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Abstract 

Clinical prediction models (CPMs) are often used to guide treatment initiation, with 

individuals at high risk offered treatment. This implicitly assumes that the probability 

quoted from a CPM represents the risk to an individual of an adverse outcome in 

absence of treatment. However, for a CPM to correctly target this estimand requires 

careful causal thinking. One problem that needs to be overcome is treatment drop-in: 

where individuals in the development data commence treatment after the time of 

prediction but before the outcome occurs. The linked article by Xu et al (Am J 

Epidemiol. XXXX;XXX(XX):XXXX–XXXX) uses causal estimates from external data 

sources such as clinical trials, to adjust CPMs for treatment drop-in. This represents 

a pragmatic and promising approach to address this issue, and illustrates the value 

of utilising causal inference in prediction. Building causality into the prediction 

pipeline can also bring other benefits. These include the ability to make and compare 

hypothetical predictions under different interventions, to make CPMs more 

explainable and transparent, and to improve model generalisability. Enriching CPMs 

with causal inference therefore has the potential to add considerable value to the 

role of prediction in healthcare. 
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Abbreviations: CPM, Clinical prediction models 

 

Clinical prediction models (CPMs) predict the risk of adverse outcomes for 

individuals, such as the future risk of a cardiovascular event (e.g. acute myocardial 

infarction) for an individual in primary care (1). CPMs are commonly used to guide 

decisions concerning intervention, such as initiating treatment – for example, statin 

initiation for individuals at high cardiovascular risk (2). Such a use assumes, explicitly 

or implicitly, that the prediction issued by a CPM is a treatment-naïve prediction, i.e. 

the (hypothetical) risk of outcome if the individual does not commence treatment (3). 

Constructing CPMs that estimate this hypothetical risk is non-trivial, not least 

because of treatment drop-in, where individuals in the development dataset 

commence treatment after baseline but before occurrence of an outcome (4). 

Deriving a CPM that correctly estimates treatment-naïve risk, in the presence of 

treatment drop-in, is challenging because individuals do not commence treatment at 

random (3,5). 

In an excellent linked paper, Xu et al (6) recommend a pragmatic approach to 

handling treatment drop-in, illustrated with the example of statin initiation in 

cardiovascular CPMs. Their proposal is to take the relative risk reduction, estimated 

in randomised controlled trials, for statins, and fix the coefficient for statins to this 

value, with statins treated as a time-dependent variable in the model. A similar idea 

to this has been proposed before in the context of treatment drop-in in clinical trials 

(7), and indeed the general idea of using external datasets to make adjustments has 

also been proposed in the multiple imputation literature (8). 
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Previous approaches to address treatment drop-in for CPMs have estimated the 

effect of treatment from the same data as the development data used for the CPM – 

using causal inference techniques such as inverse probability weighting (9), or 

marginal structural models (3). Xu et al‟s approach avoids requiring the usual 

assumptions when making causal inference with observational data (such as 

conditional exchangeability and positivity). However, it introduces assumptions 

concerning the generalisability of the trial estimate, and also disregards the 

uncertainty in the trial estimate. Nevertheless, the simplicity of the approach is a 

substantial advantage: only requiring the handling of time-dependent covariates 

when modelling. Moreover, the approach could be readily extended to incorporate 

approaches for generalizing estimated treatment effects from a randomized 

controlled trial to broader populations (10,11); uncertainty could also be considered, 

for example through draws from the posterior distribution of the causal effect size. 

As soon as one entertains the need for „treatment naïve-risk‟, one is targeting 

estimands that require causal reasoning to estimate well, since they are hypothetical 

or counterfactual predictions (12).  We note that hypothetical prediction aims at 

answering „what if‟ questions about the future, while counterfactual prediction 

requires contemplating states contrary to what has truly happened, and this 

difference can be important (13). Here we will use the less specific term causal 

prediction. Failure to recognize when a clinical question requires methods for causal 

prediction can lead to the development of a model that targets the wrong estimand, 

such as a “treated”, instead of “treatment-naive” risk. This may lead to incorrect risk 

predictions and even suboptimal treatment decisions, as demonstrated in Xu et al, 

and in simulations by others (3,14). As such, it is helpful to first clarify the estimand 

that is being targeted, even in prediction (15). Doing so provides clarity on the 
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assumptions that are required for a proposed method to provide accurate predictions 

of the required estimand, and indeed, clarity on exactly what is meant by „baseline 

risk‟, which is more nuanced than it first might seem.  

On top of providing the machinery to address issues such as treatment drop-in, the 

strengths of causal inference, if combined with established practices of CPM 

development, open a wide range of opportunities. 

First, causal reasoning allows us to clarify some of the so-called paradoxical findings 

that are sometimes observed in CPMs. An oft-quoted example was discussed by 

Caruana et al (16) – in which patients with pneumonia and asthma in a hospital 

setting had better outcomes than those with pneumonia only, because of a policy 

that saw patients with asthma in addition to pneumonia directly admitted to the 

intensive care unit; this was originally ignored when building the CPM. Similarly, use 

of causal inference will help to overcome the more subtle, yet pernicious, challenge 

of risk factor associations being attenuated because treatment is received 

differentially according to the value of the risk factor (17,18). Although this is not 

necessarily an issue for the accuracy of a prediction model, it can greatly reduce the 

face validity and acceptability (17). Causal reasoning allows us to explain such 

paradoxical associations and lower barriers for the implementation of a prediction 

model in clinical practice, and make models more explainable. Causal inference 

methods can also help to examine the “counterfactual fairness” of a CPM, and 

identify unwanted discriminatory behaviour (19). 

Second, it can allow better generalisability of a CPM. Particular interventions or 

policies may be present in the setting in which a CPM is developed, but may not 

exist in a setting where the model is to be used – dataset shift (20). Dickerman and 
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Hernan (21) give an example where individuals with severe heart failure are likely to 

receive a heart transplant, thus reducing their risk of death, in the population that a 

CPM is developed. This CPM will perform poorly in a setting where the availability of 

heart transplants is low. Causal prediction can be used to issue predictions 

depending on the availability of heart transplants, thus a causal CPM could be 

generalised to a setting regardless of this. Moreover, it can make explicit the 

complex feedback loop that arises when the use of a CPM itself changes outcome 

risks (which, indeed, is likely to be a sign of success of the CPM!) and thus allow the 

CPM to generalise over time. Once a CPM is deployed it should be regularly 

updated (22), yet causal reasoning is needed to explicitly model the relationship 

between the baseline risk, and the actions taken in response to that risk as 

estimated by the CPM (23).  

Third, it introduces the possibility of calculating hypothetical risk under a range of 

possible interventions, and therefore directly informing a decision about which 

intervention(s) to choose (24). It is too tempting at present for end-users of CPMs to 

do this, incorrectly, by modifying inputs to the CPM. For example, one might use 

QRISK (25) to estimate the impact of a weight loss intervention on a patient‟s 

cardiovascular risk by inputting a lower BMI to the calculator. This is clearly wrong 

(26), but we have anecdotal evidence that this occurs, and hypothesise that the 

practice is widespread. Enriching CPMs with the causal machinery needed to do this 

correctly could therefore have substantial benefits in terms of optimising decisions 

supported by CPMs. This might be considered „pure‟ causal inference (12), however 

we believe the additional considerations when developing and validating CPMs are 

also useful, such as optimising for estimating absolute risk, ensuring that models are 

pragmatic to implement, and supporting clinical decisions on an individual level. 
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Finally, it clarifies the assumptions upon which these CPMs are relying, in terms of 

comparability of the development and deployment populations.  

Indeed, rather than asking when causal reasoning can help with prediction, one 

might instead ask when it is not useful. Whenever a decision to intervene is made 

that can potentially affect future outcomes, and therefore predicted risk, causal 

approaches will be beneficial. Not all medical decisions fall into this category, as 

some decisions can be made because of a particular risk, and not to affect it, and in 

these cases causal inference would not be required. For example, in a palliative care 

setting it may be useful for patients and their families to know the predicted 

outcomes. 

Despite the clear advantages, the use of causal prediction is not widespread. This is 

because there are substantial challenges to be overcome before it can be 

implemented effectively. 

First, validation is a major challenge. CPMs are usually validated by considering the 

accuracy, calibration, and discrimination of the predictions issued, in a test dataset. 

This relies on factual data – i.e. availability of predictors and the corresponding 

observed outcomes. Validation of potential outcomes requires a different solution, 

since the outcomes are, by definition, not observed. Where the hypothetical scenario 

is a population where no one receives treatment, one solution may be to validate the 

model using historical or geographically different data, where the treatment is not 

prevalent. However, such data may not be available, and may differ in other ways 

from the current target population for the CPM. In the linked paper, Xu et al attempt 

to overcome this by generating counterfactual treatment-naive survival times by 

adjusting the factual survival times according to the assumed risk reduction 
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conferred by statins. However, the validation is then, partly at least, a self-fulfilling 

prophecy, since both the fitted model and the validation data use the same 

adjustment for the assumed causal effect of statins. Therefore, only the „prediction‟ 

part of the model is validated, under the assumption that the causal adjustment for 

the effect of statins is correct. Approaches where adjusted or synthetic outcomes are 

generated for validation data therefore require further scrutiny. Validation therefore 

remains perhaps the most pressing challenge to overcome before use of causal 

CPMs can become more widespread (24). 

Second, the linked paper, and most other literature on this topic, has considered only 

single interventions in isolation. Of course, the reality is far more complex than this. 

Even to define a treatment-naïve prediction requires the consideration of all relevant 

interventions that are operating in a particular setting.  For example, alongside 

prescribing a statin, a physician may recommend a range of lifestyle interventions, 

such as increased exercise, changes in diet and quitting smoking, all of which could 

be considered as interventions. This is challenging both to elicit, and to model 

effectively. 

Third, because causal predictions involve potential outcomes, and are by definition 

out-of-sample predictions, we must be cautious about extrapolation. Causal 

approaches typically require more data: for example using causal prediction to make 

a treatment decision using inverse probability weighting requires that we observe at 

least some patients with the characteristics of interest receiving both “actions” under 

consideration. In the accompanying paper, the causal effect was instead estimated 

using external clinical trial data.  
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These challenges may lead one to conclude that causal prediction is simply too 

challenging and should not be considered. We disagree, primarily because there is a 

clinical need for such predictions. To fill the void, existing (factual) CPMs are already 

being used as-if they provide causal predictions. This can lead to unsubstantiated 

conclusions, and even incorrect clinical decisions being made. Therefore, there is an 

urgent need for causal prediction to provide clarity and correctness to the use of 

CPMs in this way. 

In conclusion, CPMs are often interpreted and used as if their predictions refer to 

causal scenarios, and indeed used to compare risk under different hypothetical 

interventions. Discouraging such practice is likely to be unhelpful, and risks 

undermining the important progress made in improving the reporting and robust 

deployment of prediction models recently achieved, for example with the TRIPOD 

statement (27). A much more fruitful direction is likely to be enriching CPMs with the 

machinery needed to correctly (and with awareness of the assumptions required) 

provide the causal predictions that are really of interest to decision makers. The 

approach of Xu et al is an important step in upgrading the machinery of CPMs 

towards that goal, although extensions that account for both the uncertainty and 

(lack of) generalisability in the causal estimates are required. We would recommend 

the Xu et al approach (6) to be used alongside complementary approaches that 

estimate the intervention effects from the observational data (3,9) to ensure 

maximum robustness. 
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