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Interactions between timing and transmissibility
explain diverse flavivirus dynamics in Fiji
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Zika virus (ZIKV) has caused large, brief outbreaks in isolated populations, however ZIKV can

also persist at low levels over multiple years. The reasons for these diverse transmission

dynamics remain poorly understood. In Fiji, which has experienced multiple large single-

season dengue epidemics, there was evidence of multi-year transmission of ZIKV between

2013 and 2017. To identify factors that could explain these differences in dynamics between

closely related mosquito-borne flaviviruses, we jointly fit a transmission dynamic model to

surveillance, serological and molecular data. We estimate that the observed dynamics of

ZIKV were the result of two key factors: strong seasonal effects, which created an ecologi-

cally optimal time of year for outbreaks; and introduction of ZIKV after this optimal time,

which allowed ZIKV transmission to persist over multiple seasons. The ability to jointly fit to

multiple data sources could help identify a similar range of possible outbreak dynamics in

other settings.

https://doi.org/10.1038/s41467-021-21788-y OPEN

1 Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical
Medicine, London, UK. 2 Fiji Center for Diseases Control, Suva, Fiji. 3 Institut Louis Malardé, Papeete, Tahiti, French Polynesia. 4 Fiji National University,
Suva, Fiji. 5 Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK. 6Harvard Humanitarian Initiative, Cambridge, MA,
USA. 7 Epidemic Diseases Research Group Oxford, University of Oxford, Oxford, UK. 8 Research School of Population Health, The Australian National
University, Canberra, ACT, Australia. ✉email: alasdair.henderson1@lshtm.ac.uk

NATURE COMMUNICATIONS |         (2021) 12:1671 | https://doi.org/10.1038/s41467-021-21788-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21788-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21788-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21788-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21788-y&domain=pdf
http://orcid.org/0000-0002-8903-4906
http://orcid.org/0000-0002-8903-4906
http://orcid.org/0000-0002-8903-4906
http://orcid.org/0000-0002-8903-4906
http://orcid.org/0000-0002-8903-4906
http://orcid.org/0000-0001-8587-1849
http://orcid.org/0000-0001-8587-1849
http://orcid.org/0000-0001-8587-1849
http://orcid.org/0000-0001-8587-1849
http://orcid.org/0000-0001-8587-1849
http://orcid.org/0000-0001-7044-5257
http://orcid.org/0000-0001-7044-5257
http://orcid.org/0000-0001-7044-5257
http://orcid.org/0000-0001-7044-5257
http://orcid.org/0000-0001-7044-5257
http://orcid.org/0000-0002-2842-3406
http://orcid.org/0000-0002-2842-3406
http://orcid.org/0000-0002-2842-3406
http://orcid.org/0000-0002-2842-3406
http://orcid.org/0000-0002-2842-3406
mailto:alasdair.henderson1@lshtm.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Emerging and re-emerging flaviviruses typically generate
large, brief outbreaks, particularly in isolated island
populations1–3. However, alongside examples of clearly-

defined outbreaks of Zika virus (ZIKV) with a high attack rate
during 2014–163–6, there is evidence of low-level, multi-year
circulation7. The challenges of collecting data during an emerging
outbreak mean that the reasons for these diverse flavivirus
dynamics are currently not well understood.

To investigate which factors shape the invasion dynamics of
dengue virus (DENV) and ZIKV, we combined surveillance,
serological and molecular data to analyse the emergence of ZIKV
and re-emergence of DENV-3 in the same population in Fiji,
which resulted in very different outbreak dynamics. In 2013/14,
dengue virus serotype 3 (DENV-3) caused a large outbreak that
lasted 9 months, with 12,413 suspected cases reported in Central
Division which has a population of 342,0008,9. In contrast, there
were only 16 PCR-confirmed cases of the closely related flavivirus
ZIKV in Fiji between 2015 and 2017, with evidence of low-level
circulation over multiple seasons10. Data from a longitudinal
community serological survey found an increase from 7.8% ser-
oprevalence for long-term ZIKV antibodies in November 2013 to
21.9% in November 201510, suggesting that ZIKV had been cir-
culating during this period despite only two confirmed cases
being reported. Further, the estimated time to most recent
common ancestor (tMRCA) estimated in phylogenetic analysis of
available ZIKV gene sequences—including from 3 ZIKV cases
from Central Division, Fiji—suggested that ZIKV may have been
introduced into Fiji in late 2013 or 201410 (Fig. 1).

There are several possible explanations for differences in
flavivirus dynamics in the same population. One possible expla-
nation is that ZIKV was less transmissible than DENV in Fiji:
analysis of flavivirus outbreaks on other Pacific islands found that
ZIKV can have a slightly lower basic reproduction number, R0,
than DENV in the same location11,12. Another factor is season-
ality: because mosquito populations are influenced by environ-
mental factors like temperature and rainfall13,14 there is a strong
temporal component to flavivirus transmission in Fiji8; the time
of year the virus is introduced therefore could influence the
dynamics of the resulting outbreak. Additionally, flavivirus out-
break dynamics will depend on prior immunity within the
population, as well as immunity that accumulates during an
outbreak8,11,15, or wanes following infection16. Finally, the
tMRCA of ZIKV in Fiji spans the duration of a large DENV-3
outbreak (Fig. 1c), so it is possible that infections during
the DENV-3 outbreak also conferred a degree of transient
cross-protection against other flaviviruses17–19.

Both ZIKV and DENV can cause asymptomatic or sub-clinical
infections20,21, which means many infections will not appear in
routine surveillance data. We therefore developed a transmission
dynamic model and jointly fitted it to surveillance data, three
longitudinal serological surveys and virus sequences to estimate
unobserved ZIKV infection dynamics in Fiji during 2013–17.
We used this model to identify factors that could explain why the
dynamics of ZIKV and DENV-3 were so different.

Results
ZIKV arrived later than DENV and persisted for multiple
years. We fitted our full transmission model to serological and
surveillance data and used prior information from an analysis of
molecular data. We found it was possible to explain the observed
dynamics with the following combination of factors: ZIKV was
introduced into Central Division, Fiji, after the ecologically
optimal time of year and transmitted at a low level over 3 years
until a combination of seasonal forcing and accumulation of
immunity resulted in the end of transmission in 2017 (Fig. 2a).

Although the first case of ZIKV was reported in July 2015, we
found evidence that transmission of ZIKV likely began in early
2015 in Central Division, Fiji. Infectious individuals were
introduced to our model using a continuous logistic function
defined by parameters for the peak, width and midpoint of the
wave of introductions. The 95% credible interval for the most
likely midpoint ranges from October 2014 to February 2015 with
a median of January 2015 (Fig. 2b and Supplementary Fig. S11).
By using a posterior estimate from a previous phylogenetic
analysis as a prior in our model, our joint inference produced a
more precise estimate than the original phylogenetic analysis
alone,10 which had an inferred introduction date of May 2014
(95% HPD: Feb 2013–Jul 2015).

Seasonal variation in transmission defines a period of
substantially higher risk for ZIKV introduction. To estimate
the role of seasonal variation in temperature on transmission, the
model included sinusoidal forcing in transmission with timing
and amplitude estimated from available daily temperature data22.
We then converted this into a relative transmission rate using the
published data on the mechanistic relationship between tem-
perature and basic reproduction number for transmission driven
by Aedes aegypti mosquitoes13.

In Fiji, we found a strong seasonal variation in transmission
which peaked in February (Fig. 2c). The seasonality of
transmission resulted in a period with an effective reproduction
number (R) below 1 (Fig. 2d). However, we estimated that this
was insufficient for the epidemic to fade out over the colder
months between 2015–2016 and 2016–2017 as the prevalent
number of infections was consistently above 100 (Fig. 2c).

The seasonal pattern of transmission also created a period of
heightened epidemic risk if a flavivirus was introduced during this
period. Towards the end of the calendar year as temperatures, and
therefore the transmission rate, increased the required number of
initial cases to seed an outbreak was lower than during the colder
months. We excluded the possibility of an outbreak emerging
from an implausibly small introduction during the period when R
was below 1.

Estimated R0 and reporting proportion for ZIKV was lower
than the DENV-3 outbreak. In our model, we estimated the full
cycle basic reproduction number (R0), the average number of new
infections in humans from an initial infected human, which
varied over time according to seasonal forcing. Over the course of
a year, we estimated a median ZIKV R0 of 1.2 (95% CrI: 0.8–1.5)
(Fig. 2c and Supplementary Table S4). Before fitting to ZIKV data
we initially fitted the same model to DENV-3 surveillance ser-
ological data from the 2013-14 epidemic (Supplementary Fig. S9
and Supplementary Table S4). From this analysis we estimated a
higher but comparable median and 95% credible interval for R0
for the 2013-14 DENV-3 epidemic (1.8; 95% CrI: (1.3–2.4)).

Other studies have found evidence that inherent DENV
transmissibility is similar or slightly higher than ZIKV in the
same location11,23–25. A more complex modelling analysis of this
2013–14 DENV-3 epidemic estimated an R0 of 1.12 (95% CrI:
1.02–1.25), similar to our estimate of ZIKV for the same region8.
Our results are consistent with these findings, that ZIKV is
similarly but slightly less transmissible in the same population as
DENV. This likely contributed, but was insufficient, to explain
the diverse outbreak dynamics between DENV-3 and ZIKV in
Central Division.

We also estimated a very small reporting proportion for ZIKV
from our model of 0.01% (95% CrI: 0.006–0.02%). This implies
that nearly all infections were not reported as cases and were
either asymptomatic, not severe enough to seek medical attention,
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not referred for ZIKV tests by clinicians in Fiji or undetected
ZIKV in tests. This low reporting proportion is uncommon for
arbovirus outbreaks in Fiji. We estimated a reporting proportion
of 16% (95% CrI: 12–23%) for DENV-3 during the 2013–14
epidemic. This discrepancy is the main cause of the diverse
observed outbreaks in surveillance case data. However, it is

insufficient to explain why ZIKV infections transmitted at a low
level for multiple years.

Flavivirus outbreak dynamics depend on the virus introduc-
tion timing. To examine how introduction dynamics could shape
subsequent ZIKV outbreaks, we simulated model trajectories

Fig. 1 Available data on ZIKV transmission in Fiji. a Dated Bayesian phylogeny of three sequences recovered from Central Division, Fiji, and other
locations in the Pacific and Americas. Nodes with a posterior probability of 1.00 are indicated. Branch lengths correspond to time in calendar years. (inset
b) Detailed phylogeny of the Central Division cluster. The estimated time to most recent common ancestor (tMRCA) for the two closely related Central
Division sequences, selected based on previous analysis10, is shown. c Green region, density of estimated tMRCA from phylogenetic analysis. This
distribution was used as a prior for ZIKV introduction time in the main transmission model fitting. Pink line, cases of DENV3. Blue bars, cases of ZIKV. Grey
bars, serological samples collected in Central Division.
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using the maximum a posteriori estimates, then varied the mid-
point of the introduction function. We found that the timing of
introductions had a large effect on ensuing outbreak dynamics
(Fig. 3a–d). For example, using our model with an introduction
event centred around January 2015—slightly after peak trans-
mission—there were three waves of infections at a low level, as in
our main findings (Fig. 3c). We found that shifting the intro-
duction event 2 months earlier to November 2014—slightly
before transmissibility had peaked—caused a larger single season
outbreak comparable to the 2013-14 DENV-3 epidemic (Fig. 3b).
An introduction centred around February 2015, generated a
smaller first wave in a shorter high transmission season given the
later introduction. However, this delayed the epidemic and there
was a larger second wave in 2016 (Fig. 3c). In our model, varying
the timing of the introductions alone could create diverse out-
break dynamics from single large outbreaks to seasonal annual
persistence for multiple years.

Early ZIKV introduction and interaction with DENV was not
well supported by the data. It has been proposed that infection
with one flavivirus may result in transient cross-immunity against
others17,26,27. We therefore examined whether the large DENV-3
epidemic in 2013/14 could have temporary cross-immunity that
delayed the emergence of ZIKV until 2015. Our model allowed a
proportion of those infected with DENV-3 during the 2013/14 to
potentially be temporarily protected from ZIKV infection. To
ensure the outbreaks overlapped, we constrained ZIKV to be
introduced in 2013 (i.e. before the DENV-3 outbreak). In this
scenario, we found that a combination of DENV-3 cross-immu-
nity and reduced transmission that coincided with a vector

control campaign in March 2014 could have suppressed ZIKV
transmission in 2014 (Supplementary Fig. S17). However the
Deviance Information Criterion (DIC) from this model was much
higher than our baseline model (Table 1), suggesting very little
support for this alternative explanation. The reason for poor
model performance is the short outbreak duration that resulted
from this interaction: DENV did not just influence ZIKV in 2014
in this scenario; by suppressing ZIKV transmission to a large
extent, subsequent multi-year outbreaks of ZIKV during
2015–2017 were not possible in the model, in contrast with the
observed reported cases during this period.

Discussion
We combined multiple data sources with a dynamic transmission
model to reconstruct unobserved transmission dynamics of ZIKV
in Fiji between 2013 and 2017. We found that transmission
persisted over multiple years with three consecutive small annual
outbreaks between 2015 and 2017, with strong seasonal forcing in
transmission resulting in a high risk period of the year for ZIKV
introduction. This means there is potential for large, brief flavi-
virus outbreaks, as well as a period of lower risk where low-level
transmission is more likely. We estimated a mean basic repro-
duction number of 1.2 (95% CrI: 0.8–1.5) for ZIKV, which
combined with seasonality in transmission meant there was
insufficient infection—and hence acquired immunity—in 2015 or
2016 to prevent re-emergence of the virus in the following year.

We found that ZIKV was slightly less transmissible than
DENV in the same population and that nearly all ZIKV infections
were undetected, unlike the estimated reporting proportion
during the DENV-3 epidemic. We show that if the ZIKV

Fig. 2 Estimated transmission of ZIKV in Fiji using a mathematical model and multiple data sources. a Pink line, weekly cases of DENV-3. Blue bars,
monthly cases of ZIKV. Blue dashed line and region, model estimated median cases of ZIKV and 95% CrI. b Seroprevalence and introduction of ZIKV.
Green line and region, estimated median introduction of ZIKV infected individuals and 95% CrI. Grey line and region, estimated median proportion of the
population that had recovered and were temporarily immune to ZIKV infection (median and 95% CrI). Orange dashed line and region, estimated observed
seroprevalence and 95% CrI. Seroprevalence includes an estimated 6.3% (95% CrI: 4.4--8.5%) false positive rate and 79% (95% CrI: 52--98%) assay
sensitivity. Orange dots and vertical lines, observed ZIKV seroprevalence from three serological surveys (mean and 95% binomial CI, n= 458, 327, 321 in
2013, 2015, 2017, respectively). c ZIKV infection dynamics in Central Division. Yellow line and region, median and 95% CrI of the number of people
susceptible to ZIKV. Blue line and region, median and 95% CrI of the number infected on the natural log scale. d Pink line and region, estimated basic
reproduction number for ZIKV (median and 95% CrI). Green line and region, effective reproduction number (median and 95% CrI). This included an
estimated decline in transmission coinciding with a 2014 vector clean-up campaign8. Grey line, monthly temperature data from Suva, Central Division.
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reporting proportion was equivalent to DENV-3 then the two
epidemics would appear similar in overall magnitude (Supple-
mentary Fig. S12). However, this is insufficient to explain why
ZIKV transmitted at a low level over multiple years, unlike
DENV-3 which caused a large single-season epidemic. We have
demonstrated that small changes to the introduction time can
produce a diverse range of outbreak dynamics because of the
strong seasonal forcing in ZIKV transmission in Fiji (Fig. 3).

Our ability to infer unobserved dynamics benefited from being
able to simultaneously fit a transmission dynamic model to

serological, surveillance and viral sequence data. Each data source
provided insights into different aspects of the dynamics. The
surveillance data provided information on the temporal dis-
tribution of symptomatic infections, the serological surveys pro-
vided estimates of community-level exposure at different points
in time and the sequence data provided informative prior infor-
mation on the potential time of ZIKV introduction to Fiji. To
synthesise these complementary information sources, we used a
mathematical model that could generate observations represent-
ing the serological and surveillance data, then we jointly fitted the

Fig. 3 Transmission dynamics by varying introduction time. Simulated ZIKV outbreaks using the maximum a posteriori parameter set and adjusting the
midpoint of the introduction of ZIKV infectious individuals. Changing the introduction time alone can vary resulting outbreak dynamics between low level
circulation over multiple years to large single-season epidemics. The modelled DENV-3 infections during the 2013-14 epidemic is reproduced here for
comparison. Introduction time centred around October 2014 (a), November 2014 (b), January 2015 (c), February 2015 (d). Blue line, model simulation for
the prevalence of ZIKV infections (not cases). Green line, modelled DENV-3 2013–14 infections. Pink line, introduction of infectious individuals. The date of
the midpoint of the introduction function is displayed in pink. The attack rate is equal to the sum of all ZIKV infections divided by the population size at the
start of the outbreak, 342,000 people.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21788-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1671 | https://doi.org/10.1038/s41467-021-21788-y | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


model to these data sets in a Bayesian framework, while the
molecular data formed an informative prior on the time of
introduction. The data available for Fiji presented a unique
opportunity to compare and contrast the dynamics of ZIKV and
DENV infection; without the combination of these three data sets
it would have been far more challenging to reliably infer the
unobserved ZIKV outbreak dynamics.

In our study we allowed flexibility in the timing and size of the
initial virus introduction, but in all scenarios we assumed that
there was a single introduction wave with continuous transmis-
sion afterwards, rather than multiple separate introductions in
consecutive years. ZIKV outbreaks in other locations have shown
evidence of multiple introductions28. Although we cannot rule
out multiple early introductions that did not result in widespread
transmission, a previous phylogenetic analysis of ZIKV sequences
from the region identified two distinct clusters of Fiji sequences,
one of which included sequences recovered from Western Divi-
sion and the other from Central Division10. The weak branch
support for the Central Division cluster in both analyses means
we cannot distinguish between one or more introduction events.
However, the fact that this previous analysis estimated a cluster
that included all three Central Division sequences, with a close
relationship between sequences from 2015 and 2016 suggests
persistence rather than separate introductions. Single ZIKV
introduction events have also been estimated for other Pacific
Islands29, and an introduction during 2014–15 in Fiji is further
supported by context of ZIKV transmission in the Pacific, where
the majority of large outbreaks occurred in 2014 and early 2015,
rather than 2016 onwards: the first large outbreak occurred in
French Polynesia in late 2013; during 2014 there were ZIKV
outbreaks confirmed in New Caledonia, Easter Island and the
Cook Islands and in 2015 in Vanuatu, and Solomon Islands29.
Moreover, the level of seroprevalence found in Fiji in 2015 sug-
gests there was widespread transmission between 2013 and 2015,
rather than a series of isolated cases10.

We used a deterministic framework to model ZIKV, which is
limited because it could produce artificially cyclical outbreaks that
do not reflect reality. There were two potential problems deter-
ministic models can cause that we explicitly guarded against.
With strong seasonal forcing in transmission it is possible that
epidemics can reduce to implausibly low levels to persist over
colder months before re-emerging. Our model included a con-
dition that there was at least one infected person for the virus to
transmit. Regardless, we estimated that the number infected over
colder months was consistently above 100 during lower trans-
mission seasons (Fig. 2c). Secondly, to avoid epidemics emerging
in our model at implausible times of the year we explicitly pre-
vented introductions and a possible epidemic take off when R was
below 1 in our model.

In our model we assumed that detectable anti-ZIKV antibodies
could wane over time and therefore seroprevalence in the

population could decline over time, as has been observed in
serological studies16,30. However, as the precise relationship
between a specific titre value and susceptibility to ZIKV infection
is unclear, we assumed that seroreversions did not lead to loss of
protection. This is consistent with other ZIKV modelling
studies31,32 and the fact that many participants in the Fiji survey
who were seronegative for ZIKV (as measured by MIA) specific
antibodies still had evidence of neutralising titres16.

In the Fiji serological survey, ZIKV seroprevalence was already
7.8% in November 2013. Given the antigenic similarity of DENV
and ZIKV, we assumed that this level of ZIKV seroprevalence
may be the result of cross-reactive antibody responses from prior
flavivirus infections. To reflect this, we included a parameter that
measured the false positive percentage (1 minus the specificity) of
the assay, which was estimated as 6.3% (95% CrI: 4.4–8.5%) in the
model fitting (Supplementary Table S4). This may explain why
there was some evidence of seroprevalence before our model
estimated ZIKV had arrived in Fiji. Similarly, we estimated a
sensitivity of 79% (95% CrI: 52–98%). Both are consistent with
the previously reported assay sensitivity and specificity for ZIKV
of 79.6% and 94.9%16. With these adjustments we found that the
observed seroprevalence was broadly consistent with our expected
seroprevalence from the model. However, in 2015 the observed
value was at the limit of our expected seroprevalence (Fig. 2b). It
is possible the assay was more sensitive or less specific during this
serological analysis. It is unlikely that there were more true
infections than our model produced since this would require a
higher transmission rate and therefore increase the likelihood of a
single season large epidemic, which is inconsistent with the
surveillance data.

The surveillance data collected during the 2013–14 DENV-3
epidemic was primarily from syndromic surveillance and did not
have laboratory confirmation8. There is significant overlap in the
definitions of dengue-like illness, Zika-like illness, Influenza-like
illness, and acute fever and rash, so it’s a challenge for doctors and
nurses to classify patients into these categories, and there are
inherent uncertainties in the reported numbers. It is therefore
possible that some of the cases defined as DENV-3 in 2013–14
were actually caused by ZIKV infection and ZIKV was introduced
earlier to Fiji than we suggest here. We did not preclude this
possible conclusion from the model, but the probability of ZIKV
arriving in Fiji in 2013 unobserved and still circulating in 2017
was less plausible than a late 2014 introduction in our model
(Supplementary Fig. S17 and Supplementary Table S5). All con-
firmed cases attributed to ZIKV in this study had reverse tran-
scription PCR confirmation in Fiji10.

Despite these limitations, our results show that ZIKV does not
necessarily cause large, brief outbreaks in settings where other
flaviviruses have done so, and can persist over multiple seasons,
mostly undetected, even in isolated locations. We found that these
dynamics most likely resulted from the timing and the magnitude
of the introductions of infections prior to the first reported cases.
Given the strong seasonal forcing on transmission of vector-borne
infections in Fiji, the timing of the introduction had a large impact
on the resulting dynamics. This indicates a period of high epi-
demic risk in Fiji—specifically as temperatures begin to increase—
during which surveillance should be particularly vigilant. It also
suggests that a wide range of outbreak dynamics are possible if
infections are introduced outside this period, including repeated,
low-level outbreaks over varying numbers of years. By estimating
this range of possible transmission dynamics with such models, it
should be possible to develop improved forecasts about likely
outbreak dynamics when new cases are identified. More broadly,
with a similar joint analysis of wider data sources for flavivirus
outbreaks, there is potential to characterise the range of possible
dynamics for other settings as well.

Table 1 Model performance and estimated R0 when
introduction date is unconstrained and constrained. The
model with no constraint on introduction time estimated an
early 2015 introduction, which meant there was no need for
a DENV/ZIKV interaction to explain the observed data. In
contrast, constraining the introduction time to 2013 resulted
in an estimated interaction, but performed less well when
compared to the observed serological and surveillance data.

Model DIC R0 (95% CrI)

A No constraint on introduction 76.3 1.2 (0.8–1.5)
B Forced 2013 introduction 129.8 1.2 (0.9–1.6)
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Methods
Ethics statement. Each serosurvey had ethical approval from both the Fiji
National Research Ethics Review Committee (2013-03, 2015.111.C.D and 2017.20.
MC) and the London School of Hygiene & Tropical Medicine Observational
Research Ethics Committee (6344, 10207 and 12037). All participants in follow-up
studies in 2015 and 2017 had agreed to be recontacted for further health research
and an updated informed consent was obtained. To respect local customs and
ensure research activities were culturally accepted, the head of the household or
village was visited with local bilingual field teams. The study was explained in
English or iTaukei at the preference of the potential participant. Parental/guardian
consent was obtained for children under 18.

Surveillance data. Between June 2015 and August 2017 there were 16 confirmed
cases of ZIKV through laboratory surveillance in Central Division, Fiji (Supple-
mentary Figs. S1 and S2). At the Institut Louis Malardé (Tahiti, French Polynesia),
reverse transcription polymerase chain reaction (RT-PCR) was used to detect ZIKV
in referred cases. Between March 2016 and August 2017 these tests were performed
on site at Mataika House, public health laboratory, Fiji Center for Diseases Control.
In addition, saliva samples were submitted for ZIKV RT-PCR. Full details are
described in the Supplementary Methods.

Serological data. We conducted a longitudinal seroepidemiological survey over
the period 2013–2017 in Central Division, Fiji. The original sampling used
population-proportionate sampling in Central Division to identify nursing zones
from across Fiji for inclusion and full details of the sampling framework have been
published33,34. The same participants were followed up in 20158,10 and 201716 to
collect another serum sample for testing.

In brief, serological testing of samples to detect immunoglobulin class G
antibodies against ZIKV and each of the four DENV serotypes was performed using
a recombinant antigen-based microsphere immunoassay (MIA). The sensitivity and
specificity of the MIA assay were respectively 100% and 100% for DENV-1, 89.5%
and 97.1% for DENV-2, 100% and 100% for DENV-3, 96.9% and 100% for DENV-
4, and 79.6% and 94.9% for ZIKV16. A subset of samples in 2013 and 2015 and all
samples in 2017 were also tested for the presence of neutralising antibodies against
ZIKV and each of the four DENV serotypes using a plaque reduction neutralisation
assay. Full details are available in the Supplementary Methods.

Molecular data. A previous study details the recovery of the envelope (E) gene of
ZIKV strains from Fiji and the original phylogenetic analysis that informed this
study10. The sequences from Central Division were recovered from two saliva
samples collected in 2015 and a serum sample collected in 2016 (Supplementary
Tables S1 and S2). The same sequences retrieved from GenBank in the original
study were used in this study, which included 120 ZIKV sequences all from the
Asian lineage10.

Modelling seasonal forcing using climate data. We collected daily maximum
and minimum temperature data from the Fiji Meteorological Service which cov-
ered the study period up to June 2017. We defined a sinusoidal function with
variable amplitude and midpoint. We estimated these two parameters by fitting this
function to daily average temperature data over the study period by Bayesian
Markov Chain Monte Carlo (MCMC) using a normal distribution and likelihood
and uninformative priors. We then converted the estimated peak and base of this
temperature wave function to ZIKV transmission using previously published
data13. The distance between the relative peak and base R0 was fixed as the
amplitude of our seasonal forcing function in our transmission model. Further
details are described in the Supplementary Methods.

Phylogenetic analysis. We reproduced previous phylogenetic analysis by Bayesian
MCMC inference in BEAST (v1.10.4) to estimate the distribution of the tMRCA
for the Central Division cluster10. Given the weak branch support for all three
Central Division sequences, we forced only the sequences 18A, recovered in 2015,
and 1568, recovered in 2016, to form a monophyletic taxon set and estimated the
tMRCA for these two samples. Further details on the Fiji sequences, primers used
and the remainder of the BEAST analysis are provided in the Supplementary
Methods. The sequences and .xml file generated with BEAUti for the BEAST
analysis are available on GitHub (10.5281/zenodo.4487358)35.

Transmission model. We developed a model which had flexibility to consider six
possible factors: prior population immunity, accumulation of herd immunity
during the outbreak, seasonal variation in climate (Supplementary Fig. S4),
introduction time (Supplementary Fig. S6), interaction between DENV and ZIKV
resulting from cross-protection, and inherent viral transmissibility. We excluded
antibody-dependent enhancement between DENV and ZIKV from our model as
this would result in an increase in reported ZIKV cases and a comparison of our
surveillance and serological data showed that very few infections were recorded as
cases of ZIKV.

We developed a deterministic susceptible-exposed-infectious-recovered
compartmental transmission model with a dynamic human population
(Supplementary Fig. S7). The model included seasonal forcing on the transmission
rate using a sinusoidal function and a temporary reduction in transmission in
March 2014 from a mosquito clean-up campaign using a flexible sigmoid function8

(Supplementary Fig. S5). We also allowed a proportion of those infected with
DENV-3 during the 2013/14 outbreak to potentially be temporarily protected
against ZIKV infection. People left the recovered compartment to reflect waning
ZIKV antibodies over time, however they remained immune to ZIKV.

We used a symmetric logistic function to reflect introduction of ZIKV infection
into the population in our model, with the midpoint, width and peak of the
function to be estimated. This created a flow of individuals to the I compartment,
which seeded the early outbreak dynamics. Further details are available in the
Supplementary Methods.

Deterministic models can generate artificially cyclical epidemics. To better reflect
reality, we included two conditions explicitly in the model. Firstly, there had to be at
least one infectious individual for the virus to transmit to prohibit virus persistence
at implausibly low levels over the low-transmission season. Secondly, we set the
number of infectious introductions to zero if the effective reproduction number was
below 1. This prevents epidemic take-off at implausible points of the year.

Model fitting and comparison. We initially fitted the transmission model to
DENV-3 surveillance and serological data to estimate parameter value relating to the
seasonal forcing and clean-up campaign in March 2014. These parameters were then
fixed for the ZIKV transmission model. When modelling ZIKV, we fixed the para-
meters for the concurrent DENV-3 epidemic such that R0= 1.3 and a proportion of
those infected with DENV-3 would become temporally immune from ZIKV.

Full details on the model fitting process (Supplementary Fig. S3) and the full
parameter set (θ) estimated are given in the Supplementary Information
(Supplementary Table S3). For the ZIKV transmission model an informative prior
was used for the introduction time. We fitted an empirical distribution to the
posterior distribution presented in our study (Fig. 1c) and used this as our prior.
Since the phylogenetic posterior was not normally distributed and had a wide
highest posterior density (HPD), the prior information in the transmission model
fitting was weak. Parameter estimates were constrained within realistic bounds for
the width and peak of the infected introductions function and the two baseline
transmission rates. The transmission model was jointly fitted to case and
serological data using adaptive MCMC with a Metropolis-Hastings algorithm. We
assumed that cases were distributed according to a negative binomial distribution
and the proportion seropositive at each serosurvey was binomially distributed.

To compare different models under various assumptions we fixed certain
parameters in our model (Supplementary Notes). The joint posterior distribution
of each model was obtained from 20,000 MCMC iterations, each with a burn-in of
8000. We used adaptive MCMC by adjusting the covariance matrix used to re-
sample and obtain a target acceptance rate of 0.23436. We used the DIC to compare
model fits (Supplementary Table S5). Once we identified our best fitting model, we
obtained the joint posterior distribution presented in this study from 1,200,000
MCMC iterations on two chains, each with a burn-in of 480,000. The
Supplementary Information includes the DENV-3 model fit (Supplementary
Fig. S8), trace plots (Supplementary Figs. S13 and S15), density plots
(Supplementary Figs. S9 and S10) and a parameter correlation plot (Supplementary
Fig. S14) for the main ZIKV model fit, as well as results from the model
comparison analysis (Supplementary Figs. S16–S21).

All models were implemented in R version 4.0.237,38 using the mvtnorm39 and
deSolve packages40 and parallelised using the doMC library41.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The surveillance, serological and sequence data used in this study have been deposited in
GitHub (https://doi.org/10.5281/zenodo.4487358)35.

Code availability
Microsoft Excel (version 16.44) and R (version 4.0.2)37,38 were used to clean and process
data. All models were implemented in R version 4.0.237,38 using the mvtnorm (version
1.1)39, truncnorm (version 1.0.8)42 and deSolve (version 1.28)40 packages and
parallelised using the doMC (version 1.3.6)41 package. An MCMC sampler was written in
R43 to fit the mathematical model to multiple data sources using tidyverse (version
1.3.0)44. Figures were created with the ggplot2 package (version 3.3.2)45. BEAST and
BEAUTi (version 1.10.4) were used to analyse sequence data46. All code used in this
analysis are available at https://github.com/a-henderson91/fiji-zikv-model (https://doi.
org/10.5281/zenodo.4487358)35.
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