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Frequentist rules for regulatory approval
of subgroups in phase III trials: A fresh
look at an old problem
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Abstract

Background: The number of Phase III trials that include a biomarker in design and analysis has increased due to interest

in personalised medicine. For genetic mutations and other predictive biomarkers, the trial sample comprises two

subgroups, one of which, say Bþ is known or suspected to achieve a larger treatment effect than the other B�.
Despite treatment effect heterogeneity, trials often draw patients from both subgroups, since the lower responding

B� subgroup may also gain benefit from the intervention. In this case, regulators/commissioners must decide what

constitutes sufficient evidence to approve the drug in the B� population.

Methods and Results: Assuming trial analysis can be completed using generalised linear models, we define and

evaluate three frequentist decision rules for approval. For rule one, the significance of the average treatment effect

in B� should exceed a pre-defined minimum value, say ZB� > L. For rule two, the data from the low-responding group

B� should increase statistical significance. For rule three, the subgroup-treatment interaction should be non-significant,

using type I error chosen to ensure that estimated difference between the two subgroup effects is acceptable. Rules are

evaluated based on conditional power, given that there is an overall significant treatment effect. We show how different

rules perform according to the distribution of patients across the two subgroups and when analyses include additional

(stratification) covariates in the analysis, thereby conferring correlation between subgroup effects.

Conclusions: When additional conditions are required for approval of a new treatment in a lower response subgroup,

easily applied rules based on minimum effect sizes and relaxed interaction tests are available. Choice of rule is influenced

by the proportion of patients sampled from the two subgroups but less so by the correlation between subgroup effects.
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1 Background

Since the rise of personalised medicine, the number of Phase III trials that include a biomarker in design and

analysis has increased. A biomarker has been defined as “A . . . characteristic that is measured as an indicator of

normal biological processes, pathogenic processes or responses to an exposure or intervention.”1 Biomarkers of

interest are those which are related to important clinical outcomes and may be prognostic (associated with the

clinical outcome independently of treatment) or predictive (interact with treatment).2 Predictive biomarkers in
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contemporary trials are often related to one or more genetic mutations, gene expression or a function of several
genetic markers and may be dichotomous, ordinal or continuous. Despite the loss of information, for practical
reasons they are often dichotomised. In this paper, we focus on biomarkers that are dichotomous (naturally or by
design), and prior to commencing a confirmatory Phase III trial, are expected to be predictive.

In our context, we define sub-populations of patients as either biomarker positive (Bþ) or negative (B�). A
common situation is that the treatment efficacy is a priori assumed to be better (or at least as good) in Bþ
compared to B� patients. For example,

1. a drug treatment may have been developed to target a genetic disorder defining group Bþ,
2. there may be an untested clinical hypothesis of better efficacy in Bþ,
3. empirical data (biological or early clinical) may indicate higher efficacy in Bþ.

Even if a treatment has been developed to target the biomarker of interest, some of the efficacy in Bþ may
obtain in B�. Depending on the situation, one may expect no or minimal efficacy in B�, that a large proportion
of the efficacy in Bþ is retained, or that efficacy in B� is difficult to predict even if the treatment is known to be
efficacious in Bþ. The effect in B� may arise, for example, if the biomarker is intrinsically continuous, so that
treatment efficacy varies continuously across its levels. Dichotomisation may then lead to positive, but smaller
efficacy in B�. Alternatively, some patients in B� may have an unknown genetic defect acting on the same
pharmacological pathway as the Bþ genetic mutation, which is the target of the intervention. Moreover, few
biomarker tests have 100% sensitivity and specificity in practice, leading to diffusion of efficacy from patients
incorrectly classified as Bþ or B�. As a result, biomarker level will interact with the treatment, with a higher
treatment effect in Bþ patients than B� patients.

Although a new treatment may be most effective in the higher responding Bþ subgroup, trials often draw
patients from both subgroups, since the lower responding B� subgroup may also gain benefit from the interven-
tion. In this case, a problem emerges when deciding what constitutes sufficient evidence to approve the drug in the
B� population. European guidelines state that “Confirmatory trials should reflect the target population to be
treated” so that trials will sample from a target population. However, if the target population is heterogeneous,
ensuring that the treatment effect is sufficiently large in a lower responding subgroup may still be warranted.
Moreover, in order to improve efficiency of a trial, the higher responding subgroup may be oversampled (enriched
sample), resulting in under-representation of lower responders relative to the target population. In such a case,
regulators and sponsors are concerned that automatic approval for lower responders based on obtaining an
overall significant effect could result in harm, for example if side effects outweigh potential benefit in this sub-
group. If the low response B� subgroup makes up a very large proportion in the population, there may also be
substantial cost to healthcare providers, but not the predicted benefits. Therefore, regulators and sponsors
may wish to impose additional conditions for approval of the treatment in this subgroup. Current regulatory
guidelines acknowledge the importance of heterogeneity in decision making and encourage subgroup analysis in
confirmatory trials.3 However, the guidance does not describe specific rules for approval of subgroups when
heterogeneity exists.

There is a large literature on subgroup analysis in phase III trials. Much of this literature concerns post hoc
exploration of a moderate to large number of subgroups using interaction tests, with issues such as data dredging
and multiplicity well documented.4 This study differs in that we are concerned with the situation where there is an
overall significant effect, two pre-defined subgroups known to differ in treatment effect, and optimal rules for
treatment approval in the lower responding subgroup are required.

Where hypothesis tests are applied to multiple subgroups, it is important to control family-wise error rate
(FWER).5 For two subpopulations Bþ and B�, there are different multiple testing procedures that control the
FWER.6 In most applications, formal testing focuses on F and Bþ using either a hierarchical approach (F
followed by Bþ, or Bþ followed by F) or by splitting type I error between parallel tests; testing of B� is
rarely included in applications for regulatory approval, as power is considered to be limited.7,8 In this study,
we concentrate on the situation where the intervention has statistically significant efficacy in F, with significance
in the Bþ group assumed to follow due to higher efficacy in this subpopulation; conditions for approval in B�are
then developed and assessed. A strategy that conditions on significance in Bþ rather than F is closely related
mathematically and results are expected to be very similar.

Although the study is motivated by trials of drugs targeting specific genetic mutations (see Gonzalez-Martin
et al.9 for a recent example), other examples of trials with similar structures define subgroups according to age
(adults and children),10 mild and severe disease,11 early and late stage cancers,12 as well as other biomarkers.13

2 Statistical Methods in Medical Research 0(0)



Proposed methods should apply to any trial including two subgroups with known or suspected treatment effect
inequality.

We provide a brief literature review of methods and practice in this context in section 2 before describing
proposed rules for exponential family models in section 3. Conditional power of the rules is explored in section 4
and applied retrospectively to two published phase III trials in section 5, before briefly discussing implications for
future trial design. A discussion completes the paper (section 6).

2 Existing literature

A review of FDA drug approvals with required biomarker testing found that biomarker negative patients were simply
excluded from the majority of trials.14 Since exclusion was often not based on clinical evidence, these patients could be
denied potential benefit from novel treatments. Moreover, provided that there is a sound biological basis for some
benefit in biomarker negative patients, including them may also confirm the clinical utility of the biomarker itself.

Heterogeneity within a target population was also recognised in updated EMA guidance on the investigation of
subgroups in confirmatory clinical trials, published in January 2019.3 Whilst the guidance suggests that restriction
of a trial population to a sub-population is justified if there are safety concerns or an anticipated lack of efficacy, it
also calls for additional trials including the full breadth of the population to provide the best evidence of effect
modifiers. Inclusion of the biomarker negative subgroup was highlighted as important, though it can create
difficulties in analysis if the treatment effect is small or there are only a small number of such patients, resulting
in low power to detect a significant treatment effect. Despite this, patients in this subgroup may still benefit from
treatment, and are therefore harmed if the result is discarded for non-significance.

A 2016 review by Ondra et al.15 found that two concepts underpin current methods for assessing subgroup
effects, influence and interaction. An ‘influence’ condition sets a threshold that must be met by the treatment
estimate of the subgroup of interest, whilst an interaction test sets a difference between treatment effects for two
(or more) subgroups, in effect requiring that effects are sufficiently close. These methods may be used for approval
of a treatment or as conditions which must be met for the subpopulation to be included in the next stage of analysis
(adaptive designs). For example, Stallard et al.16 compared different strategies for choosing which hypotheses to test
in the second stage of analysis (either the full population or a subgroup, or both), which used either an influence or
interaction test approach. Similarly, Matsui and Crowley17 proposed a sequential design where in the first stage of
their analysis they use superiority and futility boundaries to decide which populations go forward for further
analysis. This preserves statistical power for detecting various profiles of treatment effects across the subgroups,
and allows the biomarker negative population to be tested again if they do not cross the futility boundary.

Despite the development of different adaptive designs, interaction tests appear to be the main method used to
assess subgroup heterogeneity. In our (unpublished) targeted systematic review of large clinical trials that carried
out subgroup analyses in the New England Journal of Medicine, we found that approximately two thirds used
interaction tests to decide whether there was significant treatment effect heterogeneity. Almost all other articles
summarised within-subgroup effects and used significance tests with 5% type I error.

Although most of the literature rests on the frequentist paradigm, a Bayesian approach could also be consid-
ered.18 By specifying a two-dimensional prior for efficacy in Bþ and B�, one can explicitly borrow information
from one subpopulation when evaluating the other. This prior should reflect the clinical plausibility of a range of
differential treatment effects between the two subpopulations.

This study was partly motivated by the design of the APEX trial, which compared betrixaban with standard
dose enoxaparin in medically ill patients at risk of venous thrombosis. They carried out sequential analyses, the
first on a subgroup defined by the biomarker D-dimer, the second on a subgroup defined by a combination of D-
dimer level and age, and the third of the full population. If any result was negative, then subsequent tests were
treated as exploratory. The first subgroup analysis was just above the pre-defined threshold for statistical signif-
icance of 5% (p¼ 0.054), so that the subsequent subgroup analysis (elevated D-dimer level and age � 75) and full
population analysis had to be treated as exploratory, although hypothesis test statistics were ‘significant’ at
p¼ 0.03 and p¼ 0.006, respectively. Clearly, such an analysis may have substantial implications for approval
of the experimental treatment. A more traditional analysis plan would be to consider the full population first
followed by the subgroups; however, conditions for approval in subgroups are less well established.

In our context, we may accept some heterogeneity between subgroups, provided that there is sufficient benefit
in the B� subgroup. The issue is in choosing an acceptable difference between the treatment effect in the two
subgroups, or equivalently, choosing a relaxed (higher) significance level for the interaction test. On the other
hand, decision rules that focus on influence rely solely on the data in the B� subgroup, but require us to

Edgar et al. 3



pre-specify a minimum bound for the acceptance threshold. In order to avoid the need to specify either a min-

imum treatment effect or a more relaxed interaction level, a decision rule that does not require additional

parameters may also be attractive.
The question of how to deal with approval in a limited sub-population has important implications for max-

imising the patients who could benefit, which is particularly important for conditions where there are few treat-

ment options. There remains uncertainty about how to address this issue, and how different decision rules

perform according to issues such as prevalence of the high responder subgroup in the population and in the

trial. We outline a simple strategy to choose appropriate and efficient decision rules in a frequentist framework.

3 Methods

3.1 Generalised linear model and subgroup notation

In practice, phase III clinical trials that have a biomarker-treatment interaction are analysed using linear, gen-

eralised linear or survival regression models. We restrict attention in this paper to the wide range of trial outcomes

that have Normal, Binomial or Poisson distributions and review the general framework here, defining estimands

of interest, estimators and statistics.
Generalised linear models that describe different treatment effects in the two subgroups have a linear predictor

of the form

gi ¼ b0 þ b1Ti þ b2Si þ b3ðTi � SiÞ þ bT4Xi (1)

where for patient i; i ¼ 1; . . . ;N; Ti ¼ 0; 1 for control and experimental treatments, Si ¼ 0; 1 for subgroups B�
(biomarker negative), Bþ (biomarker positive) and Xi is a vector of baseline covariates, usually minimisation or

stratification factors, included to increase precision of the treatment effect estimate or to adjust for chance

imbalance. We assume that there are N patients in the trial overall, n ¼ N=2 in each trial arm and that pn
in each treatment arm are drawn from sub-population Bþ, the remaining ð1� pÞn are drawn from sub-

population B�.
For the exponential family of distributions, the expected response and the linear predictor are connected

through the link function gðciÞ ¼ gi. For trial outcomes that have Normal, Binomial or Poisson distributions,

canonical link functions are the identity, logit and log functions, respectively.
We define the estimands of interest in the two sub-populations as the treatment effects lBþ ¼ b1 þ b3 for the

biomarker positive subgroup and lB� ¼ b1 for the biomarker negative subgroup. Without loss of generality,

positive values of lBþ and lB� indicate that the treatment is beneficial. For Normal response variables, these are

mean treatment effects in the two subgroups, for Binomial responses they are log odds-ratios and for Poisson

responses they are log rate-ratios. Estimators of these estimands can be obtained using maximum likelihood as

l̂Bþ ¼ b̂1 þ b̂3 and l̂B� ¼ b̂1. We can also estimate the approximate maximum likelihood (co-)variance compo-

nents from the information matrix, so that for generalised linear models

b̂1 þ b̂3

b̂1

 !
�BVN

b1 þ b3
b1

� �
;

Varðb̂1Þ þ Varðb̂3Þ þ 2Covðb̂1; b̂3Þ Varðb̂1Þ þ Covðb̂1; b̂3Þ
Varðb̂1Þ þ Covðb̂1; b̂3Þ Varðb̂1Þ

 ! !

For inference for each group separately, we define Z-statistics
ZBþ ¼ l̂Bþ=r̂Bþ and ZB� ¼ l̂B�=r̂B�where r̂Bþ and r̂B� are estimates of the standard errors of the estimands

taken from the information matrix.

3.2 Likelihood assuming no correlation between lBþ and lB�
In order to gain insight into the contribution of p, the proportion of trial patients drawn from the high-responding

subgroup Bþ, it is useful to consider the case where the trial analysis is not adjusted for baseline factors, so that

there is zero correlation between lBþ and lB�. In this case we can write

b̂1 þ b̂3 � l̂Bþ �NðlBþ; r2BþÞ
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and independently

b̂1 � l̂B� �NðlB�; r2B�Þ

Specifically, for the response Yi, i ¼ 1; . . . ;N, with canonical link and assuming 1:1 randomisation between

treatment arms, the variance components can be approximated by:

1. Normal distribution-Identity link r2Bþ ¼ 2r2=pn and r2B� ¼ 2r2=ð1� pÞn, where r2 is the sampling variance.
2. Binomial distribution-Logit link r2Bþ ¼ ½1=ðh1Bþð1� h1BþÞÞ þ 1=ðh0Bþð1� h0BþÞ�=pn and r2B� ¼ ½1=ðh1B�ð1�

h1B�ÞÞ þ 1=ðh0B�ð1� h0B�Þ�=ðð1� pÞnÞ where hjk is the probability of an event in treatment arm j and

subgroup k.
3. Poisson distribution-Log link r2Bþ ¼ ½1=k1Bþ þ 1=k0Bþ�=pn and r2B� ¼ ½1=k1B� þ 1=k0B��=ðð1� pÞnÞ where kjk

is the event rate in treatment arm j and subgroup k.

We note that in all three cases the variance includes the term 1=p or 1=ð1� pÞ, which will facilitate investigation

of the influence of the distribution of the sub-populations in the trial.

3.2.1 Making inferences in the full population in the general case.

We write the full population treatment effect as

lF ¼ plBþ þ ð1� pÞlB� (2)

That is, the estimand for the full population is a weighted average of the subgroup specific estimands lBþ and

lB�, with weights given by the proportion of the trial sample drawn from each sub-population, p and 1� p. Note

that, for lF to be directly interpretable, these proportions should hold in the target population, otherwise some

translation is required.
Since ZBþ ¼ l̂Bþ=rBþ and ZB� ¼ l̂B�=rB�, we have

l̂F ¼ pl̂Bþ þ ð1� pÞl̂B� ¼ prBþZBþ þ ð1� pÞrB�ZB�

If q is the correlation between the estimands, the Z-statistic for the full population is

ZF ¼ l̂F

rF
¼ prBþZBþ þ ð1� pÞrB�ZB�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2r2Bþ þ ð1� pÞ2r2B� þ 2pð1� pÞqrBþrB�
q (3)

If there are no additional covariates in the model (b4 � 0), then Covðb̂1; b̂3Þ � �Varðb̂1Þ, so that Covðb̂1; b̂1 þ
b̂3Þ � 0 and the correlation q is zero.

Alternatively, if b4 6¼ 0 then Covðb̂1; b̂1 þ b̂3Þ 6¼ 0, and the correlation q describes the association between

estimated effects due to adjustment for covariates. In general, the correlation induced by covariance adjustment

is expected to be small.
As an aside, we note that the correlation between the statistics ZBþ and ZB� is also equal to q.

3.3 Proposed rules for approval of the drug in B�

3.3.1 Sequential testing and conditional power.

We define and evaluate three proposed rules for approval in the lower response population B� conditional on

significance in the full population. Recall that we expect the treatment to be as effective or less effective in the B�
population, but nevertheless it may be sufficiently effective to warrant approval. In this situation, evaluation of

B� is only worthwhile if a significant effect has been established in the full population. Thus, we adopt a

sequential testing strategy, first evaluating treatment in the full population and, conditional on a significant
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result, evaluating the treatment in B�. The conditional power of a decision rule is a natural method for assessing

its value in this context; for decision rule Rn, conditional power is defined as

PðRnjZF > 1:96Þ ¼ PðRn;ZF > 1:96Þ
PðZF > 1:96Þ (4)

(As an aside, for binary data where the analysis adjustment for baseline covariates is not required, this con-

ditional probability can be calculated in closed form.)
The denominator does not depend on the form of any proposed rule and is given by the observed statistic in the

full population

PðZF > 1:96Þ ¼ UðlF=rF � 1:96Þ (5)

Note that the right-hand side is a function of three location parameters lBþ; lB� and p, and three variance

parameters rBþ; rB� and q (see equations (2) and (3)), and conditional on these the standard normal deviate can

be obtained from any statistical software.
We now consider conditional power of three classes of decision rule for approval of the drug in B�, summar-

ised in Table 1.
Rules 1 and 2 are different types of influence rule, whilst Rule 3 is an interaction test. The algebra for calcu-

lating the conditional power of each rule is given in full in Appendix 1.

3.4 Rule 1: the statistic ZB� exceeds a pre-defined threshold L

For the treatment to be acceptable in the B� subgroup, the significance of the average treatment effect should

exceed a pre-defined minimum value, say ZB� > L. Given prior estimates of lB� and its standard deviation, we

could calculate the sample size to ensure this threshold is achieved with a given probability. As an absolute

minimum, the treatment effect and associated statistic should be positive (L> 0, assuming without loss of gen-

erality that positive effects signify treatment benefit), although such a mild condition is unlikely to be acceptable

unless the drug has negligible adverse effects and little cost. Alternatively, setting L> 1.96 is a strict condition

requiring a significant treatment effect in the B� subgroup at traditionally accepted levels. This is tantamount to

repeating the trial in the B� sub-population and will not be feasible if either this sub-population is small or

difficult to recruit from, or the treatment effect is modest. Despite this, for serious diseases with no alternative

effective treatments, a smaller expected treatment effect may be sufficient to outweigh any concerns regarding

safety and cost; in this case a value L 2 ð0; 1:96Þ should be pre-defined. In general, we may accept an intermediate

value for L.
For rule 1, conditional power is given by the expression

PðZB� > LjZF > 1:96Þ ¼ PðZB� > L;ZF > 1:96Þ
PðZF > 1:96Þ

where the denominator is defined in equation (5) and can be obtained from standard statistical software.

Table 1. Proposed rules for approval in the lower treatment response subgroup B�.
Rule Condition Explanation

1 ZB� > L The Z-statistic in B� must exceed a pre-defined threshold L

2 ZF > ZBþ Results from B� must increase overall significance

3
l̂Bþ�l̂B�

SDðl̂Bþ�l̂B�Þ < ZaI=2 No significant subgroup-treatment interaction at aI level

6 Statistical Methods in Medical Research 0(0)



For the numerator PðZB� > L;ZF > 1:96Þ, writing X ¼ 1:96� ZF and Y ¼ L� ZB� we show in Appendix 1

that the joint distribution of (X,Y) is

X
Y

� �
�BVN

1:96� lF=rF
L� lB�=rB�

� �
;

1
pqrBþ þ ð1� pÞrB�

rF
pqrBþ þ ð1� pÞrB�

rF
1

0
BB@

1
CCA

0
BB@

1
CCA

Again, the numerator of the conditional power is a function of three location and three variance parameters

lBþ; lB�, p, rBþ; rB�, q, through lF and rF. Conditional on these, the numerator is PðX � 0;Y � 0Þ and can be

obtained from any statistical software.

3.5 Rule 2: The B� data should increase statistical significance

For interventions with a low adverse event profile, approval may be acceptable provided that the data in B� are

not in conflict with those in Bþ. More formally, we might approve in B� provided that the data increase

statistical significance, that is, on condition that ZF > ZBþ. For rule 2 the conditional power has denominator

defined in equation (5) and numerator given by PðZF > ZBþ;ZF > 1:96Þ.
Making the transformations, X ¼ 1:96� ZF and Y ¼ ZBþ � ZF, we show in Appendix 1 that the joint distri-

bution of X and Y is

X
Y

� �
�BVN

1:96� lF=rF
lBþ=rBþ � lF=rF

� �
;

1 1� prBþ þ qð1� pÞrB�
rF

1� prBþ þ qð1� pÞrB�
rF

2� ð1� prBþ þ qð1� pÞrB�
rF

Þ

0
BB@

1
CCA

0
BB@

1
CCA

For the conditional power numerator, we calculate PðX � 0;Y � 0Þ using standard statistical software,

conditional on subgroup-specific parameters.

3.6 Rule 3: No significant subgroup-treatment interaction at aI level

When a range of subgroup effects are explored (often post hoc), it is customary to perform interaction tests to

identify specific subgroups for which the treatment appears particularly effective/ineffective for further investi-

gation. From our targeted systematic review of literature, the type I error rate aI is almost invariably set to 5%,

with no adjustment for multiplicity. Our objective here is quite different; specifically we use aI as a measure of how

confident we are that the two subgroups have different treatment effects, in order to decide whether approval in

B� is warranted. In this case, we might choose a value for aI that is greater than 5%, depending on our knowledge

of the variation of the treatment effects and the number of trial participants in each of the four subgroup-

treatment combinations.
For this rule, the numerator is Pððl̂Bþ � l̂B�Þ=SDðl̂Bþ � l̂B�Þ < zaI=2;ZF > 1:96Þ, where zaI=2 is the 100ð1�

aIÞ% quantile from the standard normal distribution and SD is the standard error of the difference in treatment

effects in the two subgroups. We make the transformations, X ¼ 1:96� ZF and Y ¼ l̂Bþ�l̂B�
SDðl̂Bþ�l̂B�Þ � zaI=2, and write

SDðl̂Bþ � l̂B�Þ ¼ r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Bþ þ r2B� � 2qrBþrB�

q
. Then we show in Appendix 1 that the joint distribution of X

and Y is

X
Y

� �
�BVN

1:96� lF=rFlBþ � lB�
r3

� zaI=2

0
@

1
A;

1
qð2p� 1ÞrBþrB� � pr2Bþ þ ð1� pÞr2B�

rFr3
qð2p� 1ÞrBþrB� � pr2Bþ þ ð1� pÞr2B�

rFr3
1

0
BBB@

1
CCCA

0
BBB@

1
CCCA
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Again, the numerator for conditional power is PðX � 0;Y � 0Þ, which we obtain from standard statistical
software, conditional on subgroup-specific parameters.

3.7 Illustration of proposed rules

Figure 1 illustrates the proposed rules for the (hypothetical) case of independent normally distributed estimands
for the two subgroups (on the scale of analysis e.g. linear, log, logistic). The statistics ZBþ and ZB� have a
bivariate normal distribution with mean (2, 1) and variance diag(1), represented by the unlabelled contours.
The condition that the hypothesis test is significant in the full population is represented by the volume under
the (ZBþ;ZB�) joint density that lies above and to the right of the red line. The volumes under the (ZBþ;ZB�) joint
density that lie above the purple, blue and green lines represent Rule 1 for the cases where L¼ 1.96 (treatment
effect in B� is significant), L¼ 1 (treatment effect in B� is one standard error) and L¼ 0 (treatment effect is
positive), respectively. The volume that lies above the orange line represents Rule 2 (B� results add to the overall
significance) and the volume that lies above the pink line represents Rule 3 (interaction not significant at the one-
sided 10% significance level). Conditional power for a certain rule, e.g. PðZB� > 1jZF > 1:96Þ, is the proportion
of the total probability above the red curve (ZF > 1:96), that also lies above the boundary defined by the rule (e.g.
above the blue line, so that ZB� > 1).

In general, the conditional power for each of these three rules is given by the proportion of the density of (X, Y)
that is consistent with the condition ZF > 1:96. As a specific example, consider Rule 1. Figure 2 shows the
conditional power for Rule 1 for the case where estimands for Bþ and B� are independent (q¼ 0), participants
are drawn in equal numbers from the two sub-populations (p ¼ ð1� pÞ ¼ 0:5) and thresholds for approval set at
L ¼ 0; 1; 1:96.

Because ZBþ enters into the power calculation only through X ¼ 1:96� ZF, it is independent of the approval
threshold L, so that the Y-axis does not change position for different values of L. In contrast, as L increases, the
joint density of (X, Y) shifts down the Y-axis and the proportion above zero decreases, thus decreasing the
conditional power as expected. As the two estimands are assumed independent, the contours are circular.
From the covariance matrix for Rule 1, X and Y will be positively correlated if the two estimands lBþ and
lB� are (q > 0) and vice versa.

Similar patterns can be found for Rules 2 and 3.

4 Results

4.1 Comparison of conditional power for the proposed rules

The conditional power for all three rules depends on the relative treatment effects in the two subgroups, which is
driven by the biological mechanisms of the treatment. Above this, we explore how the proportion sampled from
each sub-population p and 1� p and the correlation between estimands q affects the power of the proposed rules.

Figure 1. Illustration of the proposed rules in the ZBþ;ZB� plane: regions above the lines are where Rules are met.
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4.2 Comparison of conditional power for proposed rules when rBþ ¼ rB�; p ¼ 0:5 and
q¼ 0

The top row of Figure 3 shows the relationship between the subgroup-specific statistics for treatment effect and

conditional power in the simple case of equal standard errors, equal numbers in the two subgroups and inde-

pendent estimands. For any value of lB�=rB�, power decreases as lBþ=rBþ increases, due to conditioning on

observed ZF > 1:96; that is, PðZF > 1:96Þ increases as lBþ=rBþ increases, thereby increasing the denominator in

equation (4). We note that the contour lines curve for Rules 1 and 2, but for Rule 3, which is based on the

interaction test, they are straight. The linear contours for Rule 3 do not hold if the estimands for the subgroups

are non-independent, nor will they hold if data are binary or counts, see Appendix 1 for further details.

Figure 2. Illustration of conditional power for the case where q ¼ 0 and p ¼ 0:5 and for Rule 1: L¼ 0, 1, 1.96 (i.e. statistically
significant).

Figure 3. Conditional power for proposed rules with correlation between lB� and lBþ equal to zero (top row) and q ¼ 0:5
(bottom row), with L¼ 1 for Rule 1 and one-sided significance of 10% for Rule 3.
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For this illustration, we set L¼ 1 for Rule 1 and one-sided significance of the interaction to 0.1 for Rule 3.
Changing these thresholds will result in a shift in the contour plots, whilst Rule 2 does not require specification of
an additional parameter and is fixed. It is possible to closely align the three rules by choosing appropriate values
for L and the interaction type I error if necessary.

4.3 Effect of correlation between estimands when rBþ ¼ rB�; p ¼ 0:5 and q¼ 0.5

Including additional covariates Xi in the trial analysis in equation (1) induces correlation between the treatment
effect estimands (and therefore the statistics) for the two subgroups. The bottom row of Figure 3 shows how the
conditional power changes when there is moderate/strong correlation (q ¼ 0:5) between the treatment effect
estimates, compared with no correlation in the top row. In all cases, the contours are closer together.
Conditional power for Rule 1 changes only slightly since it relies largely on the absolute size of lB � =rB�,
whilst Rules 2 and 3 rely on both groups to a greater extent.

We note here that, if the two estimands are independent (q¼ 0) and arise from normally distributed data with
common sampling variance in the two subgroups, then conditional and unconditional power for Rule 3 are
identical, since X ¼ 1:96� ZF and Y ¼ l̂Bþ�l̂B�

SDðl̂Bþ�l̂B�Þ � zaI=2 in Rule 3 will also be independent. A brief proof is
given in Appendix 1. However, for non-normal data or normal data with differential variance in the two sub-
groups or correlated lBþ and lB�, conditional and unconditional power for the interaction test will not be
identical.

4.4 Effect of relative subgroup size when sampling variance is homoscedastic across

subgroups and q¼ 0.5

We illustrate the influence of subgroup size on conditional power for the case where sampling variance is homo-
scedastic across biomarker subgroups. This will occur for normally distributed outcomes with the same sampling
variance r2 in each subgroup, but does not necessarily hold for other distributions. Figure 4 shows how condi-
tional power for each rule varied if either 20% or 80% of patients came from population Bþ. The proportion of
patients sampled from the two sub-populations has a greater impact on conditional power than correlation
between the two treatment effects.

If the trial sample contains a high proportion drawn from the Bþ population (bottom row of Figure 4), then
Rule 1 (with L¼ 1) has lower power for small values of lBþ=rBþ. This arises because we are conditioning on
significance in the full population, and the B� patients contribute only a small amount to the overall. Conversely,
because B� patients contribute a large amount to the overall analysis in the top row of Figure 4, the overall
significance only occurs if there is good power that the observed ZB� exceeds L ¼ 1. Similar effects are observed
for Rules 2 and 3, in that the overall-significance condition induces higher conditional power for approving
treatment in B� at lower values of lBþ=rBþ.

To provide further insight into the effect of relative sample size of the two subgroups, we plot conditional
power against lBþ=rBþ for three different sampling proportions, 20:80, 50:50 and 80:20 with (q¼ 0) in Figure 5.
This shows that, if the proportion of patients in this group is low (20%) or equal (50%), Rule 1 (with L¼ 1) has
highest conditional power across the plausible range of values of lBþ=rBþ. Conversely, if the proportion of
patients from Bþ is high (80%), Rule 3 has uniformly highest conditional power. Rule 2 never has highest
power in these scenarios, but we note that results are dependent on the chosen values of L for Rule 1 and the
Type I error for interaction test, whilst Rule 2 has the advantage of not requiring additional parameters.

5 Illustrative applications

In order to illustrate how these rules might be used in practice, we retrospectively apply them to two completed
phase III trials: a small cardiac surgery trial of 352 patients and equal size subgroups,19 and a much larger stroke
trial (n¼ 7513) which evaluated betrixaban.13

5.1 AMAZE trial in cardiac surgery

AMAZE was a cardiac surgical trial in patients with atrial fibrillation (rapid/irregular heart rhythm).19 This multi-
centre RCT randomised 352 patients 1:1 to a technique called ablation in addition to planned surgery, or to
planned surgery alone (control arm). The primary outcome was return to sinus rhythm at one year post-surgery
(binary). Although not part of the intervention, at the discretion of the operating surgeon 150/352 (p ¼42.6%)
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randomised patients had a section of the heart, called the left atrial appendage (LAA), removed during the

procedure. This may be considered a more extensive procedure, conferring higher probability of a positive out-

come. We define subgroups by whether the LAA was removed Bþ or left intact B�. Selected results from the

AMAZE trial are shown in Table 2.
We estimate conditional power for approval of ablation in B� assuming that actual trial results were our

estimates of group-specific effects before the trial started. For Rule 1, there would 74% power to observe a

treatment effect in B� if the threshold was set at L¼ 1. Rule 2 is not met in AMAZE since ZF < ZBþ; assuming

observed trial results were “true”, conditional power was only 38%. Finally, the interaction Rule 3 was also just

Figure 4. Conditional power for proposed rules with 20% of patients in subgroup Bþ (top row) compared with 80% in Bþ (bottom
row), with L¼ 1 for Rule 1 and one-sided significance of 10% for Rule 3.

Figure 5. Comparison of conditional power for proposed Rule 1(solid line), Rule 2 (dashed line) and Rule 3 (dotted line), with the
proportion of patients sampled from Bþ equal to 20% (left panel), 50% (middle) and 80% (right panel), for q¼ 0 and with L¼ 1 for
Rule 1 and one-sided significance of 10% for Rule 3.
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met if we set the decision threshold for the two-sided test statistic to 10% (interaction test p¼ 0.119). Conditional

power based on observed results was 37% for Rule 3; had this been specified during design of the trial, sample size
could have been increased to increase confidence that Rule 3 would be met.

5.2 APEX trial in patients at high risk of stroke

Recall that one of the trials motivating this study compared treatment with the anticoagulant betrixaban with

standard treatment of enoxaparin amongst hospitalised medically ill patients.13

The primary outcome was a composite of clinical events caused by blood clotting (deep vein thrombosis, non-

fatal pulmonary embolism or death from thromboembolism) up to day 42 post-randomisation.
The planned analysis took a sequential testing approach, but rather than starting with the full trial population,

the order of testing began with a subgroup with a high chance of treatment response (but smaller treatment effect),

followed by testing in two other pre-specified, progressively inclusive cohorts as follows:

1. Compare treatment arms in patients with elevated D-dimer level (for illustration can be considered B�).
2. Compare treatment arms in patients with elevated D-dimer or age � 75 (for illustration can be considered

extended B�).
3. Compare treatment arms in all enrolled patients (full population, n¼ 7513).

If any test was negative, all subsequent tests were reported as exploratory. We provide selected results from the

original trial publication in Table 3.
As the table shows, the first analysis including B� patients was not significant at the traditional threshold

p¼ 0.054, so that subsequent analyses were treated as exploratory, even though the experimental treatment effect

was greater in the Bþ subgroup and overall analyses. Adopting a sequential strategy, conditional on a significant
effect of betrixaban in the full population, our proposed rules for the elevated B� subgroup would result in the

following recommendations:

1. Rule 1: B� would be approved if a one standard error threshold (L¼ 1) was defined a priori as a clinically

acceptable treatment effect. Assuming the trial result was “true” as for the previous example, the conditional
power of this rule was 91%. If a significant effect in this subgroup was necessary (L � 1:96), as suggested by the

original trial analysis, then Rule 1 was not met.
2. Rule 2 was also not met because group B� data resulted in a decrease in the Z-statistic for the full population

compared to Bþ. This has arisen because Bþ patients had a much higher treatment effect despite the lower

event rate. The conditional power of this rule was only 34%.
3. There was a significant interaction between subgroup and treatment (one-sided p¼ 0.0184) so that this trial

also fails Rule 3 – the conditional power was 43%.

In summary, using our proposed sequential testing procedure, betrixaban would be recommended for treat-

ment in elevated D-dimer patients only if we were prepared to accept a lower treatment effect compared with non-
elevated D-dimer patients and that lower treatment effect resulted in a Z-statistic of at most 1.85 standard errors

(ZB� > 1:85).

5.3 Implications for trial design

In this context, investigators define and document decision rules for the primary trial analysis during the design
stage. Our proposal is that, should a separate decision on approval of a subgroup be required, then a decision rule

should be agreed in discussion with regulators or other appropriate decision makers during the design phase.

Table 2. Treatment effect estimates and Z-statistics for patients with the LAA left intact (B�) or removed (Bþ) and overall in the
AMAZE trial.

Patient Group LAA left intact B� LAA removed Bþ Full population F

Estimand b̂1 b̂1 þ b̂3 b̂ across subgroups

Log odds ratio (standard error) 0.461 (0.378) 1.406 (0.472) 0.863 (0.320)

Z-statisic 1.220 2.981 2.697
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Our evaluation of three potential rules illustrates how to investigate the efficiency of different rules, although

parameter inputs will be specific to each trial and will depend on available information around potential efficacy.
Although our rules rely on Z-statistics for hypothesis tests, it is more usual to work with potential treatment

effects and their standard deviations when designing a trial. Empirical estimates of variation in the primary

outcome are typically available, particularly for the control arm of the trial. This may be a standard deviation

for a continuous outcome, or the baseline risk of an event for patients receiving the current best treatment. Given

these estimates, the sample size required for an overall significant treatment effect, the proposed sampling pro-

portion, and the Rule 1 threshold L can be decided to ensure that the treatment effect in subgroup B� lies above a

minimum treatment effect. In a similar way, the Rule 3 significance level can be chosen to ensure there is sufficient

power to find an interaction if the B� estimate is much lower than Bþ.
The stages of design are as follows:

1. Using initial estimates of design parameters, including the sampling proportion p and correlation q, calculate
the power of the test for the expected value of the treatment effect in the full trial population.

2. Choose a decision rule for recommending treatment in B� based on considerations of clinically important

treatment effects, safety and biological mechanisms.
3. Given the sampling proportion p and the expected treatment effect sizes in the two sub-populations, calculate

the power of your preferred rule, conditional on a significant overall test.
4. Calculate the power of the sequential testing strategy as the product of conditional and unconditional power in

1 and 3.

In practice the final power calculations will require an iterative process between calculation and elicitation of

expert clinical knowledge of treatment effects and associated variance components, finalised in discussion with

regulators or other decision makers.

6 Discussion

6.1 Overview of results

Frequentist rules to assess whether approval of a new treatment should be accepted in a lower response subgroup,

conditional on a significant effect overall, have been developed and evaluated. Approval based solely on a sig-

nificant overall test may be unacceptable if there are severe side effects and/or if the subgroup drawn from the low

response population is under-represented due to enrichment sampling. Rules are based either on measures of

influence, such as the size of the effect in this subgroup, or the increase in significance due to inclusion of the

subgroup, or on the difference in effect size between the groups (interaction). When choosing a rule during trial

design, as well as specifying estimates of the expected outcomes and their variance components, investigators must

either take a random sample from the full population, in which case the trial will represent clinical practice, or

decide the proportion of patients to be sampled from each sub-population. Using conditional power as a measure

of efficiency, the proportion of patients drawn from each sub-population had a large impact, but correlation

between the groups induced by covariate adjustment was less important. For all rules, conditional power

decreased as lB+
/rB+

increased for fixed lB�/rB�.

Table 3. Treatment effect estimates and Z-statistics for patients with the elevated D-dimer (B�) or non-elevated D-dimer (Bþ) and
overall in the APEX trial.

Patient group Elevated D-dimer B� Non-elevated D-dimer Bþ Full Population F

Events in treated patients 132/1914 (6.9%) 33/1198 (2.8%) 165/3112 (5.3%)

Events in control patients 166/1956 (8.5%) 67/1218 (5.5%) 223/3174 (7.0%)

Relative risk (95%CI) 0.81 (0.65, 1.00) 0.50 (0.33, 0.75) 0.76 (0.63, 0.92)

Log Relative Risk(Standard Error) �0.21 (0.11) �0.69 (0.21) -0.28 (0.10)

Z-statistic 1.85 3.31 2.83
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6.2 Discussion of individual rules

After ensuring that ZF > 1:96, the simplest approach is to perform tests in Bþ and B� separately as part of a
closed testing procedure, and allow a more relaxed significance level for ZB� (Rule 1). This significance level is
related to both the proportion of the trial sample in B� and the effect size that is acceptable given the safety
profile of the treatment. Hence, the level can be set based on prior knowledge of treatment effect and prevalence of
low responders in the population. In our illustration, for trials with � 50% of trial patients in Bþ, Rule 1 had the
highest power for our chosen threshold of ZB� > 1.

Rule 2 (B� patients should increase significance) is rather ad hoc but has the benefit of not requiring speci-
fication of an additional parameter. To satisfy Rule 2, B� must preserve at least some proportion of the estimated
efficacy of Bþ. Further, the conditional power of Rule 2 decreases as the proportion of patients from B�
decreases, which is also an attractive property. Despite these benefits, Rule 2 never demonstrated highest condi-
tional power in our analyses.

Rule 3 uses an interaction test with a relaxed significance level to recommend approval in the B� sub-
population. Interaction tests in clinical trial publications typically aim to identify heterogeneity between sub-
groups and are mainly purely exploratory. However, a significant subgroup-treatment interaction at the 5% level
may not preclude approval in the lower response group, provided that there is a minimum level of efficacy,
particularly if side effects are mild or there are few alternatives for this subgroup. Our more targeted objective is
equivalent to testing whether the difference in treatment effects between the two groups is within acceptable limits
and can be reconstructed as an equivalence or non-inferiority test. That is, the (interaction test) significance level
can be based on a priori estimates of the maximum acceptable difference between the two subgroups (� b3 in
equation 1). In our analyses, for trials where > 50% of patients arise from Bþ, Rule 3 had the highest power to
approve B� given an overall significant result.

6.3 Regulator input

In practice, acceptability of these approaches will depend on regulators (for drug trials) or commissioners (for
academic trials). Since the conditional power of the rules depends crucially on the values chosen for the param-
eters L and aI, as well as patient sampling, prevalence of high/low responders and analysis methods, early
engagement with regulators/commissioners to discuss these decision rules is worthwhile. Discussions also need
to consider potential harms (side effects), in order to set realistic and acceptable targets for efficacy. In practice,
investigators/sponsors will be required to pre-specify and document these decision rules in discussion with
regulators.

6.4 Strength, weaknesses and future research

One benefit of our proposed decision rules is that closed-form expressions for conditional power are available for
continuous, binary and count outcomes (assuming known variances). This makes estimation of sample sizes
relatively simple, and a wide range of scenarios can be explored during the design phase.

In our examples, we used retrospective power calculations to show the differences in conditional power for the
three rules based on trial results. We stress that these calculations were provided for illustration only and we do
not endorse retrospective power calculations to aid interpretation of statistically non-significant trial results (see
for example Hoenig and Heisey20).

In common with many statistical methods, there is an underlying assumption of normality when using gener-
alised linear models. This will hold for most adequately powered, phase III trials where analysis is completed on a
scale for which the sampling distributions of estimated coefficients can be assumed normal (e.g. logistic, log). For
small trials, or for estimands with very skewed distributions, asymptotic approximations may not hold and
analyses should be checked using simulations.

In this paper, we provided expressions for the case where patients were randomised 1:1 to the experimental and
control arms, although extension to other allocation ratios is straightforward. It would also be relatively straight-
forward to extend the methods to biomarkers with more than two levels, although the number of patients at each
level is likely to be small in this case, resulting in low conditional power for all proposed rules. An exception might
be for biomarkers with ordered levels, in which case the subgroup effect and interaction with treatment could be
linear terms in the analysis (equation (1)).

For time-to-event outcomes, power of the study depends directly on the number of events occurring rather than
on the number of patients, so that power would also depend on recruitment and censoring patterns. Methods
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would need to be extended to accommodate these features. Further, we have not embedded these results in more

formal decision analytic methods, and this would require further specification of costs, harms (side effects) and

utilities (benefits) and would depend on the perspective of the investigator (sponsor or health provider).
In summary, in situations where additional conditions are required for approval of a new treatment in a lower

response subgroup, easily applied rules based on minimum effect sizes and relaxed interaction tests are available.

These depend on trial design characteristics, particularly the proportion of patients sampled from the two sub-

groups and must be pre-specified and documented in the Statistical Analysis Plan.
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Appendix 1. Conditional power calculations

The following shows how to calculate the conditional power for each rule, given pre-specified parameters
lBþ; lB�; rBþ; rB�, the proportion of patients in Bþ (p), and the correlation between the subgroup treatment
effects (and therefore the subgroup test statistics ZBþ and ZB�) q.

Given pre-specified treatment effects lBþ and lB� for the subgroups and planned sampling proportion from the
Bþ sub-population p, the full population treatment effect is

lF ¼ plBþ þ ð1� pÞlB�

We have that the conditional power for each rule is

PðRnjZF > 1:96Þ ¼ PðRn;ZF > 1:96Þ
PðZF > 1:96Þ

where, for variance components r2Bþ and r2B� and correlation q, we have

ZF ¼ l̂F

rF
¼ prBþZBþ þ ð1� pÞrB�ZB�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2r2Bþ þ ð1� pÞ2r2B� þ 2pð1� pÞqrBþrB�
q

The denominator does not depend on the form of any proposed rule and is given by

PðZF > 1:96Þ ¼ UðlF=rF � 1:96Þ

Note that the right-hand side is a function of three location parameters lBþ; lB� and p, and three variance
parameters rBþ; rB�, q (see equations (2) and (3)), and conditional on these the standard normal deviate can be
obtained from any statistical software.

A.1 Rule 1 numerator
For rule 1, the numerator of the conditional power is given by the expression

PðZB� > L;ZF > 1:96Þ

We make the transformation X ¼ 1:96� ZF and Y ¼ L� ZB�, and find their distribution as follows

EðXÞ ¼ Eð1:96� ZFÞ ¼ 1:96� lF=rF
EðYÞ ¼ EðL� ZB�Þ ¼ L� lB�=rB�

Because ZF and ZB� are Z test statistics (i.e. assumed Nð0; 1Þ), the variances of X and Y are given by
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VarðXÞ ¼ Varð1:96� ZFÞ ¼ Varð�ZFÞ ¼ 1
VarðYÞ ¼ VarðL� ZB�Þ ¼ Varð�ZB�Þ ¼ 1

The covariance of X and Y is

CovðX;YÞ ¼ Covð1:96� ZF;L� ZB�Þ
¼ Covð�ðprBþZBþ þ ð1� pÞrB�ZB�

rF
Þ;�ZB�Þ

¼ prBþ
rF

CovðZBþ;ZB�Þ þ ð1� pÞrB�
rF

CovðZB�;ZB�Þ

¼ pqrBþ
rF

þ ð1� pÞrB�
rF

¼ pqrBþ þ ð1� pÞrB�
rF

Therefore, the joint distribution of X and Y is

X
Y

� �
�BVN

1:96� lF=rF
L� lB�=rB�

� �
;

1
pqrBþ þ ð1� pÞrB�

rF
pqrBþ þ ð1� pÞrB�

rF
1

0
BB@

1
CCA

0
BB@

1
CCA

The numerator is PðX � 0;Y � 0Þ and can be obtained from standard statistical software.

A.2 Rule 2 numerator
The numerator for Rule 2 is given by PðZF > ZBþ;ZF > 1:96Þ. Making the transformations, X ¼ 1:96� ZF

and Y ¼ ZBþ � ZF, the joint distribution of X and Y is found as follows:
X is the same as for Rule 2, so that the expectation and variance of X are again 1:96� lF=rF and 1,

respectively.
The expectation and variance of Y are

EðYÞ ¼ EðZBþ � ZFÞ ¼ lBþ=rBþ � lF=rF
VarðYÞ ¼ VarðZBþ � ZFÞ ¼ VarðZBþÞ þ VarðZFÞ � 2CovðZBþ;ZFÞ

¼ 2� 2� Cov
prBþZBþ þ ð1� pÞrB�ZB�

rF
;ZBþ

� �

¼ 2� 2� prBþVarðZBþÞ þ ð1� pÞrB�CovðZBþ;ZB�Þ
rF

¼ 2� 1� prBþ þ qð1� pÞrB�
rF

� �

The covariance of X and Y is

CovðX;YÞ ¼ Covð1:96� ZF;ZBþ � ZFÞ ¼ VarðZFÞ � CovðZF;ZBþÞ ¼ 1� prBþ þ qð1� pÞrB�
rF

The joint distribution of X and Y for Rule 2 is

X
Y

� �
�BVN

1:96� lF=rF
lBþ=rBþ � lF=rF

� �
;

1 1� prBþ þ qð1� pÞrB�
rF

1� prBþ þ qð1� pÞrB�
rF

2� ð1� prBþ þ qð1� pÞrB�
rF

Þ

0
BB@

1
CCA

0
BB@

1
CCA

Again, the numerator for conditional power is PðX � 0;Y � 0Þ, which we obtain from standard statistical
software.
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A.3 Rule 3 numerator
For this rule the numerator is Pððl̂Bþ � l̂B�Þ=SDðl̂Bþ � l̂B�Þ < zaI=2;ZF > 1:96Þ, where zaI=2 is the 100ð1�

aIÞ% quantile from the standard normal distribution.
We make the transformations, X ¼ 1:96� ZF and Y ¼ l̂Bþ�l̂B�

r3
� zaI=2, where r23 ¼ r2Bþ þ r2B� � 2qrBþrB�.

Again the expectation and variance of X are 1:96� lF=rF and 1, respectively.
The expectation and variance of Y are

EðYÞ ¼ E
� l̂Bþ � l̂B�
SDðl̂Bþ � l̂B�Þ

� zaI=2

�
¼ lBþ � lB�

r3
� zaI=2

VarðYÞ ¼ Var
� l̂Bþ � l̂B�
SDðl̂Bþ � l̂B�Þ

� zaI=2

�
¼ Varðl̂Bþ � l̂B�Þ

Varðl̂Bþ � l̂B�Þ
¼ 1

The covariance of X and Y is given by

CovðX;YÞ ¼ Covð1:96�
� prBþZBþ þ ð1� pÞrB�ZB�

rF

�
;
l̂Bþ � l̂B�

r3
� zaI=2Þ

¼ Covð�prBþZBþ � ð1� pÞrB�ZB�; rBþZBþ � rB�ZB�Þ
rFr3

¼ �pr2BþVarðZBþÞ þ prBþrB�CovðZBþ;ZB�Þ � ð1� pÞrB�rBþCovðZBþ;ZB�Þ þ ð1� pÞr2B�VarðZB�Þ
rFr3

¼ qð2p� 1ÞrBþrB� � pr2Bþ þ ð1� pÞr2B�
rFr3

Then the joint distribution of X and Y is

X
Y

� �
�BVN

1:96� lF=rFlBþ � lB�
r3

� zaI=2

0
@

1
A;

1
qð2p� 1ÞrBþrB� � pr2Bþ þ ð1� pÞr2B�

rFr3
qð2p� 1ÞrBþrB� � pr2Bþ þ ð1� pÞr2B�

rFr3
1

0
BBB@

1
CCCA

0
BBB@

1
CCCA

Again, the numerator for conditional power is PðX � 0;Y � 0Þ, which we obtain from standard statistical
software.

A.4 Equality of conditional and unconditional power for rule 3 when q5 0, data are normally distributed and
subgroups have the same sampling variance

To explore when conditional and unconditional power are the same, we identify conditions when
PðR3jZF > 1:96Þ ¼ PðR3Þ, or equivalently, the correlation of R3 and ZF > 1:96 is zero.

For Rule 3, conditional power is defined as Pððl̂Bþ � l̂B�Þ=SDðl̂Bþ � l̂B�Þ < zaI=2jZF > 1:96Þ and we made
the transformations, X ¼ 1:96� ZF and Y ¼ l̂Bþ�l̂B�

r3
� zaI=2, so that the conditional power can be written

PðY < zaI=2jX > 1:96Þ.
Recall that the covariance of X and Y is

qð2p� 1ÞrBþrB� � pr2Bþ þ ð1� pÞr2B�
rFr3

If there is no correlation between the two subgroup treatment estimates q¼ 0, then this will become

�pr2Bþ þ ð1� pÞr2B�
rFr3

(6)

Recall that for the normal distribution case with n patients allocated to each treatment arm and common
sampling variance r2 in the two subgroups, r2Bþ ¼ 2r2=pn and r2B� ¼ 2r2=ð1� pÞn. Substituting these into
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equation (6) results in zero correlation between Rule 3 and the overall significance condition, and shows that the
interaction rule is independent of the condition for this case.

For binary responses and usng a logit link, r2Bþ ¼ ½1=ðh1Bþð1� h1BþÞÞ þ 1=ðh0Bþð1� h0BþÞ�=pn and r2B� ¼
½1=ðh1B�ð1� h1B�ÞÞ þ 1=ðh0B�ð1� h0B�Þ�=ðð1� pÞnÞ where hjk is the probability of an event in treatment arm j
and subgroup k. In this case, the covariance is zero only if

1=ðh1Bþð1� h1BþÞÞ þ 1=ðh0Bþð1� h0BþÞ ¼ 1=ðh1B�ð1� h1B�ÞÞ þ 1=ðh0B�ð1� h0B�Þ

In general, this will not hold. A similar situation applies for count data.
In summary, if the two subgroup estimates are correlated (q 6¼ 0 due to covariate adjustment) or sampling

variance in the two groups differ, either because the data are not normally distributed or because outcome
measurements in the two groups have different variances, then conditional and unconditional power are not
necessarily equivalent under Rule 3.
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