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Abstract

Background: Reducing the burden of anaemia is a critical global health priority that could improve maternal
outcomes amongst pregnant women and their neonates. As more counties in Kenya commit to universal health
coverage, there is a growing need for optimal allocation of the limited resources to sustain the gains achieved with
the devolution of healthcare services. This study aimed to describe the spatio-temporal patterns of maternal
anaemia prevalence in Kenya from 2016 to 2019.

Methods: Quarterly reported sub-county level maternal anaemia cases from January 2016 – December 2019 were
obtained from the Kenyan District Health Information System. A Bayesian hierarchical negative binomial spatio-
temporal conditional autoregressive (CAR) model was used to estimate maternal anaemia prevalence by sub-county
and quarter. Spatial and temporal correlations were considered by assuming a conditional autoregressive and a
first-order autoregressive process on sub-county and seasonal specific random effects, respectively.

Results: The overall estimated number of pregnant women with anaemia increased by 90.1% (95% uncertainty
interval [95% UI], 89.9–90.2) from 155,539 cases in 2016 to 295,642 cases 2019. Based on the WHO classification
criteria, the proportion of sub-counties with normal prevalence decreased from 28.0% (95% UI, 25.4–30.7) in 2016 to
5.4% (95% UI, 4.1–6.7) in 2019, whereas moderate anaemia prevalence increased from 16.8% (95% UI, 14.7–19.1) in
2016 to 30.1% (95% UI, 27.5–32.8) in 2019 and severe anaemia prevalence increased from 7.0% (95% UI, 5.6–8.6) in
2016 to 16.6% (95% UI, 14.5–18.9) in 2019. Overall, 45.1% (95% UI: 45.0–45.2) of the estimated cases were in malaria-
endemic sub-counties, with the coastal endemic zone having the highest proportion 72.8% (95% UI: 68.3–77.4) of
sub-counties with severe prevalence.

Conclusion: As the number of women of reproductive age continues to grow in Kenya, the use of routinely
collected data for accurate mapping of poor maternal outcomes remains an integral component of a functional
maternal health strategy. By unmasking the sub-county disparities often concealed by national and county
estimates, our study findings reiterate the importance of maternal anaemia prevalence as a metric for estimating
malaria burden and offers compelling policy implications for achieving national nutritional targets.
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Background
Maternal anaemia, defined as the haemoglobin concentra-
tion below 11 g per decilitre (g/dL) [1]; is a persistent global
health concern, a leading cause of disability in pregnant
women and remains a major risk factor for adverse
pregnancy outcomes [2–4]. In 2015, the World Health
Organization (WHO) estimated 273 million children and
529 million women to be affected worldwide [5], accounting
for approximately 8.8% of global disability-adjusted life years
[6]. While anaemia affects women globally, the major
burden of maternal anaemia has remained unacceptably
high in Low and Middle-Income Countries (LMICs) [7],
with countries in Sub-Saharan Africa (SSA) and South East
Asia disproportionately affected [8]. In its 2016 Global
Nutrition Report, the WHO target of a 50% reduction
of maternal anaemia by 2025 was reported to be 100
years behind schedule [9, 10] despite the considerable
economic and scientific advancement over the past two
decades. This ambitious, yet achievable, target still calls
for a renewed focus on the optimal approaches neces-
sary to improve the quality of care provided to women
and their infants.
In pregnancy, anaemia’s aetiology is complex and is

aggravated by a host of factors involving the complex
interaction of infectious disease [11], nutrition and
inherited disorders [6, 12]. Previous reviews have associ-
ated maternal anaemia with an increased risk of adverse
outcomes such as; low birth weight [13], preterm birth
[14] as well as an increased risk of maternal and peri-
natal mortality [5]. In Kenya, maternal anaemia etio-
logical diversity is affected by limited resources, leading
to preventable morbidity and mortality at the sub-
county level [15]. To address this burden, national policy
guidelines and interventions on combined iron and folic
acid supplementation for pregnant women have sought
to improve both neonatal and maternal outcomes. This
has been implemented through the goal-oriented and
women-centred focused Antenatal Care (FANC) program,
that recommends at least four scheduled comprehensive
antenatal visits to promote the health of pregnant women
and their infants. Additionally, FANC offers targeted as-
sessments useful for identifying potential birth complica-
tions, treating established disease and availing information
critical for a positive pregnancy experience [16, 17].
To orient the implementation of intervention initiatives,

comparable sub-county (policy meaningful) estimates of
maternal anaemia prevalence in Kenya would be useful.
However, national and sub-national estimates in diverse
epidemiological settings, ethnicities and socioeconomic
strata is yet to be fully assessed and quantified using rou-
tinely collected data. This may due to data sparsity and
the disproportionate sub-optimal coverage and adherence
rates [18]. Nonetheless, Bayesian model-based predictions
with the spatial and temporal covariates can be used to

obtain reliable and stable sub-county estimates for mater-
nal anaemia metrics [19, 20]. In the era of diminishing
resources, understanding maternal anaemia trends at the
sub-county level—at which services are planned, orga-
nised, and delivered— will assist local policymakers in
deploying tailored, equity-oriented, and availing nutrition-
specific interventions to women in high-risk areas. This
will enable the country to monitor progress towards at-
tainment of both national and global targets i.e. reducing
by 50% the prevalence of anaemia among women of
reproductive age by 2025 [3].

Methods
Study area
Kenya covers an approximate area of 580,367 sq.km,
with an estimated population of 47.9 million in 2018
[21]. Kenya has a predominantly agricultural economy
with an emerging industrial base. It was ranked 146 out
of 188 countries on the UN Human Development Index,
based on life expectancy, adult literacy and per capita in-
come in 2015 [22]. Kenya has a decentralized system of
governance comprised of 47 semi-autonomous counties
and 290 sub-counties (Fig. 1). The county is the most
important administrative unit tasked with the provision
of health services. It has three types of climatic zones
namely: hot and wet covering areas along the Indian
Ocean coastline, temperate covers areas toward the west
and south-west of the country and the hot and dry cli-
mate covering the north and eastern parts of the
country.
Kenya’s healthcare system is hierarchically structured

across six levels of care with the community unit being
the basic level [23]. This is followed by levels 2 and 3 -
primary care services - which provide preventive and
curative care, including health services for childbirth.
These are followed by county referral health services
(level 4 and 5) in specific counties and the national re-
ferral health services (level 6) focusing on curative and
rehabilitation being at the peak [24].

Healthcare utilization
Over the past decade; periodic population-based surveys
have availed retrospective data important for planning
and orienting policies. However, population-based sur-
veys are capital intensive and might not be able to fully
capture changes in today’s dynamic healthcare environ-
ment. In contrast, routinely collected data potentially
avails real-time actionable data; critical for the design
and implementation of optimal control and intervention
efforts. Sustained improvements in both the national
and sub-national reporting completeness [25, 26] over
the first 5 years of routine District Health Information
Software System version 2(DHIS2) implementation have
previously been reported in Kenya. This is based on the
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percentage of facilities reporting any data consecutively
at 3,6,9, or 12 months [27]. During 2012/13–2015/16
period, between 2016 and 2019, ANC coverage rates
based on the DHIS2 ranged from 95 to 99%, with the
coverage of first ANC visit reported being nearly uni-
versal [25].

Data sources and assembly
In Kenya, routine facility-based data reported monthly
into an online District Health Information System data-
base, form the primary data source for national and sub-
national planning, surveillance and program monitoring
and evaluation [27]. Data on pregnant women presenting

at public health facilities with anaemia (clinically diag-
nosed with Hb < 11 g/dL) between January 2016 and
December 2019, from 290 sub-counties were extracted
from the DHIS2 platform (https://hiskenya.org). Data
prior to 2016 were excluded due to a major change
incorporated into the harmonized (DHIS2) reporting
system and subsequently adopted by the Ministry of
Health (MOH) in 2016 [28].
Quarterly data were stratified into five malaria endemic

zones and subsequently cleaned by checking for duplicates
and other inconsistencies in both Excel 2013 (Microsoft
Corporation, Seattle, WA) and Stata version 15 (Stata
Corp LLC, College Station, TX). All the datasets were
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Fig. 1 The map of Kenya showing 290 sub-counties (numbered), with the extents of major lakes and the Indian ocean shown in light
blue. The names of counties, sub-counties and their malaria endemicity status are presented in Additional file 2.
(Source: https://data.humdata.org/dataset/ken-administrative-boundaries)

Odhiambo and Sartorius BMC Pregnancy and Childbirth          (2020) 20:711 Page 3 of 11

https://hiskenya.org
https://data.humdata.org/dataset/ken-administrative-boundaries


reconciled to 290 sub-county boundaries obtained from
the humanitarian data exchange platform (https://data.
humdata.org). To minimize the bias caused by facility
utilisation rate at the sub-county level, the denominator
was the number of new clients presenting at the health
facility [29]. The analyses adheres to guidelines stipulated
for accurate and transparent health estimates reporting
(GATHER) [30] (Additional file 3).

Bayesian spatio-temporal modelling
As the observed number of anaemia cases could be sea-
sonal, a hierarchical negative binomial regression model
with 16 quarters as time units, was used to explore the
spatial and temporal dynamics of maternal anaemia in
Kenya. The study adopted a model without fixed covari-
ates as the initial step towards exploring the maternal
anaemia risk distribution at the sub-county level.
Let Hbit denote the number of observed/reported Hb <

11 g/dl cases at time t, where i = 1…290 (total number
of sub-counties in Kenya) and t = 1, …, 16, (quarters
between January 2016 – December 2019). Then condi-
tional on the relative risk πit, Hbit is assumed to be a
product of independent negative binomial distributions
with parameters Eit and r (Eq.1). Here Eit relates to the
expected number of cases in sub-county i at time t, and
r is the overdispersion parameter. Hbit approaches a
Poisson distribution as r approaches 0. That is,

Hbit j πit � NegBin Eitπit ; rð Þ ð1Þ
The relative risk (πit) of maternal anaemia is then spe-

cified as a function of spatial random effects, temporal
effects and spatio – temporal interaction effects [31].

Log μit
� � ¼ Log Eitð Þ þ Log πitð Þ

Where Log(Eit) is the offset and Log(πit) is modelled as;

LogðπitÞ ¼ ∝þ λi þ ξt þ vit; i ¼ 1;…; 290; t
¼ 1;…; 16

πit ¼ exp ∝þ λi þ ξt þ vitð Þ ð2Þ
Where ∝ is the global risk, λi is the main spatial ef-

fects, ξt is the main temporal effects, and the space-time
interaction term is represented by vit. The random
effects (λi, ξt) were assigned prior distributions across
the space-time cube to better capture the underlying
structure of maternal anaemia prevalence (Eq.2).
Assuming a Besag – York – Mollie (BYM) specifica-

tion, the spatial dependency was formalised using an
intrinsic conditional autoregressive structured model
(ICAR) [32–34]. The Gamma, flat and normal prior dis-
tributions were used for precision parameters, intercept,
and model coefficients respectively (Additional file 1). A
two-chain Markov chain Monte Carlo simulation

(MCMC) model with 71,000 iterations and a burn in of
4000 samples was implemented in the Bayesian software
package WINBUGS [35] (available at http://www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml. Maps of estimated
prevalence rates were created in ArcMap 10.6.1 (ESRI
Inc., Redlands, CA, USA).

Model diagnostics
A random sample of 500 observed data points was
drawn from the space-time cube was used to validate
the predictive power of the model. The data with the
removed points was re-inputted into WinBUGS and the
posterior distribution of the predicted data points and
observed values were compared. The correlation coeffi-
cient and scatterplots were then used to quantify the
association of the predicted prevalence with the crude
observed prevalence at sub-county level (Additional file 1,
Fig. 1). Convergence of the model chains was assessed
visually by inspecting the series plot of each param-
eter and also by using the Gelman-Rubin statistics
[36]. (Additional file 1, Fig. 2).

Results
The burden of maternal anaemia in Kenya from 2016 to
2019
Overall, a total of 886,168 maternal anaemia cases were
reported in 290 sub-county facilities from 2016 to 2019.
Compared to 2016 estimates, the number of cases in-
creased by 10.4% (95% UI: 10.2–10.5) to 171,682 cases in
2017, 69.3% (95% UI: 69.1–69.5) to 263,305 cases
in 2018 and 90.1% (95% UI: 89.9–90.2) to 295,642 cases
in 2019. The fourth quarter ranging from October to
December which coincides with short rainfall season had
the highest number of cases, with 235,295 (26.6%, (95%
UI: 26.5–26.6)) cases recorded. This was followed by the
second quarter ranging from April to June coinciding
with the long rainfall season with 222,250 (25.1% (95%
UI: 25.0–25.2) cases. The third quarter ranging from July
to September had 215,273 (24.3% (95% UI: 24.2–24.4))
cases and first quarter ranging from January to March
with 213,350 (24.1% (95% UI: 24.0–24.2)) cases,
respectively.
The crude prevalence was 15.0% (95% UI: 14.9–15.1)

in 2016 and increased over time by 20.5% (95% UI:
20.4–20.6) in 2017, 23.1% (95% UI: 23.0–23.2) in 2018
and 26.2% (26.1–26.3) in 2019.
In 2016, prevalence estimates ranged from 4.2% (95%

UI: 4.1–4.3) in the first quarter to 23.0% (95% UI: 22.8–
23.2) in the fourth quarter (Fig. 4). The proportion of
sub-counties with normal prevalence was 28.0% (95%
UI: 25.4–30.7), mild prevalence was 48.2% (95% UI:
45.3–51.1), moderate prevalence was 16.8% (95% UI:
14.7–19.1) severe prevalence was 7.0% (95% UI: 5.6–8.6
(Table 1).
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In 2017, maternal anaemia prevalence estimates ranged
from 17.0% (95% UI: 16.8–17.2) in the third quarter to
21.7% (95% UI: 21.5–21.8) in the first quarter. Sub-
counties with severe prevalence increased to 10.5% (95%
UI: 8.8–12.3), whereas moderate prevalence increased to
20.8% (95% UI: 18.5–23.1) (Additional file 2, Table 2).
Compared to the 2016 estimates, the proportion of sub-
counties with normal prevalence appears to have decreased
by 86.1% (95% UI: 81.4–90.7) and by 38.5% (95% UI: 25.2–
51.7) in the first and second quarter respectively (Fig. 4).
In 2018, maternal anaemia prevalence estimates

ranged from 22.2% (95% UI: 22.0–22.3) in the first quar-
ter to 24.3% (95% UI: 24.1–24.5) in the fourth quarter
(Fig. 4). The proportion of sub-counties with normal

prevalence and mild prevalence thresholds decreased to
8.5% (95% UI: 6.9–10.1) and 53.4% (95% UI: 50.5–56.2)
respectively. On the other hand, moderate and severe
prevalence increased to 24.0% (95% UI: 21.5–26.4) and
14.2% (95% UI: 12.3–16.4) respectively (Table 1).
By 2019, the estimated maternal anaemia prevalence

ranged from 24.6% (95% UI: 24.4–24.7) in the first quar-
ter to 27.6% (95% UI: 27.5–27.8) in the third quarter
(Fig. 4). Compared to the 2018 estimates, sub-counties
with normal and mild prevalence decreased by 35.7%
(95% UI: 26.2–45.2) and 10.3% (95% UI: 7.9–12.7) re-
spectively. On the other hand, sub-counties with moder-
ate and severe prevalence increased by 25.5% (95% UI:
20.4–30.7) and 17.0% (95% UI: 11.2–22.7).

Fig. 2 Posterior estimates of Hb cases and prevalence stratified by malaria endemicity. a: The blue and red line for estimated cases and
prevalence respectively represent the lines of best fit according to the locally weighted scatterplot smoothing (loess). Shading indicates 95% UIs
for estimated cases and prevalence. b: Posterior estimates of reported cases and median prevalence stratified by malaria endemicity between
2016 and 2019. (Source: author generated map)

Table 1 Proportion of sub-counties categorized by public health significance of anaemia: Prevalence below 5% was considered to
be normal, prevalence between 5 and 19.9% was a mild public health problem, prevalence between 20 and 39.9% was moderate
public health problem whereas prevalence ≥40% was considered a severe public health problem

Public Health
Problema

Year

2016 2017 2018 2019

Normal (< 5.0%) 28.0 (25.4–30.7) 12.0 (10.1–13.9) 8.5 (6.9–10.1) 5.4 (4.1–6.7)

Mild (5.0–19.9%) 48.2 (45.3–51.1) 56.7 (53.9–59.6) 53.4 (50.5–56.2) 47.8 (45.0–50.8)

Moderate (20.0–39.9%) 16.8 (14.7–19.1) 20.8 (18.5–23.1) 24.0 (21.5–26.4) 30.1 (27.5–32.8)

Severe (> 40.0%) 7.0 (5.6–8.6) 10.5 (8.8–12.3) 14.2 (12.3–16.4) 16.6 (14.5–18.9)
aWHO recommendations for prevalence thresholds to define severity of anaemia
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Spatial distribution of anaemia case counts and
prevalence
Disparities in anaemia prevalence and case counts were
apparent in many sub-counties, reflecting the slow
progress and the need for timely interventions. Overall,
Kisumu Central sub-county had the highest proportion
of estimated case counts with 3.1% (2.9–3.2), followed
by Kinango 2.2% (2.0–2.3)), Matuga 1.9% (1.8–2.1),
Likoni 1.8% (1.6–1.9), Magarini 1.6% (1.5–1.8). On the
other hand, Ol Jorok, Lari, Turkana East, Turkana North
and Narok East sub-counties had the least number of
estimated cases over the study period (Fig. 3).
A continuous geographic disparity in maternal an-

aemia prevalence was evident from 2016 to 2019, with
elevated prevalence exhibited in arid and semi-arid
(ASA) sub-counties located along the Indian ocean
coastline, Lake Victoria region and the North Eastern
and Eastern regions. Elevated prevalence was dominated
by sub-counties in Kwale, Kilifi, Mombasa, Lamu and
Taita-Taveta counties that were located along the Indian
ocean coastline. Highly populated sub-counties around
Lake Victoria basin with elevated prevalence were
Kisumu Central, Nyando, Seme and Nyakach, Kisumu
West, Kisumu East, Bondo, Ugunja, Rarieda and Budalangi.
In arid and semi-arid lands, elevated prevalence was ob-
served in Fafi, Balambala, Lagdera, Dujis, Isiolo South, Kitui
Central, Lafey, Mandera East, Moyale, Saku, Bura, Galole,
Garsen, Wajir West, Wajir East, Wajir North, Kibwezi East,
Kathiani and Kibwezi West sub-counties. Elevated preva-
lence was also observed in highly populated sub-counties
located in Kiambu and Nairobi counties. These sub-
counties were Kiambu Town, Ruiru, Kamukunji, Embakasi
East, Embakasi South, Embakasi Central, and Kasarani.
(Fig. 4).

Maternal anaemia prevalence and malaria endemicity
The spatial distribution of maternal anaemia prevalence
by malaria endemicity showed substantial heterogeneity
in trends. Overall, 45.1% (95% UI: 45.0–45.2) of the
estimated cases were reported in malaria-endemic sub-
counties (Coast endemic and Lake endemic). This was

followed by low risk sub-counties with 23.8% (95% UI:
23.7–23.9) of the cases, seasonal endemic sub-counties
with 18.0% (95% UI: 17.9–18.1) of the cases and high-
land endemic sub-counties with 13.1% (95% UI: 13.0–
13.2) of the cases. Coast endemic zone had the highest
proportion 72.8% (95% UI: 68.3–77.4) of sub-counties
with elevated prevalence followed by the seasonal endemic
zones, lake endemic, low risk and highland endemic zones,
respectively. (Table 2). In the Highland endemic zone,
severe prevalence was dominated by Ainamoi sub-county
in Kericho County.

Discussion
We examined the disparities in maternal anaemia preva-
lence across sub-counties in Kenya from 2016 to 2019.
Our estimates show a distinct pattern of elevated risk in
arid and semi-arid sub-counties located in the North East-
ern and Eastern parts, along the Indian ocean coastline,
and Lake Victoria region over the study period. However,
the diverse and increasing trends of maternal anaemia
may be attributed to a range factors such as communic-
able and non-communicable diseases, regional dietary
preferences, health care access and socio-economic fac-
tors. Thus, caution should be taken when interpreting the
study results. To our knowledge, this study is the first to
estimate maternal anaemia comprehensively at a fine geo-
spatial scale in Kenya, and will bevital to the design and
targeting of local-level maternal healthcare interventions.

Concomitant contributors to maternal anaemia
The importance of maternal anaemia as a direct and in-
direct consequence of malaria and its prevalence among
the vulnerable pregnant women is yet to be reported
consistently as a metric of malaria transmission and
burden in Kenya [37]. Similar to studies done in Sudan,
Rwanda and Uganda [38–40], our study spatial trends
suggests an association between malaria with maternal
anaemia. Malaria-endemic sub-counties located along
the Indian Ocean coastline and Lake Victoria region and
seasonal endemic regions in the North Eastern and East-
ern parts of Kenya dominated the proportion of sub-

Table 2 Proportion of maternal anaemia prevalence stratified by malaria endemic zones, 2016–2019: Coast and Lake endemic sub-
counties have stable malaria transmission throughout the year. Highland epidemic has seasonal transmission patterns with
considerable year-to-year variation whereas Low risk sub-counties have low temperatures unsuitable for the malaria parasite
sporogonic cycle. Seasonal transmission zone has short periods of intense malaria transmission during the rainfall seasons

Endemicity Public Health Significance (95% UI)

Normal (< 5.0%) Mild (5.0–19.9%) Moderate (20.0–39.9%) Severe (> 40.0%)

Coast 1.1% (0.0–2.2) 9.0% (6.1–11.9) 17.1% (13.3–21.0) 72.8% (68.3–77.4)

Highland 20.1% (17.9–23.1) 58.1% (54.9–61.3) 20.2% (17.6–22.8) 1.2% (0.1–1.9)

Lake 8.8% (10.1–14.1) 55.8% (52.7–58.8) 22.5% (19.9–25.1) 9.7% (7.8–11.5)

Low risk 12.6% (10.8–14.4) 58.2% (55.4–60.9) 23.1% (20.8–25.4) 6.2% (4.8–7.5)

Seasonal 13.5% (11.5–15.5) 48.8% (45.9–51.8) 27.3% (24.6–29.9) 10.4% (8.6–12.2)
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Fig. 3 The spatial distribution of predicted Hb cases by subcounty in Kenya, 2016–2019 classified into four classes of 0–100 (light yellow), 101–
500 (orange), 501–1000 (brown) and 1001–4000 (red). (Source: author generated map)
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Fig. 4 Map showing the estimated median prevalence of maternal anaemia in Kenya (2016–2019) using the Bayesian spatio-temporal CAR
model. The classified into four classes based on WHO recommendations for defining anaemia prevalence thresholds. Below 5% (light yellow), 5.0–
19.9% (orange), 20.0–39.9% (brown) and≥ 40% (red). (Source: author generated map)
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counties with elevated prevalence of maternal anaemia
(Fig. 3). Evidence indicates that malaria control in en-
demic counties can improve mean haemoglobin levels in
children and pregnant women, reducing the burden of
severe anaemia by up to 60% [41, 42]. In the era of lim-
ited resources, integrated efforts addressing both malaria
and anaemia in affected sub-counties would be an ideal
avenue of improving the overall population health out-
comes [43].
Human immunodeficiency virus (HIV) infection also

exacerbates anaemia in pregnancy by compromising the
mother’s immune system [42, 44] thereby exposing the
pregnant mother to frequent and severe anaemia. By
depleting the CD4+ T cells, HIV influences the rate of
maternal anaemia progression [45, 46]. This is corroborated
by a cohort study done in western Kenya (Lake endemic
zone) associating malaria and HIV coinfection to doubling
the risk of moderate-severe anaemia in pregnant women
[47] suggesting a possible relationship. Anaemia is also con-
sidered a useful indicator of neglected disease burden and
control [48]. Neglected tropical diseases (NTDs) such as
hookworm infection [49], schistosomiasis [50] causes
anaemia either directly through blood loss or indirectly
through bone marrow suppression, haemolysis, inflamma-
tion [51, 52] also posing a devasting health burden to preg-
nant women. An estimated 40% of households in rural
areas in Kenya rely on low-quality sources of drinking water
such as unprotected wells, surface water and tanker trucks
[53]. These sources are not only prone to pollution, but also
provide conducive breeding grounds for causative agents of
NTDs, which may ultimately contribute to maternal
anaemia.

Micronutrient deficiencies
Nutritional induced anaemia results from the insufficient
bioavailability of haemopoietic nutrients critical for the
haemoglobin and erythrocyte synthesis [12, 54]. This is
intense in pregnancy due to the additional nutritional
demands associated with fetal growth [12]. The high de-
mand of nutrients during pregnancy has bolstered global
and national efforts towards micro-nutrient program-
ming, supplementation and fortification initiatives. How-
ever, low ANC attendance and compliance with Iron
Folic Acid supplementation (IFAS) has been reported in
Kenya [55–58]. Pregnant women in pastoralists domi-
nated sub-counties in the North and North Eastern parts
of Kenya have low dietary diversity due to their high
milk and meat consumption, that is compounded by
irregular rainfall patterns stagnating agricultural produc-
tion and inefficient food systems [59, 60].

Social, economic and cultural factors
Kenya’s growing population inhabits diverse sub-counties
with different socio-economic development levels, health

care needs and health-seeking behaviour [61]. Majority of
the marginalised population live in the arid and semi-arid
parts of Kenya, which tend to have a low density of health-
care facilities [62]. Women in these rural areas have a
limited ability in seeking care, which might impact on
their knowledge levels on the usefulness of critical maternal
interventions. Consistent with findings from a multilevel
study in Ethiopia [63], elevated prevalence of maternal an-
aemia mirrors the inequities between sub-counties, and this
is starkly illustrated by sub-counties in the arid and semi-
arid north of Kenya, areas around Lake Victoria, the rural
north rift, and coastal region [64]. Interestingly, highly pop-
ulated sub-counties in Nairobi and Kiambu characterised
by low social-economic status/urban informal settlements
also had severe prevalence reported over the study period.

Limitations
Maternal anaemia clinical presentation is complex, and
its risk mapping thereof without the covariates may
compromise the accuracy of the map. Haemoglobin
(Hb) measurements done during different semesters
(first – fourth), parity, obstetrical complications and
haematological disorders could have also impacted on
the overall trend. The accuracy of our estimates was also
dependent on the quality and extent of the data continu-
ously obtained from health facilities and entered into the
DHIS2 database. Given the aggregated nature of our in-
put data, it was not feasible to fully explore the role of
systemic problems affiliated with data capture, nor the
extent to which causal inference can be made, due to
the inability to distinguish between missing values (no
data reported) and zero values (no events captured)
within the study confines.
Underreporting of cases outside the formal health facil-

ity may have been missed, especially in sub-counties with
high-prevalence due to overstretched resources, and this
may have biased our analysis. Additionally, the Kenyan
health system faced industrial action of multiple cadres in-
volving doctors, nurses, and clinical officers in 2017 [65,
66]. This might have affected health care provision in the
public health facilities leading to underreporting and con-
sequently the underestimation of maternal anaemia true
population prevalence. Thus, extra caution should be
taken when interpreting the true maternal anaemia preva-
lence in Kenya. Additional research is needed to assess the
dynamic interplay between nutrition, infectious disease,
behavioural tendencies and social-economic factors is
areas with elevated prevalence.

Conclusion
Despite these limitations, our study supports the grow-
ing evidence base for precision public health data, based
on routine health surveillance data and reiterate the im-
portance of timely maternal anaemia prevalence estimate
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as a metric in malaria control. Sub-county estimates can
be used to empower counties to benchmark on the gains
in maternal health against other sub-counties as well as
employ best practices advocated for by their peers. The
elevated risk of maternal anaemia in malaria endemic
sub-counties also calls into question the effectiveness of
nationally initiated IFAS and other ANC programs
intended to improve maternal health outcomes. Findings
also provide a rationale for localised initiatives to com-
plement global and national initiatives so as to meet the
Global Nutrition Targets (GNTs) by 2025. Most import-
antly, in the era of data sparseness; the study provides a
platform for triangulating routinely collected data with
periodic survey-based estimates, so as to structure policy
and steer precision public-health initiatives in a
complete and unbiased manner.
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