
RESEARCH ARTICLE

Pharmacokinetic / pharmacodynamic

relationships of liposomal amphotericin B and

miltefosine in experimental visceral

leishmaniasis

Andrew A. VoakID
1¤a, Andy Harris2, Jose Miguel Coteron-Lopez3, Iñigo Angulo-

Barturen3¤b, Santiago Ferrer-Bazaga3¤c, Simon L. CroftID
1, Karin SeifertID

1¤d*

1 Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London,

United Kingdom, 2 Pharmidex, London, United Kingdom, 3 Diseases of the Developing World (DDW),

GlaxoSmithKline, Madrid, Spain

¤a Current address: King’s College London, London, United Kingdom

¤b Current address: The Art of Discovery (TAD), Bizkaia, Basque Country, Spain

¤c Current address: Carlos III University, Madrid, Spain

¤d Current address: Federal Institute for Drugs and Medical Devices, Bonn, Germany

* lonks23@student.london.ac.uk

Abstract

Background

There is a continued need to develop effective and safe treatments for visceral leishmania-

sis (VL). Preclinical studies on pharmacokinetics and pharmacodynamics of anti-infective

agents, such as anti-bacterials and anti-fungals, have provided valuable information in the

development and dosing of these agents. The aim of this study was to characterise the phar-

macokinetic and pharmacodynamic properties of the anti-leishmanial drugs AmBisome and

miltefosine in a preclinical disease model of VL.

Methodology / Principal findings

BALB/c mice were infected with L. donovani (MHOM/ET/67/HU3) amastigotes. Groups of

mice were treated with miltefosine (orally, multi-dose regimen) or AmBisome (intravenously,

single dose regimen) or left untreated as control groups. At set time points groups of mice

were killed and plasma, livers and spleens harvested. For pharmacodynamics the hepatic

parasite burden was determined microscopically from tissue impression smears. For phar-

macokinetics drug concentrations were measured in plasma and whole tissue homogenates

by LC-MS. Unbound drug concentrations were determined by rapid equilibrium dialysis.

Doses exerting maximum anti-leishmanial effects were 40 mg/kg for AmBisome and 150

mg/kg (cumulatively) for miltefosine. AmBisome displayed a wider therapeutic range than

miltefosine. Dose fractionation at a total dose of 2.5 mg/kg pointed towards concentration-

dependent anti-leishmanial activity of AmBisome, favouring the administration of large

doses infrequently. Protein binding was >99% for miltefosine and amphotericin B in plasma

and tissue homogenates.
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Conclusion / Significance

Using a PK/PD approach we propose optimal dosing strategies for AmBisome. Additionally,

we describe pharmacokinetic and pharmacodynamic properties of miltefosine and compare

our findings in a preclinical disease model to available knowledge from studies in humans.

This approach also presents a strategy for improved use of animal models in the drug devel-

opment process for VL.

Author summary

Visceral leishmaniasis is a neglected tropical disease, with an estimated 200 000–400 000

cases and 20 000–40 000 deaths per year worldwide. Leishmania parasites proliferate in

spleen, liver and bone marrow, and the disease is usually fatal if untreated. Despite prog-

ress in the development of new therapies in recent years there is still a need to develop

effective and safe treatments. Characterising pharmacokinetic and pharmacodynamic

properties and their relationships has provided valuable information in the development

and dosing of anti-infective agents, such as anti-bacterials and anti-fungals. The present

study characterised these properties of the anti-leishmanial drugs AmBisome and miltefo-

sine in a mouse model of visceral leishmaniasis. We propose optimal dosing strategies for

AmBisome and present a new approach for investigating anti-leishmanial drug action,

which can be applied to the development of new treatments for visceral leishmaniasis.

Introduction

Visceral leishmaniasis (VL) is a vector-borne neglected tropical disease (NTD) caused by pro-

tozoan parasites of the genus Leishmania. The disease, which is fatal if untreated, presents with

symptoms and signs of persistent systemic infection, such as fatigue and weight loss, and

enlarged nymph nodes, spleen and liver, due to parasitic invasion of the mononuclear phago-

cyte system [1]. Recent estimates suggest that there are 200 000–400 000 cases and 20 000–40

000 deaths per year worldwide. Over 90% of cases occur in India, Bangladesh, Sudan, South

Sudan, Brazil and Ethiopia [2]. Drug toxicity, challenging routes of drug administration, drug

stability in hot climates, and geographical differences in clinical response to treatment remain

a challenge to satisfactory VL therapy [3,4]. Development of safe and effective new drugs for

VL necessitates the use of relevant approaches during lead optimisation. Pharmacokinetics

and pharmacodynamics (PK/PD) provides a conceptual framework for improving knowledge

of the biological basis of PD effects, which can aid in the development of new drugs and

improved use of existing ones [5].

PK/PD concepts were initially identified for anti-bacterial agents, where different measures

of exposure have been linked to the anti-microbial activity of different drug classes. These dif-

ferent PK/PD indices (time above minimum inhibitory concentration [T>MIC], maximum

concentration to MIC ratio [Cmax/MIC], area under the curve to MIC ratio [AUC/MIC]) indi-

cate either time-dependent or concentration-dependent drug action and translate into differ-

ent dosing regimens [6–9].

Preclinical PK/PD studies have provided valuable information in the development of anti-

infective agents [10], but available knowledge for anti-leishmanial drugs is limited [11]. Here

we investigated maximally effective dosing regimens and dose-response effects, PK and tissue
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distribution, dose fractionation, and protein binding after administration of AmBisome and

miltefosine in a preclinical disease model of VL. Miltefosine, an alkylphosphocholine, and

AmBisome, a unilamellar liposomal formulation of amphotericin B, are two clinically used

anti-leishmanial drugs [4,12,13]. These were chosen to enable the development of a novel

approach for anti-leishmanial drug development and comparison of findings to available

knowledge from studies in humans.

Methods

Ethics statement

Experiments involving animals were carried out under license in accordance with the Animals

(Scientific Procedures) Act of 1986 (UK Home Office Project license PPL70/8207) following

approval by the Animal Welfare and Ethics Review Board at LSHTM.

Drugs and reagents

AmBisome was purchased from Gilead (Cambridge, UK). The powder was reconstituted in

sterile water following the manufacturer’s directions and further dilutions prepared in 5%

glucose. Miltefosine was obtained from Paladin Labs Inc. (Montreal, Canada). Amphoteri-

cin B (Vetranal analytical standard), tolbutamide, dimethyl sulfoxide (DMSO), sodium

dodecyl sulfate (SDS) and acetonitrile were obtained from Sigma (UK). Heparin was

obtained from John Bell & Croydon (UK). Methanol (high-performance liquid chromatog-

raphy [HPLC] grade), 0.1% formic acid in water (liquid chromatograph-mass spectrometry

[LC-MS] grade) and water (LC-MS grade) were purchased from Fisher Scientific UK, Ltd.

(UK).

In vivo experiments–infection, randomisation and endpoints

Female BALB/c (Charles River, UK) and Rag 1 (B6) knockout mice (LSHTM breeding colony)

were maintained under specific-pathogen-free conditions in individually ventilated cages and

exposed to 12-h-light-12-h-dark cycles. Standard rodent diet (RM no. 1 expanded) and filtered

tap water were supplied ad libitum. Parasites were maintained in Rag-1 (B6) KO mice and

amastigotes harvested from spleens >40 days after infection. Mice (6 to 10 weeks of age at the

start of experiments) were infected by intravenous (i.v.) injection of 2 x 107 parasites (L. dono-
vani MHOM/ET/67/HU3) as described previously [14]. Treatment of BALB/c mice started 10

days (miltefosine) or 14 days (AmBisome) after infection, at doses and dosing regimens indi-

cated below. Timepoints for treatment start were chosen to ensure that drug effects were evalu-

ated within the time window, in which parasites replicate in the liver and pathology is

established. Prior to the administration of drugs mice were weighed and randomized into the

different treatment groups, using a random number generator. The average weight of mice in

each experiment was used for dose calculations. Untreated groups of mice were included as

controls. At experimental endpoints mice were weighed and humanely killed by exsanguina-

tion under terminal anaesthesia. Blood was collected by cardiac puncture in Eppendorf tubes

containing heparin, and plasma was harvested by centrifugation. Livers and spleens were

removed and their weight recorded. Plasma and tissue samples were stored at -80˚C until fur-

ther processing. Parasite burden was determined by microscopy in 100% methanol-fixed tissue

impression smears stained with 10% Giemsa. Parasite burden was expressed in Leishman-

Donovan units (LDU), calculated by the formula no. of parasites per host cell nucleus x organ

weight in mg [15].
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In vivo experiments–dosing regimens and data analysis

Miltefosine was administered orally (p.o.) by gavage of a 0.2 mL bolus at a dose of 30 mg/kg in

repeated daily dose schedules to evaluate the efficacy of different dosing frequencies and as sin-

gle dose to determine concentration-time profiles. Dose-response evaluation included daily

doses of 30 mg/kg, 15 mg/kg, 7.5 mg/kg, 3.8 mg/kg and 1.9 mg/kg over 5 days. To determine

the maximum effective dose AmBisome was administered intravenously (i.v.) in a 0.2 mL

bolus injection into a tail vein at single doses of 5 mg/kg, 10 mg/kg, 20 mg/kg and 40 mg/kg

and to evaluate concentration-time profiles at a single dose of 40 mg/kg. To determine which

PK parameter is driving anti-leishmanial efficacy we administered total doses of 1.25 mg/kg

and 2.5 mg/kg, either as a single injection or split into 2 (q24 hours) or 4 (q12 hours)

injections.

Percentage inhibition of parasite burden in drug-treated groups was calculated in relation

to an untreated control group. Additionally, data was analysed and plotted based on the abso-

lute parasite burden in log10 LDU.

Processing of samples for drug quantification

Tissue and plasma samples were thawed at room temperature. Tissue samples were homoge-

nised in a Bullet blender (Next Advance, UK) as described previously [14]. Samples containing

amphotericin B were processed as described previously [14] using the internal standard (IS) as

described below for miltefosine. For analysis of miltefosine blanks (control matrix samples

plus IS), calibration standards, quality control (QC) samples and study samples, 50 μL of tissue

homogenate or plasma was diluted with 250 μL of IS solution (2000 ng/mL tolbutamide in ace-

tonitrile). After shaking at room temperature for 10 minutes at 200 rpm, dilutions were centri-

fuged at 4 150 x g for 15 minutes at 4˚C. Supernatants were transferred to 96-well plates and

stored at -80˚C. Dilution of study samples, when necessary, was carried out as described previ-

ously [14].

Preparation of calibration standards and QC samples

Calibration standards and QC samples for amphotericin B containing samples were prepared

as described previously [14]. For miltefosine a stock solution (1 mg/mL) was prepared in a

mixture of 1:1 (v/v) methanol:water. From that standard spiking solutions were prepared by

serial dilution in methanol:water (1:1, v/v). Calibration standards were prepared at 12 concen-

trations by mixing 5 μL of the spiking solutions with 45 μL of blank tissue homogenate or

plasma, with the matrix matching that of the study samples to be analysed. QC samples at

selected concentrations were prepared in replicates in similar fashion. All samples were pro-

cessed as described above.

LC-MS analytical conditions

Samples containing amphotericin B were analysed as described previously [14]. Total ampho-

tericin B levels were measured throughout the experiments. All samples were analysed for mil-

tefosine using an Agilent 1200 HPLC combined with an Agilent 6410A triple quadrupole mass

spectrometer (both Agilent, UK). A mobile phase of water / 0.1% formic acid (channel A) and

methanol / 0.1% formic acid (channel B) at 0.6 mL/min was used to elute sample components

from a Luna column packed with 3 μm C8 material (2.1mm x 50mm @50˚C; Phenomenex,

UK). The mobile phase composition was initially 2% B, programmed to increase linearly to

60% B at 0.60 min. after injection and then linearly to 95% B at 2.1min. The composition was

maintained at 95% B for a further 0.4 min. before returning to its initial 2% B at 2.60 min.
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post-injection. Miltefosine was detected monitoring the transition m/z 408.3 ➔ m/z 124.8,

with internal standard tolbutamide detected monitoring m/z 271.1 ➔ m/z 91.

Analyte concentrations were quantified against calibration standards prepared in matched

control matrix, with aliquots of sample and standard being injected typically in the range

1–5 μL, depending on expected study sample concentration. Calibration curves were con-

structed by using fits and weighting to minimise residuals for back-calculated concentrations

for standards over the range of concentrations encountered in the study samples. Calibration

standards with residuals >20% were excluded from the curve fitting. Calibration curves con-

sisted of standards with between 7 and 11 different concentrations. As well as calibration curve

quality, analytical batch acceptance was based upon the results of analyses of QC samples. Data

obtained for QC samples is summarized in S1 Table.

Statistical analysis

Statistical significance between groups was analysed by one-way analysis of variance

(ANOVA) assuming a Gaussian distribution, followed by Sidak’s multiple-comparison test for

selected groups (GraphPad Prism 6). A P value of� 0.05 was considered statistically

significant.

Pharmacokinetic analysis

Noncompartmental analysis (NCA) was performed with Phoenix Win Nonlin v6.3 (Certara,

United Kingdom).

Rapid equilibrium dialysis

Plasma, livers and spleens were harvested from mice 24 hours after the administration of a sin-

gle dose of 40 mg/kg AmBisome or within 1 hour after the first and last dose of a total of 5

daily doses of 30 mg/kg miltefosine. Tissue homogenates were prepared as described above.

Percentages of unbound drug concentrations were measured by rapid equilibrium dialysis

(RED) using single use plates with inserts (Fisher Scientific, UK) according to the manufactur-

er’s instructions. Briefly, plasma or tissue homogenate was plated in one half of a sample cham-

ber insert, with dialysis buffer loaded into the other half of the insert. The plates were sealed

and incubated for 4 hrs at 37˚C with agitation. Following incubation, the sample chamber con-

tents were removed and mixed with an equal volume of dialysis buffer, and likewise the buffer

chamber contents were mixed with plasma/homogenate from untreated mice. Sample and

buffer fractions were then protein precipitated, the drug extracted, and samples analysed using

LC-MS as described above. Extractions were compared to standard curves and QCs generated

as described above.

Results

Pharmacodynamics and biodistribution of repeated dose miltefosine and

single dose AmBisome

For miltefosine we first investigated drug efficacy after different dosing frequencies of once

daily dosing for either 4, 5 or 6 days, and determined the parasite burden 1 or 3 days after the

last dose. The percentage inhibition of parasite burden in LDUs was 69.1 ± 7.5%, 93.8 ± 1.7%

and 99.2 ± 0.3% on day 1 after the last dose and 97.3 ± 1.0%, 99.5 ± 0.2% and 99.7 ± 0.1% on

day 3 after the last dose (Fig 1A). The corresponding absolute parasite burden in log10 LDU

was 2.1 ± 0.1, 1.5 ± 0.3 and 0.5 ± 0.4 on day 1 after the last dose and 1.0 ± 0.5, 0.4 ± 0.3 and

0.2 ± 0.3 on day 3 after the last dose. Amastigotes were detected in livers from all animals of
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groups with� 1.0 mean log10 LDU, whereas no amastigotes were detected in livers from

some animals in groups with parasite burdens of� 0.5 log 10 LDUs (Fig 1B).

Next, we evaluated the dose-response effect of miltefosine, employing the most effective

dosing frequency, in parallel with plasma sampling at defined time points after the first and

last dose. Percentage inhibition >90% of parasite burden in LDUs was only achieved at the

highest dose of 30 mg/kg (Fig 2A). This was also the only dose at which the parasite burden in

log10 LDU was< 1.0 (Fig 2B) and at which no amastigotes were detected in the liver of one of

the mice. Plasma concentrations indicated drug accumulation over time (Table 1).

For AmBisome we determined the maximum effective dose by administering single doses

of up to 40 mg/kg and evaluated the hepatic parasite burden 2 days later. The chosen regimen

Fig 1. Dose-response data for repeated dose miltefosine and single dose AmBisome. Groups of BALB/c mice were treated with 30 mg/kg

miltefosine at different dosing frequencies (n = 5; A, B) or different single doses of AmBisome (n = 6; C, D). Treatment outcome is expressed

as percentage inhibition, where columns represent group means and error bars standard deviations (A, C), or parasite burden in log10 LDU,

where horizontal lines represent group means and symbols data from individual mice (B, D). Following miltefosine treatment parasite

burden was evaluated either 1 day (1d) or 3 days (3d) after the last dose of 4 (x4), 5 (x5) or 6 (x6) doses. Mean LDUs +/- standard deviation in

untreated control groups were 454 +/- 91 and 515 +/- 26 at corresponding time points to 4 and 6 doses for data shown in (A), and 456 +/- 65

for data shown in (C). Log10 LDUs in untreated control groups corresponding to time points of 4 and 6 doses in (B) are denoted as x0 (start)

and x0 (end).

https://doi.org/10.1371/journal.pntd.0009013.g001
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was based on the demonstration of maximum kill 2 days after administration of a single dose

of 10 mg/kg AmBisome [14] and a dose-response study with doses ranging from 0.625 mg/kg

to 10 mg/kg (S3 Table). The percentage inhibition of parasite burden at the different doses was

93.8 ± 1.5%, 97.4 ± 0.5%, 99.4 ± 0.3% and 99.7 ± 0.1% (Fig 1C). The corresponding parasite

burden based on log10 LDU was 1.4 ± 0.3, 1.0 ± 0.2, 0.4 ± 0.4 and 0.2 ± 0.2, respectively (Fig

1D). Additionally, at doses of 20 mg/kg and 40 mg/kg no amastigotes were detected in livers of

2/6 and 3/6 animals.

Fig 2. Dose-response data for miltefosine. Groups of BALB/c mice were treated over 5 days at daily doses shown in

the graphs. Treatment outcome is expressed as percentage inhibition, where columns represent group means (n = 6)

and error bars standard deviations (A), or parasite burden in log10 LDU, where horizontal lines represent group

means and symbols data from individual mice (B). Mean LDU +/- standard deviation in the untreated control group

in (A) were 512 +/- 72.

https://doi.org/10.1371/journal.pntd.0009013.g002
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In parallel to determining drug efficacy we measured concentrations of miltefosine and

amphotericin B in livers and plasma from the same mice, in which treatment outcome was

determined. This data is shown in Fig 3. Tabulated results for both parasite burden and drug

concentrations are provided in S2 Table for miltefosine and S3 Table for amphotericin B.

Pharmacokinetics and protein binding of amphotericin B and miltefosine

The shape of the concentration-time profiles in plasma and organs (liver, spleen) was discor-

dant for amphotericin B, whereas miltefosine displayed similar profiles in plasma, liver and

spleen (Fig 4). Plasma half-life and AUClast were 63.71 hours and 640.44 hours�μg/mL for mil-

tefosine and 3.24 hours and 2 853.73 hours�μg/mL for amphotericin B. PK parameters and

tabulated results are provided in Table 2 and S4 Table, respectively.

For both drugs the percentage of bound drug was> 99% in all matrices (Table 3).

Dose fractionation of AmBisome

To determine which PK parameter is driving anti-leishmanial efficacy we carried out dose

fractionation at doses, which correspond to the ED50 and ED70 values estimated from the ini-

tial dose-response study in S3 Table. The parasite burden in the liver was significantly lower

when the total dose of 2.5 mg/kg was administered once compared to administrations as one-

half of the dose every 24 hours or as one-fourth of the dose every 12 hours. However, no signif-

icant difference between the different dosing regimens was observed at the lower total dose of

1.25 mg/kg (Fig 5). Overall, this data points towards a concentration-dependent (AUC driven)

pharmacodynamic effect.

Discussion

A main purpose of pre-clinical PK/PD studies in drug development is to identify optimal dos-

ing schedules [10]. Here we have used an established experimental model to characterise PK/

PD relationships of two clinically used anti-leishmanial drugs. Infection of BALB/c mice with

the L. donovani strain used here leads to different kinetics and magnitudes of the parasite bur-

den in liver and spleen [16–18]. Specifically, in the liver a rapid increase in parasite burden is

observed during the first 3 weeks after infection, followed by clearance of parasites. In the

spleen, which remains chronically infected, the parasite burden only increases after the first 2

weeks and peaks around 4 weeks after infection. This necessitates the use of different time win-

dows to evaluate a compound’s anti-leishmanial effect against a multiplying parasite popula-

tion in these two organs. We focussed our pharmacodynamic investigations on the hepatic

Table 1. Drug concentrations in plasma following administration of miltefosine.

Miltefosine concentration in plasma [μg/mL], mean +/- SD at doses of:

30 mg/kg 15 mg/kg 7.5 mg/kg 3.8 mg/kg

Hour x1 x5 x1 x5 x1 x5 x1 x5

1 7.5 +/- 0.7 35.8 +/- 1.3 3.2 +/- 0.7 �19.5 +/- 2.2 2.0 +/- 0.1 10.0 +/- 0.5 �0.9 +/- 0.0 �5.3 +/- 0.3

8 11.8 +/- 1.2 �44.9 +/- 2.2 6.6 +/- 0.5 27.6 +/- 4.7 3.6 +/- 0.2 11.2 +/- 1.1 1.7 +/- 0.0 5.1 +/- 0.6

24 12.1 +/- 0.4 36.8 +/- 5.1 6.1 +/- 0.7 17.1 +/- 3.3 2.8 +/- 0.3 8.1 +/- 1.0 1.4 +/- 0.0 �3.9 +/- 0.9

Plasma was sampled at indicated timepoints (hours) after administration of the first dose (x1) and last dose (x5) of multiple dose levels. A composite sampling design

was applied, where samples 1 and 24 hours after drug administration were taken from the same 3 animals of a group of 6 in total and samples 8 hours after drug

administration from the other 3 animals.

�indicates that data is derived from two samples only.

https://doi.org/10.1371/journal.pntd.0009013.t001
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parasite burden, which is most often used to measure treatment efficacy during preclinical

anti-leishmanial drug development [19]. Some investigations of the drugs’ tissue concentra-

tions were additionally carried out in the spleen to maximise knowledge gained from experi-

ments involving animals.

It is standard practice to estimate efficacy of anti-leishmanial compounds in BALB/c mice

by determining the parasite burden in LDU [15] and calculating the percentage reduction of

parasite load in drug-treated animals in relation to a control group [19]. Here we additionally

used an alternative analysis based on the (absolute) parasite burden in log10 LDU. Based on

this analysis single and cumulative doses of AmBisome and miltefosine exerting maximum

anti-parasitic effects were 40 mg/kg and 150 mg/kg, respectively.

Dose-response data revealed a dosing window ranging from 5 to 40 mg/kg (8-fold range) in

which AmBisome inhibited the parasite burden by over 90%, which is the minimal target pro-

file for new chemical entities required by the Drugs for Neglected Diseases Initiative (DNDi)

Fig 3. Drug concentrations in plasma and liver following administration of repeated dose miltefosine and single dose

AmBisome. Drug concentrations in livers (A, C) and plasma (B, D) were measured in the same animals for which dose response

data is given in Fig 1. Columns represent group means and error bars standard deviations, following treatment with 30 mg/kg

miltefosine (n = 5; A, B) or different doses of AmBisome, as indicated (n = 6; C, D).

https://doi.org/10.1371/journal.pntd.0009013.g003
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according to the target product profile for VL. Using DNDi’s optimal target profile of>95%

reduction [19] as cut-off still leaves a 4-fold dosing window ranging from 10 to 40 mg/kg, with

a reduction of 94% at 5 mg/kg. In contrast, miltefosine displayed an inhibition of over 90%

and 95% only after cumulative doses of 120, 150 and 180 mg/kg. Higher doses were not admin-

istered to minimise the risk of overt toxic effects, which are known to occur at higher doses

([20] and personal observations). The dosing window in which a parasite burden of log10

LDU<1 was achieved with AmBisome ranged from 20 to 40 mg/kg (2-fold range), whereas

Fig 4. Concentration-time profiles after single doses of AmBisome and miltefosine. Single doses of 40 mg/kg

AmBisome (A, C, E) and 30 mg/kg miltefosine (B, D, F) were administered and drug concentrations determined in

plasma (A, B), liver (C, D) and spleen (E, F) at 0.05, 0.17, 0.5, 1, 3, 8 and 24 hours (A, C, E) or at 0.25, 0.5, 1, 2, 4, 8, 24,

48 and 72 hours post dose (B, D, F). Each data point represents the group mean +/- standard deviation (n = 3). Mean

LDU and log10 LDU +/- standard deviation in untreated control groups were 791 +/- 35 and 2.9 +/- 0.0 for data

shown in A, C and E, and 367 +/- 27 and 2.6 +/- 0.0 for data shown in B, D, and F.

https://doi.org/10.1371/journal.pntd.0009013.g004
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for miltefosine this was only observed at cumulative doses of 150 mg/kg and 180 mg/kg. This

data demonstrates a wider therapeutic range of AmBisome compared to miltefosine.

Drug distribution to infected sites is an important consideration in anti-infective PK/PD

[21,22]. In VL Leishmania parasites reside and multiply within parasitophorous vacuoles (PV)

of macrophages in bone marrow, liver and spleen [23]. Hence, drug concentrations closest to

the site of action are those at subcellular (PV) level. However, measuring drug concentrations

at cellular and subcellular level in vivo is technically challenging. We therefore determined

drug concentrations in tissue homogenates, acknowledging that these are hybrid concentra-

tions of drug in different tissue compartments [6,22]. Nonetheless they are of value in deter-

mining the overall distribution of a drug [24] and we used them to compare the time course of

drug distribution between plasma, liver and spleen. In line with previous reports in anti-fungal

therapy [21] and in agreement with previous data from our lab [14] hysteresis, i.e. discordance

in the shape of the amphotericin B-concentration-time profiles between plasma and tissue,

was observed following administration of AmBisome. This pattern can be explained by clear-

ance of amphotericin B-containing liposomes from the bloodstream by the reticuloendothelial

system (RES) and distribution to tissues [14,25]. In contrast similar shapes of the concentra-

tion-time curves in plasma and tissue were observed for miltefosine. Preferential distribution

to liver and spleen of amphotericin B has also been reported in autopsy material from patients,

who were treated with liposomal amphotericin B for fungal infections within the last 72 hours

of their life [26], but direct comparison of drug levels between this data in humans and our

study are complicated by use of different doses, dosing regimens and above described

hysteresis.

Dose fractionation studies are a powerful tool to examine the driver of drug efficacy [27].

Using this approach amphotericin B’s anti-fungal action was shown to be Cmax driven [28]

and concentration-dependent fungicidal pharmacodynamics was observed in preclinical stud-

ies [13]. Our data points towards a concentration-dependent (AUC driven) pharmacodynamic

effect, which supports dosing strategies associated with the administration of large doses infre-

quently [28], whereby choice of dose and dosing regimens in humans needs to be balanced

against tolerability and rate of adverse drug reactions. The potential value of intermittent

administration of liposomal amphotericin B, as short course or single dose, has also been

pointed out based on the formulation’s prolonged mean residence time in tissues [29]. In

human VL non-inferiority of single-dose liposomal amphotericin B to conventional therapy

Table 2. PK parameters of single dose miltefosine and AmBisome.

Miltefosine (30 mg/kg p.o.) AmBisome (40 mg/kg i.v.)

Parameter Plasma Liver Spleen Plasma Liver Spleen

t1/2, h 63.71 63.60 71.66 3.24 ND ND

Tmax, hr 24.00 24.00 24.00 0.05 24.00 8.00

Cmax, μg/mL 11.80 87.40 24.50 874.90 750.80 113.20

AUClast, hr�μg/mL 640.44 4568.79 1331.24 2853.73 16010.44 2492.80

https://doi.org/10.1371/journal.pntd.0009013.t002

Table 3. Protein binding of amphotericin B and miltefosine in plasma and tissue.

% bound (mean +/- SD, n = 3)

Dosing Hours post dose Plasma Liver Spleen

AmBisome 40 mg/kg x1 24 99.60 +/- 0.41 99.98 +/- 0.00 99.96 +/- 0.02

Miltefosine 30 mg/kg x1 1 99.92 +/- 0.06 99.97 +/- 0.00 99.93 +/- 0.07

Miltefosine 30 mg/kg x5 1 99.98 +/- 0.00 99.99 +/- 0.00 99.99 +/- 0.00

https://doi.org/10.1371/journal.pntd.0009013.t003
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was demonstrated in a randomised clinical trial on the Indian subcontinent [30] where a single

dose of liposomal amphotericin B is now considered highly effective [12]. A multi-centre ran-

domised trial in Eastern Africa reported higher parasite clearance rates from peripheral blood

when patients were treated with multiple doses of AmBisome compared to a single dose [31].

However, the study was terminated prematurely due to an unexpected low efficacy of all treat-

ment regimens and pharmacodynamic conclusions were based on a small number of patients.

Additionally, measuring parasite load circulating in blood is an indirect method, whereas the

subject of our study was the parasite burden in a target tissue. Dose fractionation studies with

Fig 5. Dose fractionation of AmBisome. Total doses of 2.5 mg/kg (A) and 1.25 mg/kg (B) were administered either as

one dose (x1), one-half of the dose every 24 hours (x2) or one-fourth of the dose every 12 hours (x4). Treatment

outcome is expressed as percentage inhibition, where columns represent group means (n = 6) and error bars standard

deviations. Mean LDU +/- standard deviation in an untreated control group was 655 +/- 76. Data for the 2.5 mg/kg

dose is representative of 2 separate experiments.

https://doi.org/10.1371/journal.pntd.0009013.g005
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miltefosine were hampered by its long half-life and accumulation in plasma. Hence it was not

possible to formally define the PK/PD driver for miltefosine. Clinical studies in VL indicated

that the mechanism of action of miltefosine is defined by a time-dependent killing effect

[32,33], which was further supported by the observation that duration of miltefosine treatment

was found to be important in the early dose-finding studies [34].

Determination of protein binding is an integral part of pharmacological studies as protein

binding impacts on distribution and elimination processes. It is also generally accepted that

free (unbound) drug concentrations at the site of action are responsible for the PD effect of

anti-infective agents [22,35,36]. Due to the technical difficulties of determining free drug con-

centrations at cellular and subcellular levels in vivo we measured protein binding in plasma

and tissue homogenates from L. donovani infected and treated BALB/c mice. Using rapid equi-

librium dialysis [37] we observed protein binding of>99% for amphotericin B and miltefo-

sine. In human plasma protein binding of>99% and 96–98% was observed for amphotericin

B [25] and miltefosine [38], respectively.

Finally, we compared plasma concentrations of miltefosine measured here to previously

reported in vitro drug susceptibilities of intracellular amastigotes of the same parasite strain

[39,40]. Total plasma concentrations of 35–46 μg/mL after cumulative doses of 120, 150 and

180 mg/kg miltefosine clearly exceeded the reported EC90 values of 5.8–9.1 μg/mL. Total

plasma concentrations after a cumulative dose of 75 mg/kg also exceeded the in vitro EC90 val-

ues, but only provided a partial treatment response. However, due to the intracellular location

of Leishmania parasites intracellular drug accumulation and drug transport mechanisms at

cellular and subcellular level play a pivotal role in drug action and target site concentrations

may differ markedly from those measured in plasma [21,34].

In summary, we have applied PK/PD approaches to investigate anti-leishmanial drug action

and to support recommendations for dosing regimens. Concentration-dependent drug action

of AmBisome fits well with established knowledge about the anti-infective properties of

amphotericin B and can be exploited in combination drug regimens. If similar patterns are

seen in a chronic model of the disease remains subject of future studies.
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