1 Probabilistic linkage  

Table 1 shows overall m/u-probabilities for candidate linkage variables. Patient and 

administrative variables (LSOA, dates, treatment providers, age, and sex), tended to 

discriminate better than clinical variables (cancer site/stage). Figure 1 plots overall m-

probability against one minus overall u-probability for linkage variables considered. For 

linkage, we included variables with difference in log-transformed overall contributions for 

agreement/disagreement of around 5 or more: LSOA, hospital trust, date of surgery, 

responsible surgeon, age, sex, and surgical procedure. Calculated m-probabilities, u-

probabilities, and match weight contributions by linkage variable are in Appendix C. 

 

After reviewing a histogram of match weights (Figure 2), a threshold of 25 was chosen, 

resulting in 81.4% (8,603/10,566) of eligible NBOCA records linked to HES using probabilistic 

linkage (Figure 3). This compares to 82.8% (8,748/10,566) of eligible NBOCA records linking 

deterministically, with >99% of these agreeing on NHS number, sex, and date of birth 

(Appendix Table D1). 

 

Table 1: Measures of discrimination and proportion of missing values for candidate linkage 

variables  

Candidate Number % missing data in  Overall Overall Log-transformed overall Difference in log- 

linkage  of distinct NBOCA HES m-probability u-probability contribution for  transformed 

variable values (N=10,566) (N=69,759) (data quality) (chance agreement disagreement overall 
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         agreement)   contributions 

NHS 

number1 
2 N/A N/A 0.992 <0.001 15.91 -6.99 22.90 

 H
igh

er d
iscrim

in
atio

n
 

LSOA 27,582 0.13% 0.69% 0.953 <0.001 14.68 -4.40 19.08 

Hospital 
trust 

145 0% 0% 0.999 0.007 7.18 -10.57 17.75 

Date of 
surgery 

1,503 0% 0% 0.858 0.001 10.33 -2.81 13.14 

Responsible 
surgeon 

3,149 0.38% 0.32% 0.672 <0.001 11.05 -1.61 12.65 

Age 88 0% 0.32% 0.973 0.011 6.42 -5.17 11.59 

Sex 2 0.04% <0.01% 0.997 0.502 0.99 -7.58 8.57 

Lo
w

er d
iscrim

in
atio

n
 

Surgical 
procedure 

10 0% 0% 0.893 0.225 1.99 -2.86 4.84 

Cancer site 3 0% 0% 0.939 0.607 0.63 -2.69 3.32 

Surgical 
approach 

2 1.28% 0% 0.858 0.501 0.78 -1.82 2.59 

Emergency 
admission 

2 1.15% 0.13% 0.741 0.491 0.59 -0.97 1.56 

Distant 
metastases 

2 25.3% 0% 0.628 0.479 0.39 -0.48 0.87 

 

  

                                                      
1 Whether or not NHS number matched, according to the match rank variable supplied by NHS Digital in HES 
(NHS number did not match if match rank was 6, 7, or missing). 
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Figure 1: Comparing data quality and chance agreement using overall m-probabilities and u-

probabilities of candidate linkage variables 
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Figure 2: Distribution of match weights computed in blocking step 1 after deterministically 

linking on Cancer Alliance (threshold for linkage, T, of 25 chosen at the point where two 

distributions intersect). 
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Figure 3: Receiver Operating Characteristic curve evaluating the sensitivity and specificity of 

probabilistic linkage match weights compared to assumed gold-standard of deterministic 

linkage (with probabilistic linkage threshold T=25 marked).  

 
 

3.2 Validation results 

3.2.1 Evaluating sensitivity and specificity of probabilistic linkage  

Most NBOCA records were linked to HES using both methods (8,427/10,566) (Figure 3). 

Sensitivity and specificity of probabilistic linkage, with deterministic linkage as gold-standard, 

were 96.3% (8427/8748) and 90.3% (1642/1818) respectively. Figure 3 shows that reducing 

the threshold would yield small gains in sensitivity for substantial reductions in specificity. 

Conversely, increasing the threshold would improve specificity but substantially reduce 

sensitivity. 

 

Table 2 shows agreement patterns for 176 records that linked probabilistically but not 

deterministically. 143 (81%) agreed on LSOA and ≥4 other identifiers, suggesting most are 

true links and specificity of the probabilistic linkage is therefore likely underestimated (as 

these links were missed in deterministic linkage).  
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Table 2: Agreement patterns for record pairs linked by probabilistic linkage but not 

deterministic linkage.  indicates exact agreement. 

 

Agreement patterns 

N. 

agree Frequency (%) 

Match  

Mean 

weight  

Range 

LS
O

A
 

D
at

e 
o

f 

su
rg

er
y 

R
es

p
o

n
si

b
le

 

su
rg

eo
n

 

H
o

sp
it

al
 

tr
u

st
 

A
ge

 

Se
x 

Su
rg

ic
al

 

p
ro

ce
d

u
re

 

• • • • • • • 7 56 (31.82) 52.12 40.38-55.08 

• •   • • • • 6 36 (20.45) 38.14 27.82-43.70 

• • • • • •   6 13 (7.39) 47.62 38.38-49.40 

• • • •   • • 6 12 (6.82) 43.21 36.13-48.61 

•   • • • • • 6 8 (4.55) 45.73 34.95-50.46 

•     • • • • 5 5 (2.84) 33.20 25.08-38.68 

• •   • • •   5 5 (2.84) 35.07 33.23-37.47 

•   • • • •   5 3 (1.70) 35.87 31.29-44.78 

• •   •   • • 5 2 (1.14) 34.59 33.41-35.76 

• • • •     • 5 1 (0.57) 34.99 34.99-34.99 

•   • • •   • 5 1 (0.57) 26.39 26.39-26.39 

•   • •   • • 5 1 (0.57) 28.00 28.00-28.00 

•     • • •   4 3 (1.70) 29.19 26.03-32.28 

•   • •   •   4 3 (1.70) 25.60 25.11-26.00 

  • • • • • • 6 4 (2.27) 33.62 33.15-35.05 

  • • •   • • 5 11 (6.25) 30.67 26.97-32.97 

    • • • • • 5 4 (2.27) 28.13 25.30-29.19 

  • • • • •   5 3 (1.70) 29.21 26.80-30.77 

  •   • • • • 5 1 (0.57) 26.53 26.53-26.53 

  • • •   •   4 2 (1.14) 26.21 25.08-27.34 

    • • • •   4 1 (0.57) 26.15 26.15-26.15 

    • •   • • 4 1 (0.57) 29.38 29.38-29.38 

 

All 321 records that linked deterministically but not probabilistically matched on at least NHS 

number, date of birth, and sex (Appendix Table D1), suggesting they are also true links (missed 

links in the probabilistic linkage). 96% of these disagreed on at least one of LSOA, hospital 

trust, and date of surgery. 
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3.2.2 Comparing characteristics of probabilistically and deterministically linked records  

Patients that linked deterministically, but not probabilistically, were younger and more likely 

to have emergency admission (Appendix Table D2). Otherwise, patients had similar 

characteristics. 

 

3.2.3 Comparing regression coefficients from analyses using deterministically and 

probabilistically linked datasets 

Figure 4 summarises results of regression models for factors affecting 90-day mortality, 

survival up to two years and LOS for patients linked deterministically and probabilistically 

(Appendix Tables D3-D5). Overall, 90-day mortality was 12.41% (95% CI: 11.72-13.14) for 

probabilistically linked patients, compared to 12.36% (95% CI: 11.67-31.06) for 

deterministically linked patients. Two-year mortality was 39.57% (95% CI: 38.53-40.63) versus 

39.55% (95% CI: 38.52-40.58) respectively, and mean LOS was 15.4 days (95% CI: 15.1-15.8) 

versus 15.5 days (95% CI: 15.2-15.9). There were no substantive differences in results 

between sets of models, with all variables having similar point estimates and overlapping 

confidence intervals. There were small differences in effects of age, ASA grade, and cancer 

stage on 90-day mortality but little impact for other outcomes.  

 

Figure 4: Crude estimates and 95% confidence intervals (CI) for 90-day mortality odds ratios 

(OR), 2-year mortality hazard ratios (HR), and crude mean difference in length of stay (LOS) 

using patients linked deterministically or patients linked probabilistically. Mortality outcomes 

plotted using logarithmic scale. 
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Discussion 

4.1 Summary        

Illustrated using bowel cancer patients undergoing emergency major surgery, we provided a 

step-by-step process for linking clinical datasets without personal information, with guidance 

on selecting variables for linkage and calculating match weights. The approach had over 96% 

sensitivity and 90% specificity compared to deterministic linkage using patient identifiers. 

There were no systematic differences between linked and unlinked patients. Regression 

analyses for mortality and LOS were not sensitive to the linkage approach.  

 

There is currently limited evaluation of linkage without patient identifiers, or guidance on 

implementation. Previous studies have linked data without a unique patient identification 

number, however many used other patient identifiers, such as patient name [7] and date of 

birth [9, 26]. Other studies have linked clinical and administrative datasets with only indirect 

identifiers but without a gold-standard for validation [4, 5].  

 

4.2 Limitations  

Our example comprised patients undergoing major surgery in an acute setting with diagnosis 

and treatment in the same admission. Linkage variables were related to patient and 

procedure, rather than diagnosis and earlier investigations, and included a mixture of 

identifiers generalisable across all settings (e.g. geographical area, age, sex, date of event/ 

diagnosis/procedure) and application-specific identifiers (e.g. surgical procedure, responsible 

surgeon). Even for common events such as childbirth, there will rarely be more than one 

person in the same LSOA of the same age having an event/procedure on the same day 

(approximately 1750 births per day in England and Wales across 34,753 LSOAs)[4, 27]. When 

multiple people have the same combination of these generalisable identifiers, additional 

application-specific identifiers can be used to differentiate between likely and unlikely links. 

We therefore expect our approach to apply for all major events or treatments requiring 

admission to hospital. For elective procedures, healthcare may spread over multiple 

admissions and further work should explore generalisability to these scenarios. 

 

Patient and administrative variables were used for probabilistic linkage rather than clinical 

variables, as they contributed more to linkage and were less subjective. Hence linkage 

without patient identifiers works better when more administrative information is available 

across both datasets. 

 

If available, free-text information such as patient name, address, and clinician notes would 

allow a more accurate gold-standard to be generated through manual review. However, 
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deterministic linkage using NHS number and other patient identifiers was available and it is 

rare that different patients would have identical NHS numbers. Therefore, this approach likely 

to has 100% specificity, but less than 100% sensitivity. Our analysis suggested that both 

linkage methods missed some links and deterministic linkage was not 100% sensitive. Thus, 

the specificity of the probabilistic linkage will have been underestimated. Reducing the 

threshold reduces missed links from probabilistic linkage, but at the cost of reduced 

specificity. 

 

The methods used to estimate match weights assumed conditional independence between 

linkage variables and correct specification of m/u-probabilities, although linkage results tend 

not to be sensitive to mis-specification [28]. However, if many linkage variables are used, 

issues with missing data, mismeasurement, or dependence may be amplified [29, 30]. We 

note that all our linkage variables had low frequencies of missing data. 

 

For probabilistic linkage, we selected the record with the highest match weight. If patients in 

one dataset had multiple potential links to the other dataset, some information may have 

been discarded. Alternative approaches include prior-informed imputation, which may 

perform better in some cases [31, 32], and  multiple imputation methods deal with 

uncertainty in linkage [33].  

 

To reduce computational burden, we linked records using blocking, as previously 

recommended [3, 5]. This strategy has been criticised for increasing missed links [2], but 

sequential blocking steps should minimise this. Parallelisation is a potential alternative 

solution. 

 

4.3 Implications 

With increasing availability of large clinical datasets, there is potential to build more complete 

pathways of patient care through data linkage. Our results demonstrate that probabilistic 

linkage of anonymised/pseudonymised datasets using indirect and proxy identifiers has the 

potential to increase capacity for data linkage and minimise costs and delays, while preserving 

data security and maintaining linkage quality. 

 

Our findings also demonstrate that probabilistic linkage using indirect and proxy identifiers 

can recover links missed deterministically, due to missing or misclassified patient identifiers. 

This suggests probabilistic linkage using indirect and proxy identifiers can enhance 

deterministic linkage methods. 
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Published guidance recommends providing transparency throughout linkage [2], as we have 

illustrated. For example, we demonstrated that the difference in the log-transformed overall 

agreement/disagreement contributions of each linkage variable can identify variables that 

would contribute the strongest to linkage. Furthermore, we followed recent guidance which 

proposes evaluating linkage quality by comparing the characteristics of individuals linked 

using different linkage approaches and assessing sensitivity of analyses to the linkage 

approach [34].  

 

4.4 Conclusion 

Probabilistic linkage without patient identifiers was successful in linking national clinical 

datasets for patients undergoing a major surgical procedure. It has important implications as 

it allows analysts outside highly secure data environments to carry out linkage while 

protecting data security and maintaining – and potentially improving – linkage quality. 
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