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A novel SARS-CoV-2 variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast 

England in November 2020 and is rapidly spreading towards fixation. Using a variety of 

statistical and dynamic modelling approaches, we estimate that this variant has a 43–90% 

(range of 95% credible intervals 38–130%) higher reproduction number than preexisting 

variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will 

lead to large resurgences of COVID-19 cases. Without stringent control measures, 

including limited closure of educational institutions and a greatly accelerated vaccine roll-

out, COVID-19 hospitalisations and deaths across England in 2021 will exceed those in 

2020. Concerningly, VOC 202012/01 has spread globally and exhibits a similar 

transmission increase (59–74%) in Denmark, Switzerland, and the United States.  

In December 2020, evidence began to emerge that a novel SARS-CoV-2 variant, Variant of 

Concern 202012/01 (lineage B.1.1.7, henceforth VOC 202012/01), was rapidly outcompeting 

preexisting variants in southeast England (1). The variant increased in incidence during a 

national lockdown in November 2020, which was mandated in response to a previous and 

unrelated surge in COVID-19 cases, and continued to spread following the lockdown despite 

ongoing restrictions in many of the most affected areas. Concern over this variant led the UK 

government to enact stronger restrictions in these regions on 20 December 2020, and eventually 

to impose a third national lockdown on 5 January 2021. As of 15 February 2021, VOC 

202012/01 comprises roughly 95% of new SARS-CoV-2 infections in England, and has now 

been identified in at least 82 countries (2). Our current understanding of effective pharmaceutical 

and non-pharmaceutical control of SARS-CoV-2 does not reflect the epidemiological and 

clinical characteristics of VOC 202012/01. Estimates of the growth rate, disease severity, and 
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impact of this novel variant are crucial for informing rapid policy responses to this potential 

threat. 

 

Characteristics of the new variant 

VOC 202012/01 is defined by 17 mutations (14 non-synonymous point mutations and 3 

deletions), of which eight are in the spike protein, which mediates SARS-CoV-2 attachment and 

entry into human cells. At least three mutations potentially affect viral function. Mutation 

N501Y is a key contact residue in the receptor binding domain and enhances virus binding 

affinity to human angiotensin converting enzyme 2 (ACE2) (3, 4). Mutation P681H is 

immediately adjacent to the furin cleavage site in spike, a known region of importance for 

infection and transmission (5, 6). Deletion ∆H69/∆V70 in spike has arisen in multiple 

independent lineages of SARS-CoV-2, is linked to immune escape in immunocompromised 

patients, and enhances viral infectivity in vitro (7, 8). This deletion is also responsible for certain 

commercial testing kits failing to detect the spike glycoprotein gene, with genomic data 

confirming these S gene target failures in England are now overwhelmingly due to the new 

variant (1). 

 

The proportion of COVID-19 cases attributable to VOC 202012/01 is rapidly increasing in all 

regions of England, following an initial expansion in the South East (Fig. 1A), and is spreading 

at comparable rates among males and females and across age and socioeconomic strata (Fig. 

1B). One potential explanation for the spread of VOC 202012/01 within England is a founder 

effect: that is, if certain regions had higher levels of transmission as a result of more social 

interactions, variants that were more prevalent within these regions could become more common 
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overall. Changes in social contact patterns correlate closely with changes in transmission (9) (Fig 

1C, D) and with COVID-19 burden in England (10). However, we did not find substantial 

differences in social interactions between regions of high and low VOC 202012/01 prevalence, 

as measured by Google mobility (11) and social contact survey data (12) from September to 

December 2020 (Fig. 1E, F). Therefore, the apparent decoupling between contact rates and 

transmission in late 2020 may suggest altered transmission characteristics for VOC 202012/01.  

 

Measuring the new variant’s growth rate 

VOC 202012/01 appears unmatched in its ability to outcompete other SARS-CoV-2 lineages in 

England. Analysing the COG-UK dataset (13), which comprises over 150,000 sequenced SARS-

CoV-2 samples from across the UK, we found that the relative population growth rate of VOC 

202012/01 in the first 31 days following its initial phylogenetic observation was higher than that 

of all 307 other lineages with enough observations to obtain reliable growth-rate estimates (Fig. 

2A, S1). While the relative growth rate of VOC 202012/01 has declined slightly over time, it 

remains among the highest of any lineage as a function of lineage age (Fig. 2B), and the lineage 

continues to expand. 

 

To quantify the growth advantage of VOC 202012/01, we performed a series of multinomial and 

logistic regression analyses on COG-UK data. A time-varying multinomial spline model 

estimates an increased growth rate for VOC 202012/01 of +0.104 days-1 (95% CI 0.100–0.108) 

relative to the previously dominant lineage, B.1.177 (model 1a, Table 1; Fig. 2C, S2, S3). 

Assuming a generation interval of 5.5 days (14), this corresponds to a 77% (73–81%) increase in 

the reproduction number R. The growth advantage of VOC 202012/01 persists under more 
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conservative model assumptions (model 1b, Table 1; Fig. S4), is consistent across all regions of 

the UK (model 2a, Table S1; Fig. S5), and is similar when measured from S gene target failures 

among community COVID-19 tests instead of COG-UK sequence data (model 2h, Table 1; Fig. 

S6). Data from other countries yield similar results: we estimate that R for VOC 202012/01 

relative to other lineages is 55% (45–66%) higher in Denmark, 74% (66–82%) higher in 

Switzerland, and 59% (56–63%) higher in the United States, with consistent rates of 

displacement across regions within each country (models 3a–c, Table 1; Figs. S6, S7).  

 

As an alternative approach, we performed a regression analysis of previously-estimated 

reproduction numbers from case data against the frequency of S gene target failure in English 

upper-tier local authorities (Fig. 2D), using local control policies and mobility data as covariates 

and including a time-varying spline to capture any unmeasured confounders. This yielded an 

estimated increase in R for VOC 202012/01 of 43% (38–48%), increasing to a 57% (52–62%) 

increase if the spline was not included (model 4a–b, Table 1). The various statistical models we 

fitted yield slightly different estimates for the growth rate of VOC 202012/01, reflecting different 

assumptions and model structures, but all identify a substantially increased growth rate (Table 

S1). 

 

Mechanistic hypotheses for the rapid spread 

To understand possible biological mechanisms for why VOC 202012/01 spreads more quickly 

than preexisting variants, we extended an age- and regionally-structured mathematical model of 

SARS-CoV-2 transmission (10, 15) to consider two co-circulating variants (Fig. S8; Tables S2, 

S3). The model uses Google mobility data (11), validated by social contact surveys (10), to 
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capture changes in contact patterns over time for each region of England. We created five 

versions of the model, each including one alternative parameter capturing a potential mechanism.  

 

The hypotheses we tested are as follows. First, observations of lower Ct values (16–18)—i.e., 

higher viral load—support that VOC may be more transmissible per contact with an infectious 

person than preexisting variants (hypothesis 1). Second, longitudinal testing data (17) suggest 

that VOC may be associated with a longer period of viral shedding, and hence a potentially 

longer infectious period (hypothesis 2). Third, the ∆H69/∆V70 deletion in spike contributed to 

immune escape in an immunocompromised patient (7), potentially suggesting that immunity to 

preexisting variants affords reduced protection against infection with VOC (hypothesis 3). 

Fourth, that VOC initially spread during the November 2020 lockdown in England, during which 

schools were open, suggests that children may be more susceptible to infection with VOC than 

with preexisting variants (hypothesis 4). Children are typically less susceptible to SARS-CoV-2 

infection than adults (19, 20), possibly because of immune cross-protection due to other human 

coronaviruses (21), which could be less protective against VOC. Finally, VOC could have a 

shorter generation time than preexisting variants (hypothesis 5). A shorter generation time could 

account for an increased growth rate without requiring a higher reproduction number, which 

would make control of VOC 202012/01 via social distancing measures relatively easier to 

achieve. 

 

We fit each model to time series of COVID-19 deaths, hospital admissions, hospital and ICU bed 

occupancy, PCR prevalence, seroprevalence, and the proportion of community SARS-CoV-2 

tests with S gene target failure across the three most heavily affected NHS England regions, over 
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the period of 1 March – 24 December 2020 (Figs. 3, S9–S14). We assess models using Deviance 

Information Criteria (DIC) and by comparing model predictions to observed data for the 14 days 

following the fitting period (i.e., 25 December 2020 – 7 January 2021). Of the five hypotheses 

assessed, hypothesis 1 (increased transmissibility) had the lowest (i.e., best) combined DIC and 

predictive deviance. Hypotheses 2 (longer infectious period) and 4 (increased susceptibility in 

children) also fitted the data well, although hypothesis 4 is not well supported by household 

secondary attack rate data (Fig. S15) or by age-specific patterns of S gene target failure in the 

community (Fig. S16), neither of which identify a substantial increase in susceptibility among 

children. Hypotheses 3 (immune escape) and 5 (shorter generation time) fit poorly (Fig. 3A; 

Table S4). In particular, hypothesis 5 predicted that the relative frequency of VOC 202012/01 

should have dropped during stringent restrictions in late December 2020, because when two 

variants have the same Rt < 1 but different generation times, infections decline faster for the 

variant with the shorter generation time.  

 

We fitted a combined model incorporating the five hypotheses above, but it was not able to 

identify a single consistent mechanism across NHS England regions, demonstrating that a wide 

range of parameter values are compatible with the observed growth rate of VOC 202012/01 (Fig. 

S14). Based on our analysis, we identify increased transmissibility as the most parsimonious 

model, but emphasize that the five mechanisms explored here are not mutually exclusive and 

may be operating in concert.  

 

The increased transmissibility model does not identify a clear increase or decrease in the severity 

of disease associated with VOC 202012/01, finding similar odds of hospitalisation (estimated 
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odds ratio of hospitalisation given infection, 0.92 [95% credible intervals 0.77–1.10]), critical 

illness (OR 0.90 [0.58–1.40]), and death (OR 0.90 [0.68–1.20]), based upon fitting to the three 

most heavily affected NHS England regions (Fig. 3B). These estimates should be treated with 

caution, as we would not expect to identify a clear signal of severity when fitting to data up to 24 

December 2020, given delays between infection and hospitalization or death. However, the fitted 

model finds strong evidence of higher relative transmissibility, estimated at 65% (95% CrI: 39–

93%) higher than preexisting variants for the three most heavily affected NHS England regions, 

or 82% (43–130%) when estimated across all seven NHS England regions (model 5a, Table 1). 

These estimates of increased transmissibility are consistent with our statistical estimates and with 

a previous estimate of a 70% increased reproduction number for VOC 202012/01 (16). This 

model reproduces observed epidemiological dynamics for VOC 202012/01 (Figs. 3C, S17). 

Without the introduction of a new variant with a higher growth rate, the model is unable to 

reproduce observed dynamics (Fig. 3D–E, Fig. S17–S19), further highlighting that changing 

contact patterns do not explain the spread of VOC 202012/01. 

 

Implications for COVID-19 dynamics in England 

Using the best-performing transmission model (increased transmissibility) fitted to all seven 

NHS England regions, we compared projected epidemic dynamics under different assumptions 

about control measures from mid-December 2020 to the end of June 2021. We compared four 

scenarios for non-pharmaceutical interventions (NPIs) introduced on 1 January 2021: (i) a 

moderate-stringency scenario with mobility levels as observed in the first half of October 2020; 

(ii) a high-stringency scenario with mobility levels as observed during the second national 

lockdown in England in November 2020, with schools open; (iii) the same high-stringency 
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scenario, but with schools closed until 15 February 2021; and (iv) a very high-stringency 

scenario with mobility levels as observed during the first national lockdown in early April 2020, 

with schools closed (Fig. S20). In combination with these NPI scenarios, we considered three 

vaccination scenarios: no vaccinations; 200,000 vaccinations per week; and 2 million 

vaccinations per week. We assumed that vaccine rollout starts on 1 January 2021 and that 

vaccinated individuals have a 95% lower probability of disease and a 60% lower probability of 

infection than unvaccinated individuals. For simplicity, we assumed that vaccine protection was 

conferred immediately upon receipt of one vaccine dose. Note that these projections serve as 

indicative scenarios rather than formal predictive forecasts.  

 

Regardless of control measures, all regions of England were projected to experience a new wave 

of COVID-19 cases and deaths in early 2021, peaking in February 2021 if no substantial control 

measures are introduced, or in mid-January 2021 if strong control measures succeeded in 

reducing R below 1 (Fig. 4A). In the absence of substantial vaccine roll-out, the number of 

COVID-19 cases, hospitalisations, ICU admissions and deaths in 2021 were predicted to exceed 

those in 2020, even with stringent NPIs in place (Table 2). Implementing more stringent 

measures in January 2021 (scenarios iii and iv) led to a larger rebound in cases when simulated 

restrictions were lifted in March 2021, particularly in those regions that had been least affected 

up to December 2020 (Fig. S21). However, these more stringent measures may buy time to reach 

more widespread population immunity through vaccination. Vaccine roll-out further mitigates 

transmission, although the impact of vaccinating 200,000 people per week—similar in 

magnitude to the rates reached in December 2020—was relatively small (Fig. 4B, Fig. S22). An 

accelerated uptake of 2 million people fully vaccinated per week (i.e., 4 million doses for a two-
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dose vaccine) had a much more substantial impact (Fig. 4C, Fig. S23). However, accelerated 

vaccine roll-out has a relatively limited impact on peak burden, as the peak is largely mediated 

by the stringency of NPIs enacted in January 2021, before vaccination has much of an impact. 

The primary benefit of accelerated vaccine roll-out lies in helping to avert a resurgence of cases 

following the relaxation of NPIs, and in reducing transmission after the peak burden has already 

been reached. 

 

As a sensitivity analysis, we also ran model projections with a seasonal component such that 

transmission is 20% higher in the winter than in the summer (22), but this did not qualitatively 

affect our results (Fig. S24, Table S5). 

 

Discussion 

 

Combining multiple behavioural and epidemiological data sources with statistical and dynamic 

modelling, we estimated that the novel SARS-CoV-2 variant VOC 202012/01 has a 43–90% 

(range of 95% credible intervals 38–130%) higher reproduction number than preexisting variants 

of SARS-CoV-2 in England, assuming no changes to the generation interval. Based on early 

population-level data, we were unable to identify whether the new variant is associated with 

higher disease severity. Theoretical considerations suggest that mutations conferring increased 

transmissibility to pathogens may be inextricably linked to reduced severity of disease (23). 

However, this framework assumes that a long history of adaptive evolution has rendered 

mutations yielding increased transmissibility inaccessible without a decrease in virulence, which 

does not obviously hold for a recently emerged human pathogen such as SARS-CoV-2. 
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Regardless, without strengthened controls, there is a clear risk that future epidemic waves may 

be larger – and hence associated with greater burden – than previous waves. The UK government 

initiated a third national lockdown on 5 January 2021 in response to the rapid spread of VOC 

202012/01, including school closures. Educational settings are among the largest institutions 

linked to SARS-CoV-2 clusters that remained open during the November 2020 lockdown (24), 

which means the enacted school and university closures may substantially assist in reducing the 

burden of COVID-19 in early 2021.  

 

The rise in transmission from VOC 202012/01 has crucial implications for vaccination. First, it 

means prompt and efficient vaccine delivery and distribution is even more important to reduce 

the impact of the epidemic in the near future. Increased transmission resulting from VOC 

202012/01 will raise the herd immunity threshold, meaning the potential burden of SARS-CoV-2 

is larger and higher vaccine coverage will be required to achieve herd immunity. It is therefore 

extremely concerning that VOC 202012/01 has spread to at least 82 countries globally (2). 

Although VOC 202012/01 was first identified in England, a rapidly spreading variant has also 

been detected in South Africa (25, 26), where there has been a marked increase in transmission 

in late 2020. Another variant exhibiting immune escape has emerged in Brazil (27, 28). Thus, 

vaccination timelines will also be a crucial determinant of future burden in other countries where 

similar new variants are present. Second, there is a need to assess how VOC 202012/01 and other 

emerging lineages affect the efficacy of vaccines (29, 30). Vaccine developers may need to 

consider developing formulations with variant sequences, and powering post-licensure studies to 

detect differences in efficacy between the preexisting and new variants. Licensing authorities 
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may need to clarify abbreviated pathways to marketing for vaccines that involve altering strain 

formulation without any other changes to their composition. 

 

There are limitations to our analysis. We have considered a small number of intervention and 

vaccination scenarios, which should not be regarded as the only available options for 

policymakers. Our transmission model does not explicitly capture care home or hospital 

transmission of SARS-CoV-2, and is fit to each region of England separately rather than pooling 

information across regions and explicitly modelling transmission between regions. There are also 

uncertainties in the choice of model used to generate these predictions, and the exact choice will 

yield differences in the measures needed to control the epidemic. We note that even without 

increased susceptibility of children to VOC 202012/01, the more efficient spread of the variant 

implies that the difficult societal decision of closing schools will be a key public health question 

for multiple countries in the months ahead.  

 

We only assess relative support in the data for the mechanistic hypotheses proposed, but there 

may be other plausible mechanisms driving the resurgence of cases that we did not consider, and 

we have not identified the specific combination of mechanisms driving the increased 

transmission of VOC 202012/01. We identify increased transmissibility as the most 

parsimonious mechanistic explanation for the higher growth rate of VOC 202012/01, but a 

longer infectious period also fits the data well (Table S4) and is supported by longitudinal 

testing data (17). Our conclusions about school closures were based on the assumption that 

children had reduced susceptibility and infectiousness compared to adults (19), but the precise 

values of these parameters and the impact of school closures remains the subject of scientific 
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debate (31). We based our assumptions about the efficacy of NPIs on the measured impact on 

mobility of previous national lockdowns in England, but the impact of policy options cannot be 

predicted with certainty.  

 

Despite these limitations, we found strong evidence that VOC 202012/01 is spreading 

substantially faster than preexisting SARS-CoV-2 variants. Our modelling analysis suggests this 

difference could be explained by an overall higher infectiousness of VOC 202012/01, but not by 

a shorter generation time or immune escape alone. Further experimental work will provide 

insight into the biological mechanisms for our observations, but given our projections of a rapid 

rise in incidence from VOC 202012/01—and the detection of other novel and highly-

transmissible variants (25–28)—there is an urgent need to consider what new approaches may be 

required to sufficiently reduce the ongoing transmission of SARS-CoV-2.  
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Materials and Methods 

 

Summary of control measures in England in late 2020 

Following a resurgence of cases in September and October 2020, a second national lockdown 

was implemented in England, from 5 November to 2 December 2020. Restrictions included a 

stay-at-home order with exemptions for exercise, essential shopping, obtaining or providing 

medical care, education and work for those unable to work from home. Schools were kept open. 

Non-essential shops, retail and leisure venues were required to close. Pubs, bars and restaurants 

were allowed to offer takeaway services only. Following the second national lockdown, regions 

in England were assigned to tiered local restrictions according to medium, high and very high 

alert levels (Tiers 1, 2 and 3). In response to rising cases in southeast England and concerns over 

VOC 202012/01, the UK government announced on 19 December 2020 that a number of regions 

in southeast England would be placed into a new, more stringent ‘Tier 4’, corresponding to a 

Stay at Home alert level. Tier 4 restrictions were broadly similar to the second national lockdown 

restrictions. As cases continued to rise and VOC 202012/01 spread throughout England, on 5 

January 2021 a third national lockdown was introduced in England, with schools and universities 

closed and individuals advised to stay at home, with measures to be kept in place until at least 

mid-February 2021. 

 

Data sources 

To assess the spread of VOC 202012/01 in the United Kingdom, we used publicly-available 

sequencing-based data from the COG-UK Consortium (13) (5 February 2020 – 6 January 2021) 

and Pillar 2 SARS-CoV-2 testing data provided by Public Health England (1 October 2020 – 7 
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January 2021) for estimating the frequency of S gene target failure in England. COG-UK 

sequencing data for Northern Ireland were excluded due to low sample sizes. 

 

To assess the spread of VOC 202012/01 in Denmark, Switzerland and the USA, we used 

publicly available sequence data giving the incidence of VOC 202012/01 aggregated by week 

and region provided by the Danish Covid-19 Genome Consortium & the Statens Serum Institut 

(32) (15 October 2020 – 28 January 2021), sequence and RT-PCR 501Y.V1 rescreening data 

giving the incidence of VOC 202012/01 in different regions of Switzerland provided by 

Christian Althaus and Tanja Stadler and the Geneva University Hospitals, the Swiss Viollier 

Sequencing Consortium from ETH Zürich, the Risch laboratory, the University Hospital Basel, 

the Institute for Infectious Diseases, University of Bern and the Swiss National Covid-19 Science 

Task Force (33, 34) (2 November 2020 – 11 Feb 2021), and publicly available US nation-wide 

Helix SARS-CoV-2 Surveillance data, comprising both S-gene target failure data and randomly 

selected S-negative samples that were sequenced to infer the proportion of S-negative samples 

that were the VOC (35, 36) (6 September – 11 February 2020).  

 

To estimate mobility, we used anonymised mobility data collected from smartphone users by 

Google Community Mobility (11). Percentage change in mobility per day was calculated for 

each lower-tier local authority in England and a generalised additive model with a spline for time 

was fitted to these observations to provide a smoothed effect of the change in mobility over time 

(Fig. 1C).  
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To estimate social contact rates (Fig. 1D), we used data on reported social contacts from the 

CoMix survey (12), which is a weekly survey of face-to-face contact patterns, taken from a 

sample of approximately 2500 individuals broadly representative of the UK population with 

respect to age and geographical location. We calculated the distribution of contacts using 1000 

bootstrap samples with replacement from the raw data. Bootstrap samples were calculated at the 

participant level, then all observations for those participants are included in a sample to respect 

the correlation structure of the data. We collect data in two panels which alternate weekly, 

therefore we calculated the mean smoothed over the 2 week intervals to give a larger number of 

participants per estimate and account for panel effects. We calculated the mean number of 

contacts (face to face conversational contact or physical contact) in the settings “home”, “work”, 

“education” (including childcare, nurseries, schools and universities and colleges), and “other” 

settings. We calculate the mean contacts by age group and area of residence (those areas which 

were subsequently placed under Tier 4 restrictions on 20 December 2020 as they were 

experiencing high and rapidly increasing incidence, and those areas of England that were not 

placed under these restrictions). The mean number of contacts is influenced by a few individuals 

who report very high numbers of contacts (often in a work context). The means shown here are 

calculated based on truncating the maximum number of contacts recorded at 200 per individual 

per day. We compare Rt estimates derived from CoMix (12) to those derived from the REACT-1 

prevalence survey (9) for England. 

 

Statistical methods in brief 

Growth of VOC 202012/01 following initial phylogenetic observation — For each lineage i in the 

COG-UK dataset, we pool the number of sequences observed within that lineage across the UK 
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for every day, t, yielding integer-valued sequence counts N(i, t). We estimate the time-varying 

exponential growth rates of cases of each strain, r(i, t), using a negative binomial state-space 

model correcting for day-of-week effects whose dispersion parameter was optimized for each 

strain by marginal likelihood maximization. We defined the relativized growth rate of a lineage i 

at time t as !(#, %) = ()(#, %) − )̅(%),/.!(%), where )̅(%) is the average growth rate of all 

circulating strains at time t and .!(%) the standard deviation of growth rates across all lineages at 

time t, such that !(#, %) is analogous to a z-statistic or Wald-type statistic and allows comparison 

of growth rate differences across time when the average growth rate and scale of growth rate 

differences varies.  

 

Competitive advantage and increased growth rate of VOC-202012/01 — To estimate the 

increase in growth rate of VOC 202012/01, we fitted a set of multinomial and binomial 

generalized linear mixed models (GLMMs), in which we estimated the rate by which the VOC 

displaces other resident SARS-CoV-2 variants across different regions in the UK, based on both 

the COG-UK sequence data as well as the S gene target failure data. In the analysis of the S gene 

target failure data, binomial counts were adjusted for the true positive rate. For comparison, we 

also calculated the growth advantage of the VOC in Denmark, Switzerland and the US based on 

both sequencing and S gene target failure data. All models took into account sample date and 

region plus, if desired, their interaction, and all mixed models took into account possible 

overdispersion and for the UK further included local-tier local authority as a random intercept. 

From these models, we estimated the difference in Malthusian growth rate between other 

competing variants Dr, as well as the expected multiplicative increase in basic reproduction 

number Rt and infectiousness, assuming unaltered generation time, which can be shown to be 



 
 

18 
 

equal to exp(∆r.T), where T is the mean generation interval. The multiplicative increase being 

equal to exp(∆r.T) is an approximation that holds for a delta-distributed generation interval, but 

we show in the Supplementary Material that this is a good approximation for the gamma-

distributed generation interval that we assume. In our calculations, we used estimated SARS-

CoV-2 mean generation times T of either 5.5 days (14) (Table 1) or 3.6 days (37, 38) (Table S1). 

 

Rt analysis — We calculated the weekly proportion of positive tests that were S-gene negative 

out of all positive tests that tested for the S-gene by English upper-tier local authority. We used 

reproduction number estimates obtained using the method described in (37) and (39) and 

implemented in the EpiNow2 R package (40), downloaded from 

https://github.com/epiforecasts/covid-rt-estimates/blob/ master/subnational/united-kingdom-

local/cases/summary/rt.csv. We then built a separate model of the expected reproduction number 

in UTLA i during week t starting in the week beginning the 5 October 2020 as a function of local 

restrictions, mobility indicators, residual temporal variation, and proportion of positive tests with 

S gene target failure. The residual temporal variation is modelled either as a region-specific thin-

plate regression spline ("Regional time-varying") or a static regional parameter ("Regional 

static"). The key estimand is the relative change in reproduction number in the presence of S 

gene target failure that is not explained by any of the other variables. 

 

Transmission dynamic model 

We extended a previously developed modelling framework structured by age (in 5-year age 

bands, with no births, deaths, or aging due to the short timescales modelled) and by geographical 

region (10, 15) to include two variants of SARS-CoV-2 (VOC 202012/01 and non-VOC 
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202012/01). The model is a discrete-time deterministic compartmental model which allows for 

arbitrary delay distributions for transitions between compartments. We fitted this model to 

multiple regionally-stratified data sources across the 7 NHS England regions as previously: 

deaths, hospital admissions, hospital bed occupancy, ICU bed occupancy, daily incidence of new 

infections, PCR prevalence of active infection, seroprevalence, and the daily frequency of VOC 

202012/01 across each of the regions as measured by S gene target failure frequency corrected 

for false positives. The model assumes that individuals with clinical symptoms are more 

infectious than individuals with subclinical infection (19). We assume that vaccinated individuals 

have a lower probability of both clinical and subclinical infection (Fig. S9), but that vaccinated 

individuals who do develop clinical or subclinical infection are as infectious as unvaccinated 

individuals with clinical or subclinical infection. To model school closure, we removed all 

school contacts from our contact matrix based upon POLYMOD data and varying over time 

according to Google Mobility indices, as described previously (10). See Supporting Information 

for details of Bayesian inference including likelihood functions and prior distributions. 

 

Our individual transmission model fits to separate NHS regions of England produce independent 

estimates of parameters such as relative transmissibility and differences in odds of hospitalisation 

or death resulting from infection with VOC 202012/01. In order to produce overall estimates for 

these parameters, we model posterior distributions from individual NHS regions as draws from a 

mixture distribution, comprising a normally-distributed top-level distribution from which central 

estimates for each NHS region are drawn. We report the mean and credible intervals of the top-

level distribution when reporting model posterior estimates for England. 

 



 
 

20 
 

In model fitting, we assume that our deterministic transmission model approximates the 

expectation over stochastic epidemic dynamics. This is not exact (41) but the error in this 

approximation is small for the population-level processes we are modelling, as it decays with 1/N 

(42). This approach is well developed for state space models of communicable disease dynamics 

that fit an epidemic process to observed data via a stochastic observation process. 

 

Apparent growth of VOC 202012/01 not a result of testing artefacts 

The apparent frequency of VOC 202012/01 could be inflated relative to reality if this variant 

leads to increased test-seeking behaviour (e.g. if it leads to a higher rate of symptoms than 

preexisting variants). However, this would not explain the growth in the relative frequency of 

VOC 202012/01 over time. Mathematically, if variant 1 has growth rate r1 and variant 2 has 

growth rate r2, the relative frequency over time is a2 exp(r2t) / (a1 exp(r1t) + a2 exp(r2t)), where 

a1 and a2 are the frequency of variant 1 and 2, respectively, at time t = 0. However, if variant 1 

has probability x of being reported and variant 2 has probability y, and both have growth rate r, 

the relative frequency over time is a2 y exp(rt) / (a1 x exp(rt) + a2 y exp(rt)), which is constant. 
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Figures 

 
Fig. 1. Rapid spread of VOC 202012/01 in England. (A) Proportion of S gene target failure among 
positive Pillar 2 community SARS-CoV-2 tests in upper-tier local authorities of England from 1 October 
2020–10 January 2021, sorted by latitude. (B) Spread of S gene target failure by age, index of multiple 
deprivation decile (1 = most deprived), and sex within Greater London. (C, D) Estimates of R0 from 
CoMix social contact survey (12) compared to Rt estimates from REACT-1 prevalence survey (9) for 
England, with 90% CIs. Rt estimates based on single and aggregated REACT-1 survey rounds are shown. 
(E) Percentage change (95% CI) in Google Mobility indices relative to baseline over time and (F) setting-
specific mean contacts (95% CI) from the CoMix study (12) over time and by age for Tier 4 local 
authorities compared to the rest of England. Tier 4 local authorities are areas within the South East, East 
of England, and London regions that were placed under stringent restrictions from 20 December 2020 due 
to high prevalence of VOC 202012/01 and growing case rates. Grey shaded areas show the second 
national lockdown in England.  
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Fig. 2. Measuring the growth rate of VOC 202012/01. (A) Average relativized growth rate, i.e. a 
measure of variant fitness relative to other variants present during the 31 days following initial 
phylogenetic observation of a given variant, for all lineages in the COG-UK dataset, highlighting many 
lineages that have risen to prominence including B.1.177, the lineage with the highest relative abundance 
during the IPO of VOC 202012/01. The shaded regions show conservative 95% rejection intervals; VOC 
202012/01 is the first strain to exceed this threshold of faster relativized growth. While many lineages 
exhibit above-average rates of growth, VOC 202012/01 has had the highest average relativized growth of 
any lineage in the history of COG-UK surveillance of SARS-COV-2. (B) Plotting all lineages’ relativized 
growth rates (!(#)) as a function of lineage age with conservative 95% rejection intervals highlights the 
significantly faster growth of VOC 202012/01 relative to other lineages at comparable times since their 
initial observation. Later declines in VOC and B.1.177 correspond to highly uncertain estimates of growth 
rates for data that are yet to be backfilled, and so these declines in !(#) are sensitive to the processing of 
future sequences from recent dates (Fig. S1). (C) Muller plots of the relative abundances of the major 
SARS-CoV-2 variants in the UK, based on a multinomial spline fit to COG-UK sequence data (separate-
slopes multinomial spline model, Tables 1 & S1). A model extrapolation until March 1 is shown (shaded 
area). Minority variants are 440 circulating SARS-CoV-2 variants of low abundance. Specific colours 
represent the same lineages in panels A–C. (D) Mean reproduction number over 7-day periods in 149 
upper-tier local authorities of England (coloured by the NHS England region they are within) plotted 
against the weekly proportion of Pillar 2 community SARS-CoV-2 tests with S gene target failure shows 
the spread of VOC 202012/01, a corresponding increase in the reproduction number by local authority, 
and the eventual impact of targeted government restrictions from 20 December 2020. Testing data are 
shown for the week following the reproduction number estimates to account for delays from infection to 
test. 
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Fig. 3. Comparison of possible biological mechanisms underlying the rapid spread of VOC 
202012/01. Each row shows a different assumed mechanism. (A) Relative frequency of VOC 202012/01 
(black line and ribbon shows observed S gene target failure frequency with 95% binomial credible 
interval; purple line and ribbon shows mean and 95% credible interval from model fit). (B) Posterior 
estimates for relative odds of hospitalisation (severe illness), relative odds of ICU admission (critical 
illness), relative odds of death (fatal illness), growth rate as a multiplicative factor per week (i.e. 
exp(7·∆r)), and the parameter that defines the hypothesised mechanism; all parameters are relative to 
those estimated for preexisting variants. Illustrative model fits for the South East NHS England region: 
(C) fitted two-strain increased transmissibility model with VOC 202012/01 included; (D) fitted two-strain 
increased transmissibility model with VOC 202012/01 removed; (E) fitted single-strain model without 
emergence of VOC 202012/01. 
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Fig. 4. Projections of epidemic dynamics under different control measures. We compare four 
alternative scenarios for non-pharmaceutical interventions from 1 January 2021: (i) mobility returning to 
levels observed during relatively moderate restrictions in early October 2020; (ii) mobility as observed 
during the second lockdown in England in November 2020, then gradually returning to October 2020 
levels from 1 March to 1 April 2021, with schools open; (iii) as (ii), but with school closed until 15 
February 2021; (iv) as (iii), but with a lockdown of greater stringency as observed in March 2020 (Fig. 
S20). (A) Without vaccination. (B) With 200,000 people vaccinated per week. (C) With 2 million people 
vaccinated per week. We assume that vaccination confers 95% vaccine efficacy against disease and 60% 
vaccine efficacy against infection, and that vaccination starts on 1 January 2021 with vaccine protection 
starting immediately upon receipt. This is intended to approximate the fact that vaccination started in 
early December, but that full protection occurs after a time lag and potentially after a second dose. 
Vaccines are given first to 70+ year olds until 85% coverage is reached in this age group, then to 60+ year 
olds until 85% coverage is reached in this age group, continuing into younger age groups in 10-year 
decrements. Resurgences starting in March 2021 are due to the relaxation of non-pharmaceutical 
interventions, including reopening schools (Fig. S20). Median and 95% credible intervals are shown. The 
dotted lines in rows 2 and 3 show peak hospitalisations and deaths from the first COVID-19 wave in 
England (April 2020).   
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Tables 

 

Table 1. Estimates of increased reproduction number for VOC 202012/01.  

Means and 95% CIs (GLMM) / 95% CrIs (Rt regression, transmission model) shown. GLMM 

models do not estimate a baseline growth rate or reproduction number. See Table S1 for full 

details. 

Model type 
 

Model 
assumptions 

Data Geography Baseline growth rate Additive increase in 
growth rate, ∆r 

Baseline 
reproduction 
number 

Multiplicative 
increase in 
reproduction 
number* 

GLMM 1a separate-slopes 
multinomial 
spline model† 

sequence regions of UK — 0.104 [0.100, 0.108] — 77% [73, 81] 

GLMM 1b common-slope 
multinomial 
model† 

sequence lower-tier local 
authorities of 
UK 

— 0.093 [0.091, 0.095] — 67% [65, 69] 

GLMM 2h separate-slope 
binomial spline 
model†† 

S gene target 
failure** 

regions of 
England 

— 0.109 [0.107, 0.111] — 83% [81, 84] 

Rt regression 4a regional time-
varying 
baseline 

S gene target 
failure 

upper-tier local 
authorities of 
England 

0.007 [0.002, 0.012] 0.067 [0.060, 0.073] 1.04 [1.01, 1.07] 43% [38, 48] 

Rt regression 4b regional static 
baseline 

S gene target 
failure 

upper-tier local 
authorities of 
England 

0.007 [0.002, 0.012] 0.085 [0.079, 0.091] 1.04 [1.01, 1.07] 57% [52, 62] 

Transmission 
model 

5a increased 
transmissibility 

S gene target 
failure** 

regions of 
England 

-0.001 [-0.017, 0.012] 0.118 [0.067, 0.168] 1.01 [0.94, 1.09] 82% [43, 130]  

GLMM 3a common-slope 
binomial 
model†† 

sequence regions of 
Denmark 

— 0.080 [0.067, 0.092] — 55% [45, 66] 

GLMM 3b common-slope 
binomial 
model†† 

sequence + 
RT-PCR 
rescreening 

regions of 
Switzerland 

— 0.101 [0.092, 0.109] — 74% [66, 82] 

GLMM 3c common-slope 
binomial 
model†† 

S gene target 
failure** 

states of USA — 0.084 [0.080, 0.088] — 59% [56, 83] 

† VOC 202012/01 versus B.1.177 
†† VOC 202012/01 versus all other variants 
* Increases in the reproduction number assume a generation interval of 5.5 days. 
** Binomial counts adjusted for the true positive rate (proportion of S gene target failures that 
are VOC 202012/01), estimated from misclassification model (for UK) or a binomial GLMM 
fitted to sequencing data of S gene target failures (for US).  
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Table 2. Summary of projections for England, 15 December 2020 – 30 June 2021.  

No vaccination 
 

Moderate (October 
2020) 

High (November 2020) with 
schools open 

High with schools 
closed 

Very high (March 
2020) 

Peak ICU (relative 
to 1st wave) 

274% (256 - 292%) 162% (151 - 172%) 130% (122 - 136%) 119% (112 - 124%) 

Peak ICU bed 
requirement 

9,980 (9,330 - 
10,600) 

5,880 (5,490 - 6,280) 4,720 (4,450 - 4,960) 4,310 (4,070 - 4,530) 

Peak deaths 3,960 (3,730 - 4,200) 2,050 (1,920 - 2,160) 1,500 (1,440 - 1,570) 1,830 (1,670 - 2,000) 

Total admissions 635,000 (604,000 - 
659,000) 

454,000 (432,000 - 472,000) 448,000 (425,000 - 
466,000) 

450,000 (425,000 - 
472,000) 

Total deaths 216,000 (205,000 - 
227,000) 

146,000 (138,000 - 152,000) 147,000 (139,000 - 
155,000) 

149,000 (140,000 - 
157,000) 

 
200,000 vaccinations per week 

 
Moderate (October 
2020) 

High (November 2020) with 
schools open 

High with schools 
closed 

Very high (March 
2020) 

Peak ICU (relative 
to 1st wave) 

269% (252 - 287%) 160% (149 - 170%) 130% (122 - 136%) 118% (112 - 124%) 

Peak ICU bed 
requirement 

9,790 (9,150 - 
10,400) 

5,810 (5,430 - 6,200) 4,710 (4,450 - 4,950) 4,310 (4,070 - 4,520) 

Peak deaths 3,700 (3,500 - 3,920) 1,930 (1,820 - 2,040) 1,490 (1,430 - 1,550) 1,320 (1,280 - 1,380) 

Total admissions 610,000 (580,000 - 
634,000) 

438,000 (416,000 - 454,000) 415,000 (394,000 - 
430,000) 

394,000 (373,000 - 
413,000) 

Total deaths 202,000 (192,000 - 
213,000) 

137,000 (130,000 - 143,000) 129,000 (123,000 - 
135,000) 

119,000 (112,000 - 
125,000) 

 
2 million vaccinations per week 

 
Moderate (October 
2020) 

High (November 2020) with 
schools open 

High with schools 
closed 

Very high (March 
2020) 

Peak ICU (relative 
to 1st wave) 

236% (221 - 252%) 149% (139 - 158%) 128% (121 - 134%) 118% (111 - 124%) 

Peak ICU bed 
requirement 

8,590 (8,050 - 9,170) 5,400 (5,070 - 5,760) 4,650 (4,390 - 4,880) 4,290 (4,060 - 4,500) 

Peak deaths 2,470 (2,330 - 2,610) 1,510 (1,450 - 1,580) 1,390 (1,340 - 1,450) 1,290 (1,250 - 1,340) 

Total admissions 483,000 (459,000 - 
502,000) 

353,000 (337,000 - 366,000) 277,000 (265,000 - 
287,000) 

190,000 (182,000 - 
197,000) 

Total deaths 140,000 (133,000 - 
146,000) 

98,900 (94,600 - 103,000) 81,000 (77,600 - 
84,200) 

58,200 (56,100 - 
60,300) 
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Materials and Methods 
Growth rate of VOC 202012/01 following its initial phylogenetic observation  

It’s possible a strain could get lucky and display faster growth rates than other strains, 
appearing more transmissible despite not being so. Several confounds can affect the significance 
of an inference of faster growth in a strain such as VOC 202012/01. For instance, any correlated 
patterns in people of that network can affect the probability a strain has an impressive run of 
faster growth rates than other strains - if a new strain discovers a region of a contact network 
with a higher fraction of susceptible people than that experienced by other strains elsewhere on 
the contact network, then the lucky strain in a pool of susceptible people may appear to grow 
faster due to the human population structure and not the virus’ phenotypic traits. Similarly, any 
changes in NPIs that increase the average risk of transmission across subsets of the contact 
network (e.g. variation in the tier level across the UK) or any patterns of behavior that increase 
the variability of the risk of transmission across people in the network (e.g. when some 
connected groups of people have a higher-than-average risk of transmission due to occupation, 
less participation in transmission-reducing behaviors, etc.) might affect the probability that a 
strain exhibits a large run such as that seen in VOC 202012/01. 

Furthermore, since defining a “new strain” requires at least 5 genomes of at least 95% 
coverage co-localized in space (44) it’s possible that newly named strains could be more likely to 
have faster-than-average growth rates as these growing branches of the viral phylogeny may be 
bioindicators of a spatially (or contact-network) autocorrelated pool of susceptible people with 
room for further, faster growth. 

In this section, we aim to control for time-varying average growth rates, heterogeneity in 
population structure, and the potential for lineages to be bioindicators of spatially-autocorrelated 
susceptible populations with an expectation of faster growth after the initial phylogenetic 
observation (IPO) of the lineage. When accounting for time-varying average growth rates across 
lineages in circulation, the time varying scale fitness differences across lineages at every point in 
time, and the time since the initial phylogenetic observation (IPO), the VOC 202012/01 stands 
out as having the fastest post-IPO relative growth of any lineage in the COG-UK dataset (Fig. 
2A&B, main text). 

This analysis centered around what we refer to as the “relativized growth rate”. For each 
lineage i in the COG metadata dataset, we pool the number of sequences observed within that 
lineage across the UK for every day, t, yielding integer-valued sequence counts N(i, t). We 
estimate the time-varying exponential growth rates of cases of each strain, r(i, t), using a 
negative binomial state-space model whose dispersion parameter was optimized for each strain 
by marginal likelihood maximization. The negative binomial state-space model was 
implemented using the R package KFAS (45) to estimate abundances and growth rates with a 
second-order polynomial trend to capture time-varying exponential growth/decay and a 7-day 
seasonal component to correct for day-of-week effects. 

To remove the impact of leading zeros on estimates of growth rates, we started estimating 
growth rates on the first date for which the following week contained at least three observations 
of the lineage (including the first observation of that week) – we call the first date of this week 
the “initial phylogenetic observation” or IPO of the lineage. For lagging zeroes, we removed any 
zeroes after 7 days of consecutive zeros which continued until the final date used in this analysis. 
As a result of this filtering of leading and lagging zeroes, there was a variable number of lineages 
each day, but these lineages served as a minimal set of lineages whose growth rates can serve as 
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a reference frame for assessing the significance of the growth and changes in relative abundance 
of the VOC (46). 

The final date used in this analysis was determined by an analysis of backfilling patterns of 
the COG-UK dataset. The COG-UK dataset contains a “sample date” column for every 
sequence, and samples are not added on the date they are collected but back-filled once samples 
are shipped, sequenced, and uploaded. As a consequence, the recent dates in the COG-UK 
dataset exhibit a decline in the total number of counts and lineage richness, a period during 
which there will be biases in comparing growth rates across lineages with different relative 
abundances as rare lineages flat-line with zero observations and the observed counts of abundant 
lineages continue to decline. These biases during the period of backfilling can be further 
confounded by any differences in the processing times of sequences across surrogate data 
providers which sample different, non-representative subsets of the UK population. By 
downloading the COG-UK dataset at multiple dates, we find that over 90% of sequences are 
accounted for 1 month prior to the download date.  Therefore, to avoid biases and confounds due 
to backfilling, we limit our analysis of growth rates to all but the last 1 month of data in the 
COG-UK dataset. This results in estimation of growth rates of the VOC up to December 12th, 
2020 (Fig. S1). 

To control for time-varying average growth rates, we defined a statistic we refer to as 
relativized growth rates, denoted !(#, %) for each lineage i  and time t, 

!(#, %) = !(#,%)'	!̅(%)
*!(%)

, 

where )̅(%) is the average growth rate of all circulating strains at time t and .!(%) the standard 
deviation of growth rates across all lineages at time t. This statistic is analogous to a z-statistic or 
Wald-type statistic and allows comparison of growth rate differences across time when the 
average growth rate and scale of growth rate differences varies. We compute the average 
relativized fitness of each lineage for the first month after its IPO. This statistic reflects how 
much faster the lineage grew compared to other lineages circulating for that same month, and 
allows us to control for potential IPO-effects of lineages whose first observations came at 
different times in the UK COVID epidemic. 

For a lineage to increase in frequency, it mainly needs to increase faster than the lineage 
with the highest relative abundance, whereas to have an above-average relativized fitness it will 
need to increase faster than the average lineage (47). As such, analyzing relativized growth rates 
is an additional way to assess not just whether VOC 202012/01 grew faster than the dominant 
lineage B 1.177—as it’s possible other lineages with similar rarity could have had similar runs of 
positive growth—but rather test whether or not VOC 202012/01 consistently beat out all other 
lineages, including the rare ones and recent IPOs, and whether this burst of positive growth post-
IPO in the VOC exceeds that of other major lineages’ post-IPO relativized growth. 

We plot the relativized fitness as a function of days-since-IPO across all lineages, 
highlighting a few lineages that have risen to high relative abundance over the course of 2020 
(Fig. 2A & B, main text). 

 
Competitive advantage and increased growth rate of SARS-CoV2 VOC 202012/01 

To infer the competitive advantage of the VOC-202012/01 over other circulating SARS-
CoV2 strains (Fig. 2C, main text; Figs. S2–S7) we use the COG-UK sequencing data to calculate 
the rate by which the strain is displacing other variants and increases in relative abundance p. 
Formally, this is quantified based on the selection (48) rate coefficient s, which for a newly 
invading variant is defined as (49)  
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/ = +
+% log	(

,
-',) .  

This coefficient measures the rate at which any new variant would displace the resident 
variant in terms of the increase in the log(odds) to encounter the new variant. A great advantage 
of the selection rate coefficient is that it can readily be calculated from a logistic regression 
model as the slope of the proportion of the new variant on a logit (log-odds) link scale in 
function of time. We can further observe that since the ratio of relative frequencies is equal to the 
ratio of the absolute representation of the new mutant variant V and the wild-type W that (49) 

/ =
4 log(5)
4%

−
4 log(6)

4%
 

 

 

Hence, if selection is density independent and there are no interactions between genotypes, 
the selection rate is also equal to the difference in Malthusian growth rates between the new 
variant (rV) and wild-type (rW ) (49): 

/ = ). − )/ = Δ)  

If we further multiply the selection rate by mean generation time T then we obtain the 
dimensionless selection coefficient (49) 

/0 = / ⋅ 9 = Δ) ⋅ 9 
Selection coefficients s and sT represent the most direct measures possible of the fitness 

advantage enjoyed by any new variant, and are the best possible predictors of whether or not it is 
expected to increase in frequency during an outbreak (50). However, assuming that the 
generation time of the competing variants remain unaltered (e.g. that the non-infectious period 
after exposure remains the same), it is also possible to relate the selection coefficient sT to the 
expected multiplicative increase in the infectiousness of the virus, as measured by the ratio of the 
basic reproduction number Rt of the new variant relative to that of the wild type. Specifically, if 
generation time is gamma distributed with mean T and SD ., and if we set : = (./9)1, it is the 
case that the basic reproduction number (51) Rt 

 
;% = (1 + : ⋅ ) ⋅ 9)-/3 

            (1) 
Furthermore, for small k (small SD of the generation time . relative to the mean T), the 

following approximation (52) holds 
;% ≈ exp() ⋅ 9) 

            (2) 
From this, it follows that the ratio of the effective reproduction number of the invading new 

variant RV relative to that of the wild type RW, i.e. the expected multiplicative increase in the Rt 
value M, assuming no change in generation time T between the variants, equals approximately 

B =
;.
;/

≈
exp(). ⋅ 9)
exp()/ ⋅ 9)

= exp(Δ) ⋅ 9) = exp	(/0) 

Although this formula is strictly speaking only exact for the limit of : → 0 (i.e. with delta-
distributed generation times), in practice with our parameter estimates, the error made is 
extremely small (52) even for larger k. E.g. with ). = Δ) = 0.11, )/ = 0, T = 5.5 days and . =
1.8 (14), k = 0.33 and application of the exact formula (1) would yield M = 1.71, whilst the 
approximate formula (2) would yield M = 1.73, which would amount to an error on M of only 
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1.6%. We should further note that the exp(G) ⋅ 9) formula for the expected multiplicative effect 
on the Rt values is also approximately correct for exponentially-distributed generation times, 

where ;% = 1 + ) ⋅ 9 (52) and B = exp H-4!"⋅0-4!#⋅0
I ≈ exp(G) ⋅ 9) (with small )). With gamma-

distributed generation times, the exact formula (1) could only be used if we would be able to 
estimate the variant-specific intrinsic growth rates rV and rW (49) and corresponding Rt values 
separately, e.g. using the raw counts, to which one could fit a spline-based Poisson GLM, to 
yield intrinsic growth rates as the first derivative of the fitted curve on the log link scale. Such a 
fit, however, would show very large fluctuations due to the implementation of various non-
pharmaceutical interventions, and would also require accurate corrections for changes in testing 
and sequencing intensity over time. Hence, such a calculation would carry a much larger error. 
Instead, it is much more accurate to estimate the expected multiplicative effect on ;% from the 
rate of change in the log(odds) of the relative abundance of any new variant p, ∆r. That is, by 
inferring only the relative growth advantage of the VOC, we can obtain a much more accurate 
estimate of the competitive advantage than if we would also try to estimate its time-dependent 
intrinsic absolute growth rate. Furthermore, many superior methods exist to calculate the global, 
overall ;% value, e.g. ones that also simultaneously take into account hospitalisation data, and 
given that the ;% value is the average of the ;% value of the individual variants, weighted by their 
frequency, recalculating expected multiplicative effects on the  ;% value to absolute ;% values of 
the individual variants would still be straightforward. 

To estimate pairwise differences in growth rates ∆r between the VOC variant and other sets 
of lineages, i.e. pairwise selection rate coefficients, we used both binomial GLMMs (generalized 
linear mixed models), using data on the representation of pairs of lineages in the COG-UK (13)  
sequencing data (data range: 5 February 2020 to 6 January 2021) or using the Public Health 
England dataset on the relative frequency of S gene target failure in Pillar 2 SARS-CoV-2 testing 
data (data range: 1 October 2020 to 17 January 2021) at time of invasion, as well as multinomial 
spline regression or multinomial mixed models, where we could simultaneously consider the 
competition for representation among all the major SARS-CoV-2 variants and lineages in 
different regions across the UK. In both sets of analyses, we considered both the ∆r of the VOC 
202012/01 (defined as lineage B.1.1.7 and carrying defining mutation N501Y and deletion 
∆69/∆70 in the spike protein) relative to either the earlier dominant lineage B.1.177 (53), a set of 
410 minority variants, which never reached >13% in the aggregated UK counts in any week or 
all other circulating variants. For lineage B.1.177, we included any later descendent lineages into 
the same group. 

Binomial GLMMs fit to the COG-UK data included a fixed factor for NHS England region, 
a continuous covariate for sampling date, the interaction between both if this yielded a more 
parsimonious fit (based on the Bayesian Information Criterion) or if we were specifically 
interested to test for differences in rates of spread across regions, as well as random effects for 
the local-tier local authority (LTLA) and an observation-level random effect to take into account 
overdispersion (54). Binomial GLMMs fit to the UK SGTF data were carried out at the level of 
NHS England regions, and included NHS region and a natural cubic spline with 3 degrees of 
freedom in function of sampling date plus the interaction between both as fixed effects and an 
observation-level random effect to take into account overdispersion (54), and binomial counts 
were adjusted for the true positive rate (i.e. the proportion of S-negative samples that were 
actually the VOC), which for the UK data were estimated as described in “Misclassification 
analysis” below. These GLMMs were fit using R’s glmer function in the lme4 package version 
1.1.23. For these binomial GLMMs, we used the part of the data where either variant VOC 
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202012/01 or lineage B.1.177 were initially invading, and for which there was good linearity on 
a logit scale (Fig. S3). For VOC 202012/01, we therefore used the subset of the data from August 
1 2020 onwards, while for lineage B.1.177 we used data for the period between July 1st 2020 and 
September 30 2020, before it starting to be displaced by VOC 202012/01. From these binomial 
GLMMs, we subsequently estimated the selection rate ∆r from the slope in the log(odds) to 
encounter the focal variant. Both this marginal slope as well as its 95% confidence intervals were 
estimated using the emtrends function in the emmeans R package version 1.5.4-09001. Model 
predictions or marginal mean model predictions and 95% confidence intervals as well as Tukey 
posthoc tests to test for differences in slopes (rates of displacement of other strains) across 
regions were also calculated using this same package. The Tukey posthoc test is used to correct 
for the familywise error rate. In the calculation of marginal means, we used a bias correction for 
the presence of the random (55) effects. Under the assumption of unaltered generation times, we 
also made two estimates of the expected multiplicative effect on the Rt value, M1 and M2, based 
on eqn. (2) above, B = ;6 ;/⁄ ≈ exp(G) ⋅ 9), using estimated SARS-CoV2 mean generation 
times T of either 3.6 days (37, 38) or 5.5 days (14). Both the mean and confidence intervals on 
G) ⋅ 9	were exponentiated, in this way resulting in the estimated geometric mean multiplicative 
effect on Rt. Finally, these effects on reproduction number were expressed as (B − 1) × 100, i.e. 
as the expected percentage increase in R for the VOC. 

To be able to make a set of other independent baseline estimates of G) outside the UK, we 
also used binomial GLMMs to estimate the rate of spread by which VOC 202012/01 is 
displacing other variants in Denmark, Switzerland and the USA, based on openly available data 
(see Data sources in Methods). These analyses included sample date  as a continuous covariate, 
region (or state) as a fixed factor (for Switzerland) or random intercept (for Denmark and the 
USA), and an observation-level random effect to take into account overdispersion (54). Models in 
which sample date interacted with region (or state) or model incorporating random slopes by 
region were also fitted, but proved to be less parsimonious based on the BIC criterion. For the 
US data, binomial counts were adjusted to take into account the true positive rate (the proportion 
of the S-negative samples that were indeed the VOC), which was estimated using an independent 
binomial GLMM fitted on sequencing data of S-negative samples, whereby sample date was 
included as a continuous covariate and state was coded as a random intercept. 

Finally, we also fitted two multinomial models in which we considered the  multinomial 
spline model to the COG-UK sequence data using the multinom function of the nnet R package 
(56) considering the frequencies of 9 major SARS-CoV2 lineages (all reaching at least 13% in 
some week) as separate variant outcome levels, and subsuming the remaining 410 variants in a 
category of “minor variants”, thereby allowing us to simultaneously model the competition for 
representation among all the major variants. This model included a fixed factor region plus a 
natural cubic spline in function of sample date to allow for slight variation in the selection rate in 
function of time, plus the interaction between both to allow for different selection rates across 
regions. A two-degree of freedom natural cubic spline was chosen, as this model both resulted in 
a visually realistic fit and in a stable and realistic extrapolation (which was no longer the case for 
natural cubic splines with more knots). In this multinomial model, pairwise G) values between 
variants VOC 202012/01, B.1.177 and the category of minority variants were calculated using 
the emmeans emtrends function as contrasts in the above-average growth rates of each variant 
(using argument mode=”latent”(57)). Since the growth differences (G)) in this model were time-
dependent, we calculated the average growth difference for the VOC vs. minority variants and 
for the VOC vs. B.1.177 variant contrasts for the period from November 1 2020 onwards and 
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from July 1st 2020 until the 30th of September 2020, respectively, when each of these variants 
were actively invading in the population. Second, we also fit a multinomial mixed model in 
which we included a random intercept for the local-tier local authority (LTLA) and also jointly 
estimated overdispersion. To allow us to estimate the average growth advantage of the VOC, this 
model was fit under the assumption of identical and non-time varying selection coefficients 
across regions, and included NHS region and sample date as additive main effects. This model 
was fit using the mblogit function of the mclogit R package. The difference in growth rate 
relative to a particular chosen reference variant was in this model directly inferred from the 
model coefficients.  Finally, the predictions of both models were used to produce Muller plots, to 
display the change in relative frequencies of the major SARS-CoV2 lineages over time in the UK 
(Fig. 2C, main text, and Fig. S4). 

 
Rt analysis 

For the Rt analysis, we used 4 main sources of data: test positive Covid-19 notifications by 
UTLA (58), S-gene status from PCR tests by local authority provided by Public Health England 
(PHE), Google mobility data stratified by context (11), and two publicly available databases of 
of non-pharmaceutical interventions by UTLA (59, 60). We aggregated the data at the weekly 
level and restricted the analysis to the period beginning Monday, 5 October. 

We calculated the weekly proportion of positive tests that were S-gene negative over time 
by local authority. We estimated reproduction numbers using the method described in (37) and 
(39) and implemented in the EpiNow2 R package (61). Daily updated estimates can be 
downloaded at https://github.com/epiforecasts/covid-rt-estimates/blob/master/subnational/ 
united-kingdom-local/cases/summary/rt.csv. We used two sets of estimates, obtained using 
uncertain, gamma distributed, generation interval distributions with a mean of 3.6 days (standard 
deviation (SD): 0.7), and SD of 3.1 days (SD: 0.8) (38) or with a mean of 5.5 days (SD: 0.5 
days), and SD of 2.1 days (SD: 0.25 days) (14), respectively. 

We then built a separate model of the expected reproduction number in UTLA i during 
week t starting in the week beginning 14 September 2020 as a function of local restrictions, 
mobility indicators, residual temporal variation, and proportion of positive tests S-gene negative: 

;#,% = (1 + LM#%) expN/(%) +OP79#7%
7

+OQ3R#3%
3

+ log;#S	

where Ri is an UTLA-level intercept corresponding to Rt during national lockdown in 
November, 9#7% is 1 if intervention j (out of: no tiers, tier 1/2/3) is in place and 0 otherwise, R#3% 
is the relative mobility in context k (home, parks, workplace, etc.) at time t in UTLA i as 
measured by Google, and /(%) is a time-varying component, modelled either as a region-specific 
thin-plate regression spline ("Regional time-varying") or a static regional parameter ("Regional 
static"). The key parameter is L, the relative change in reproduction number in the presence of 
the SGTF that is not explained by any of the other variables, where M#% is the proportion out of all 
positive tests for SARS-CoV-2 where the S-gene was tested with SGTF, and the reproduction 
number in any given UTLA is 

;#,% = (1 − M#%);%,#
4 + M#%;%,#

'  
where ;%,#

'  is the S-gene negative reproduction number, ;%,#
4  is the S-gene positive 

reproduction number, and it is assumed that ;%,#
' = (1 + L);%,#

4 . 
We used a Student's t-distribution observation model with a single variance parameter and a 

single degrees of freedom parameter. All models were implemented using the brms (62) package 
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in R. All code required to reproduce this analysis is available from 
https://github.com/epiforecasts/covid19.sgene.utla.rt/. 

 
Analysis of differential age susceptibility for VOC 202012/01 based on secondary attack rates 

To determine if there was any difference across age cohorts in susceptibility for the new 
VOC-202012/01, we analysed the age-stratified aggregated data of secondary attack rates 
reported by Public Health England (63) using a binomial GLM (Fig. S8). These data comprise 
secondary attack rates among contact tracing data (from NHS Test and Trace) for the variant of 
concern (VOC 202012/01), with the identity of strain carried by the index patients (VOC or not) 
called based on either genomic sequence or S-gene target failure (SGTF) data, and with data split 
by age bracket of the person that was infected. In total, the dataset contains 17,701 and 456,086 
secondary contact records of known age with index patients for which either sequence or SGTF 
data were available, for the period between 30 November 2020 and 20 December 2020. Out of 
these secondary contacts, 2,455 and 64,325 became cases, which translates into overall 
secondary attack rates of 13.87% and 14.10%. To determine the odds ratios for people to be 
infected by index patients carrying the VOC vs. by those carrying other variants, we fitted a 
binomial GLM with factors data type (sequence data or SGTF data), age group, variant (VOC or 
other strains) plus all first order interaction effects. Overdispersion was tested for by fitting an 
equivalent quasibinomial GLM, but was found to be absent. The R package emmeans was used 
to make effect plots of marginal and predicted means and carry out Sidak posthoc tests to test if 
the odds for people to be infected by index patients carrying the VOC was higher than that for 
those carrying other strains (64) across the different age categories as well as overall. Possible 
differential age susceptibility was tested for by comparing the log(odds ratios) for people of 
different age to be infected by the VOC against the average log(odds ratio) for people to be 
infected by the VOC overall. These age group × variant interaction contrasts were again 
calculated using the emmeans package, employing a Sidak p value correction for multiple 
testing. Type III Anova tests were carried out using the Anova function in R’s MASS package. 

This analysis identified a small, but non-significant increase in secondary attack rate among 
children aged 0-9 (binomial GLM, Sidak age group × variant interaction contrast, P = 0.72) and 
a small, but nonsignificant decrease in secondary attack rate among 10-19 year olds (P = 0.32; 
Fig. S8). 

 
Misclassification analysis 

We estimated regionally-varying background rates of S gene target failure associated with 
non-VOC 202012/01 variants using testing data provided by Public Health England as follows: 

 
TUV#%	(M(%)) = (/TUWX × (% − #Y%X)ZXW%)) 
/(%) = M(%) + (1 − M(%)) × M[T/XWU/ 

:% ∼ ]X%[^#YU_#[T(Y = Y% , L = /(%) × (ZUYZ − 2) + 1, P = (1 − /(%)) × (ZUYZ − 2) + 1) 
/TUWX ∼ YU)_[T(a = 0, . = 1) 

#Y%X)ZXW% ∼ YU)_[T(a = 0, . = 1000) 
M[T/XWU/ ∼ ]X%[(L = 1.5, P = 15) 
ZUYZ ∼ YU)_[T(a = 0, . = 500) ≥ 2 

 
Here, f(t) is the predicted frequency of VOC 202012/01 among positive tests on day t (since 

1 September 2020) based on the terms slope and intercept; s(t) is the predicted frequency of S 
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gene target failure on day t due to the combination of VOC 202012/01 and a background rate of 
S gene target failure falsepos, conc is the “concentration” parameter (= α + β) of a beta 
distribution with mode s(t); kt is the number of S gene target failures detected on day t; and nt is 
the total number of tests on day t. All priors above are chosen to be vague, and the truncation of 
conc to values greater than 2 ensures a unimodal distribution for the proportion of tests with S 
gene target failure. This model is fitted separately for each NHS England region. Then, the 
probability that an S gene target failure on day t is VOC 202012/01 is estimated as M(%)//(%). 
 

Details of Bayesian inference 
To fit the dynamic transmission model to data on deaths, hospital admissions, hospital bed 

and ICU bed occupancy, PCR positivity, and seroprevalence for each of the 7 NHS England 
regions, we performed Bayesian inference using Markov chain Monte Carlo, employing the 
Differential Evolution MCMC algorithm (65). For each posterior sample, we simulated 
epidemics from 1 January to 24 December 2020, using data that were current as of 8 January 
2021. We used Google Community Mobility data up to 24 December 2020 to capture how 
interpersonal contact rates changed over the course of the epidemic.  

When fitting deaths, hospital admissions, hospital bed occupancy and ICU bed occupancy, 
we used a negative binomial likelihood with a fitted size parameter for each series and region. 
For seroprevalence and PCR prevalence, we used a skew-normal likelihood for each data point 
fitted to produce the same mean and 95% confidence interval as was reported for the data, and 
took the expected value of the model prediction over the date range during which the prevalence 
was measured. For fitting to VOC 202012/01 relative frequency over time in the three heavily 
affected NHS England regions, we used a beta-binomial likelihood with the daily proportion of 
detected samples that were VOC 202012/01 and a fitted dispersion parameter. 

As part of model estimation, we separately fit for each region: the start time of community 
transmission; the basic reproduction number R0 prior to any changes in mobility or closure of 
schools; the delay from infection to hospital admission, to ICU admission, and to death; a region-
specific relative probability of hospital admission and of ICU admission given infection; the 
relative infection fatality ratio at the start and at the end of the simulation period, as fatality due 
to COVID-19 has dropped substantially over time in the UK; a decreasing rate of effective 
contact between individuals over time, representing better practices of self-isolation and 
precautions against infection taken by individuals over the course of the year; and coefficients 
determining the relative mobility of younger people, around age 20, relative to the rest of the 
population, for the months of July, August, and September onwards. Full details of all fitted 
parameters, along with prior distributions assumed for each parameter, are in Table S2. Gelman-
Rubin convergence diagnostics were all ≤ 1.1 (Table S6). 

We use two parametric functions extensively in parameterising the model. The first, 
TUV#/%#Z(d) = exp(d) /(1 + exp(d)) 

is the standard logistic curve. The second, 

[/Z(d, e8, e-, /8, /-) = e8 + (e- − e8)
TUV#/%#Z(/8 + d(/- − /8), − TUV#/%#Z(/8)

TUV#/%#Z(/-) − TUV#/%#Z(/8)
 

is a logistic-shaped curve parameterised to be a smooth S-shaped function of x from 0 to 1, 
which goes from y0 at x = 0 to y1 at x = 1, with an inflection point at x = -s0/(-s0 + s1) if s0 < 0 
and s1 > 0. 

Basic epidemiological parameters were broadly informed from the literature and previously 
reported (10). All parameters that we adopted as assumptions are given in Table S3.  
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Supplementary Figures 

 

 

Fig S1.  
Analysis of COG-UK backfilling. This plot shows the trends in COG-UK sequence counts (A), 
lineage richness (B), and lineages per-sequence (C) for data downloaded on 2021-01-11. 
Comparing January 11th download to previous downloads reveals the backfilling of samples 
from previous sample dates but (D) by 1-month or 31 days prior to a download most of the 
samples are processed and uploaded to COG-UK. We use data up to 31 days prior to our final 
download to avoid potential backfilling biases when comparing growth rates across lineages. 
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Fig. S2.  
Muller plots of the relative abundance of the 9 major SARS-CoV2 lineages (reaching at least 
13% in any week overall) in different NHS regions across the UK, based on the raw COG-UK 
sequencing data, aggregated by week. The remaining minority variants comprise a collection of a 
total of 410 lineages. Note that the large fluctuations seen in July & August in some regions such 
as Scotland are caused by low sample size.  
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Fig. S3.  
Fitted spread of variants to B.1.177 and VOC 202012/01 estimated from a multinomial spline 
model by NHS region fit on the COG-UK data (model 1a in Table S1 and Fig. 2C) with 95% 
confidence intervals and per-week aggregated raw proportions, shown on a logit (log(odds)) 
scale. The much faster rate of spread of VOC 202012/01 compared to B.1.177 is apparent (cf. ∆r 
values in Table S1). The excellent linearity on a logit scale for VOC 202012/01 allows us to 
realistically model the spread of this variant using spatially more fine-grained binomial GLMMs 
(carried out the level of LTLAs), using a subset of the data from August 1 2020 onwards. 
Likewise, a binomial GLMM was used to model the spread of variant B.1.177 for the period 
between July 1 2020 and September 30 2020, before it starting to be displaced by VOC 
202012/01. 
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Fig. S4.  
Muller plots of the relative abundances of the major SARS-CoV-2 variants in the UK, based on a 
multinomial mixed model fit to COG-UK sequence data, incorporating lower-tier local authority 
as a random intercept as well as overdispersion (common-slopes multinomial mixed model 1b in 
Table 1). A model extrapolation until the end of February is shown (shaded area). Minority 
variants are 410 circulating SARS-CoV-2 strains that never reached >13% in any week overall. 
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Fig. S5.  
Binomial GLMMs fitted on the COG-UK sequence data with separate-slopes by region (models 
2a and 2g in Table S1) show that VOC 202012/01 has been displacing all other SARS-CoV2 
variants at a consistently high rate across different regions in the UK (A, Table S1), with 
pairwise Tukey posthoc tests for differences in slopes across regions mainly demonstrating a 
slightly slower rate of displacement in the East of England. By contrast, variant B.1.177, which 
in the UK became the major strain at the end of September, had a much lower competitive 
advantage in comparison with the minority variants that it displaced, evident from the much 
lower slope on a log(odds) scale (Table S1). In addition, pairwise Tukey posthoc tests for 
differences in slopes across regions demonstrate marked and significant cross-regional variation 
in the rate of spread of this variant (10 out of 36 pairwise comparisons with P < 0.05). This 
supports the idea that VOC 202012/01 enjoys a consistent competitive advantage, whilst the 
small competitive advantage enjoyed by variant B.1.177 may have been largely, though perhaps 
not exclusively, the result of stochastic introduction events, e.g. linked with travel to Spain (53), 
where it was first observed. 
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Fig. S6.  
Estimates of the rate at which VOC 202012/01 is displacing other variants in the UK, Denmark, 
Switzerland and the USA based on S-gene target failure data (UK & USA) and sequencing of 
SARS-CoV2 strains (Denmark and Switzerland) or RT-PCR 501Y.V1 re-screening 
(Switzerland) (32–36) (binomial GLMMs, with adjustment for the true positive rate in the 
analyses of SGTF data). For the UK data, a binomial spline GLMM with NHS region and a 
natural cubic spline with 3 degrees of freedom in function of sampling date plus the interaction 
between both as fixed effects and an observation-level random effect to take into account 
overdispersion provided the best fit based on the BIC criterion. The different intercepts for the 
different regions reflect differences in the dates of introduction of the VOC, which in terms of 
relative timing match those inferred from the COG-UK data (Fig. S3 and S5). By contrast, for 
the data from Denmark, Switzerland and the USA, models with sample date  included as an 
additive fixed effect and region (or state) coded as either a fixed factor (for Switzerland) or as a 
random intercept (for Denmark and the USA), and an observation-level random effect included 
to take into account overdispersion (54), provided the best fit. This indicates a near-constant rate 
of displacement in the different regions or states within each of those countries. Based on these 
data, the overall average growth advantage in the UK, Denmark, Switzerland and the USA are 
estimated at 10.9% (10.7-11.1%), 8.0% (6.7-9.2%), 10.1% (9.2-10.9%) and 8.4% (8.0-8.8%) per 
day, which with a generation time of 5.5 days would translate to mean transmission advantages 
of 83% (81-84%), 55% (45-66%), 74% (66-82%) and 59% (56-63%) (cf. models 2h, 3a, 3b and 
3c in Table S1). For Switzerland and the USA, slightly earlier introduction in Geneva and 
Florida are apparent. 
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Fig. S7.  
Estimates of the rate at which VOC 202012/01 is displacing other variants in the USA shown by 
state (displaying the 9 states with the most data), based on S-gene target failure data (36). A 
binomial GLMM with sample date included as an additive fixed effect, state coded as a random 
intercept and an observation-level random effect included to take into account overdispersion 
(54), provided the best fit based on the BIC criterion. In this model, binomial counts were 
adjusted to take into account the true positive rate (the proportion of the S-negative samples that 
were indeed the VOC), which was estimated using an independent binomial GLMM fitted on 
sequencing data of S-negative samples, whereby sample date was included as a continuous 
covariate and state was coded as a random intercept. A random-slope model, whereby the 
regression slope could vary by state, was also fitted but provided a worse model fit based on the 
BIC criterion. This indicates that with the current evidence, the VOC is displacing the other 
strains at a comparable rate across the different states of the US. The different intercepts reflect 
different dates of introduction. 
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Fig. S8.  
Diagram of the two-strain model with vaccination. Subscripts for age group and region are 
omitted from this diagram and only certain key parameters are shown. Compartments and 
processes in purple apply to the vaccine model only. S, susceptible; E, exposed; L, latent (see 
below); IP, preclinically infectious; IC, clinically infectious; IS, subclinically infectious; R, 
recovered; V, vaccinated. Subscript 2 represents compartments and parameters for VOC 
202012/01. Above, f and f2 are the force of infection for preexisting variants versus VOC 
202012/01; y and y2 are the fraction of cases that develop clinical symptoms for preexisting 
variants versus VOC 202012/01; v is the rate of vaccination; wv is the waning rate of vaccination 
(assumed to be zero for this manuscript); p captures cross-protection against VOC 202012/01 
conferred by immunity to preexisting variants; q captures vaccine protection against disease; and 
r captures vaccine protection against infection. L and L2 are additional compartments for a latent 
period prior to subclinical infection only (i.e. with zero probability of clinical infection). For a 
vaccine with efficacy against disease ed (e.g. ed = 0.95 for this manuscript) and efficacy against 
infection ei (e.g. ei = 0.6 for this manuscript), we assume r = (1 – ei) ed and q = (1 – ei) (1 – ed). 
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Fig. S9.  
Model posterior densities for the “increased transmissibility” model for seven NHS England 
regions. See Table S2 for parameter definitions. 
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Fig. S10.  
Model posterior densities for “longer infectious period” for three NHS England regions. See 
Table S2 for parameter definitions.  
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Fig. S11.  
Model posterior densities for “immune escape” model for three NHS England regions. See Table 
S2 for parameter definitions. 
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Fig. S12.  
Model posterior densities for “increased susceptibility in children” model for three NHS England 
regions. See Table S2 for parameter definitions. 
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Fig. S13.  
Model posterior densities for “shorter generation time” model for three NHS England regions. 
See Table S2 for parameter definitions. 
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Fig. S14.  
Model posterior densities for a “combined” model with increased transmissibility, altered serial 
interval, immune escape, and altered susceptibility in children. See Table S2 for parameter 
definitions.  
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Fig. S15.  
Analysis of age-stratified secondary attack rates, based on data reported by Public Health 
England (63) (data derived from the COG-UK dataset, the PHE Second Generation Surveillance 
System and NHS Test and Trace). A binomial GLM with data type (sequence data or S-gene 
target failure), age group of the person being infected, and variant (VOC 202012/01 or not) plus 
all first order interaction effects shows that the odds to be infected by an index patient carrying 
the VOC is consistently higher than by those carrying other variants (A). Sidak posthoc tests 
show the odds to be infected by the VOC to be significantly greater than by a non-VOC variant 
for nearly all age groups (for all age groups and both data types 2-sided P < 1E-7, except for 80+ 
where P = 0.07 and 0.06 for sequencing and SGTF data, respectively). The mean probability for 
secondary contacts to become infected in function of age was not significantly different across 
both types of data (no significant data type by age interaction effect, Type III test, g9

1=2.90, P = 
0.94) and there was also no difference in the estimated increased odds to be infected by a VOC 
vs. a non-VOC index patient (no significant data type by variant interaction effect, Type III test, 
g-
1=0.09, P = 0.77). The mean odds ratio to be infected by an index patient carrying the VOC vs. 

a non-VOC variant across all age groups and both data types was 1.41 [1.34, 1.48] 95% CIs. The 
relative susceptibility to be infected by the VOC showed little variation in function of the age of 
the person being infected, with only the 40-49 category being slightly more susceptible to be 
infected by a VOC vs a non-VOC carrying index patient than average (measured in terms of 
difference in log odds ratios, Sidak age group x variant interaction contrasts, z ratio = 3.45, P  = 
0.01, all other P > 0.05).  
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Fig. S16.  
Comparison of age distribution of infections in the two-strain model, depending upon biological 
mechanism of VOC 202012/01 growth rate, and age distribution of Pillar 2 (community) SARS-
CoV-2 tests with and without S gene target failure. Contrasting (A) “longer infectious period” 
and (B) “increased susceptibility among children” models with (C) pillar 2 testing data. 
Measured in the fitted model and empirically for the South East NHS England region in 
December 2020. Empirical data (C) does not show any marked increase of S gene target failure 
comparable to the increase in VOC 202012/01 infections in the “increased susceptibility among 
children” model (B). The lower overall proportion of Pillar 2 tests among 0–9-year-olds in the 
testing data may be due to lower propensity for testing in this age group.  
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Fig. S17.  
Fit of “increased transmissibility” model to data up to 24 December 2020. Black lines show 
observed data, while coloured lines and shaded regions show median and 95% credible intervals 
from the fitted model. 
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Fig. S18.  
Fit of “increased transmissibility” model to data up to 24 December 2020, with the emergence of 
the second strain (VOC 202012/01) disabled. Surges in the East of England, London, and the 
South East are no longer captured. Black lines show observed data, while coloured lines and 
shaded regions show median and 95% credible intervals from the fitted model. 
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Fig. S19.  
Fit of a model with no second strain up to 24 December 2020. The model increases transmission 
of the original strain to compensate, but cannot capture surges in the East of England, London, 
and the South East. Black lines show observed data, while coloured lines and shaded regions 
show median and 95% credible intervals from the fitted model. 
 
  

East of England London South East

De
at

hs
Ho

sp
ita

l
ad

m
iss

io
ns

Ho
sp

ita
l b

ed
s

oc
cu

pi
ed

IC
U 

be
ds

oc
cu

pi
ed

In
fe

ct
io

n
in

cid
en

ce
PC

R
pr

ev
al

en
ce

 (%
)

Se
ro

pr
ev

al
en

ce
(%

)

Apr Jun Aug Oct Dec Apr Jun Aug Oct Dec Apr Jun Aug Oct Dec

0

50

100

150

200

250

0

500

1000

0

2500

5000

7500

0

500

1000

1500

2000

0

20000

40000

60000

0

1

2

3

4

0

5

10

15

20

25



 
 

73 
 

 

Fig. S20.  
Google Mobility indices used for projections in the main text (Fig. 4).  
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Fig. S21.  
Model projections by NHS region, without vaccination. Median and 95% credible intervals are 
shown. See Fig. 4A, main text. 
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Fig. S22.  
Model projections by NHS region, with 200,000 vaccinations per day. Median and 95% credible 
intervals are shown. See Fig. 4B, main text. 
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Fig. S23.  
Model projections by NHS region, with 2 million vaccinations per day. Median and 95% 
credible intervals are shown. See Fig. 4C, main text. 
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Fig. S24.  
Model projections for England, with a seasonal component of transmission equivalent to 20% 
greater transmission at the peak of winter (1 January) relative to summer (1 July) (22). Median 
and 95% credible intervals are shown. See Fig. 4, main text. 
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Supplementary Tables 

Table S1.  
Estimates of increased growth rate. Models marked with an asterisk are those given in Table 1. 
  

model data type of data type of model model RHS country or region variants being compared spatial 
resolution D r 

% increase in 
R (3.6-day 
generation 
interval) 

% increase in 
R (5.5-day 
generation 
interval) 

*1a UK sequence separate-slopes multinomial spline model REGION * ns(DATE, df=2) a UK avg. VOC vs. B.1.1.7 b Region 0.104 (0.100-0.108) 46 (43-48) 77 (73-81) 
 

UK sequence separate-slopes multinomial spline model REGION * ns(DATE, df=2) a UK VOC vs. minority variants b Region 0.112 (0.108-0.116) 50 (47-52) 85 (81-90) 
 

UK sequence separate-slopes multinomial spline model REGION * ns(DATE, df=2) a UK B.1.177 vs. minority variants b Region 0.056 (0.054-0.058) 22 (21-23) 36 (35-37) 

*1b UK sequence common-slope multinomial mixed model (1|LTLA) + REGION + DATE UK VOC vs. B.1.1.7 LTLA 0.093 (0.091-0.095) 40 (39-41) 67 (65-69) 
 

UK sequence common-slope multinomial mixed model (1|LTLA) + REGION + DATE UK VOC vs. minority variants LTLA 0.123 (0.122-0.125) 56 (55-57) 97 (95-99) 

1b UK sequence common-slope multinomial mixed model (1|LTLA) + REGION + DATE UK B.1.177 vs. minority variants LTLA 0.030 (0.030-0.031) 12 (11-12) 18 (18-18) 

2a UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE UK avg. VOC vs. all other variants c LTLA 0.117 (0.112-0.121) 52 (50-55) 90 (85-95) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE South East VOC vs. all other variants c LTLA 0.098 (0.093-0.104) 42 (40-45) 71 (66-77) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE London VOC vs. all other variants c LTLA 0.105 (0.097-0.112) 46 (42-50) 78 (71-85) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE East of England VOC vs. all other variants c LTLA 0.092 (0.087-0.098) 39 (37-42) 66 (61-71) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE South West VOC vs. all other variants c LTLA 0.102 (0.087-0.117) 44 (37-52) 75 (61-90) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Midlands VOC vs. all other variants c LTLA 0.124 (0.114-0.134) 56 (51-62) 98 (87-109) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE North East and Yorkshire VOC vs. all other variants c LTLA 0.126 (0.116-0.137) 58 (52-64) 100 (89-113) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Scotland VOC vs. all other variants c LTLA 0.143 (0.119-0.168) 68 (53-83) 120 (92-152) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE North West VOC vs. all other variants c LTLA 0.145 (0.130-0.160) 69 (60-78) 122 (105-141) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Wales VOC vs. all other variants c LTLA 0.114 (0.102-0.126) 51 (44-57) 87 (75-100) 

2b UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE UK avg. VOC vs. B.1.177 c LTLA 0.115 (0.110-0.119) 51 (49-54) 88 (83-93) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE South East VOC vs. B.1.177 c LTLA 0.099 (0.093-0.105) 43 (40-46) 72 (67-78) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE London VOC vs. B.1.177 c LTLA 0.101 (0.094-0.109) 44 (40-48) 75 (67-82) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE East of England VOC vs. B.1.177 c LTLA 0.088 (0.082-0.094) 37 (34-40) 62 (57-67) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE South West VOC vs. B.1.177 c LTLA 0.100 (0.085-0.116) 44 (36-52) 74 (60-89) 
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UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Midlands VOC vs. B.1.177 c LTLA 0.124 (0.114-0.134) 56 (51-62) 98 (87-109) 

 
UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE North East and Yorkshire VOC vs. B.1.177 c LTLA 0.121 (0.111-0.132) 55 (49-61) 95 (84-107) 

 
UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Scotland VOC vs. B.1.177 c LTLA 0.143 (0.118-0.168) 67 (53-83) 120 (92-152) 

 
UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE North West VOC vs. B.1.177 c LTLA 0.144 (0.129-0.159) 68 (59-77) 121 (103-140) 

 
UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Wales VOC vs. B.1.177 c LTLA 0.112 (0.100-0.124) 49 (43-56) 85 (73-97) 

2c UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE UK avg. VOC vs. minority variants c LTLA 0.133 (0.127-0.139) 61 (58-65) 108 (101-115) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE South East VOC vs. minority variants c LTLA 0.107 (0.100-0.115) 47 (43-51) 80 (73-88) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE London VOC vs. minority variants c LTLA 0.117 (0.107-0.126) 52 (47-57) 90 (80-100) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE East of England VOC vs. minority variants c LTLA 0.107 (0.099-0.114) 47 (43-51) 80 (73-87) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE South West VOC vs. minority variants c LTLA 0.122 (0.102-0.141) 55 (44-66) 95 (75-118) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Midlands VOC vs. minority variants c LTLA 0.138 (0.125-0.151) 65 (57-72) 114 (99-130) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE North East and Yorkshire VOC vs. minority variants c LTLA 0.157 (0.141-0.173) 76 (66-87) 137 (117-159) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Scotland VOC vs. minority variants c LTLA 0.149 (0.120-0.177) 71 (54-89) 126 (93-165) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE North West VOC vs. minority variants c LTLA 0.151 (0.133-0.170) 72 (61-84) 130 (108-154) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Wales VOC vs. minority variants c LTLA 0.150 (0.134-0.166) 72 (62-82) 128 (108-149) 

2d UK sequence common-slope binomial GLMM (1|LTLA/OBS) + REGION + DATE UK B.1.177 vs. all other variants d LTLA 0.061 (0.058-0.065) 25 (23-26) 40 (37-43) 

2e UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE South East B.1.177 vs. all other variants d LTLA 0.057 (0.047-0.068) 23 (18-28) 37 (29-46) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE London B.1.177 vs. all other variants d LTLA 0.035 (0.025-0.044) 13 (10-17) 21 (15-28) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE East of England B.1.177 vs. all other variants d LTLA 0.044 (0.033-0.054) 17 (13-22) 27 (20-35) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE South West B.1.177 vs. all other variants d LTLA 0.048 (0.035-0.062) 19 (13-25) 31 (21-41) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Midlands B.1.177 vs. all other variants d LTLA 0.069 (0.059-0.079) 28 (24-33) 46 (38-55) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE North East and Yorkshire B.1.177 vs. all other variants d LTLA 0.059 (0.050-0.067) 24 (20-27) 38 (32-45) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Scotland B.1.177 vs. all other variants d LTLA 0.062 (0.054-0.069) 25 (21-28) 40 (35-46) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE North West B.1.177 vs. all other variants d LTLA 0.081 (0.071-0.091) 34 (29-39) 56 (48-65) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Wales B.1.177 vs. all other variants d LTLA 0.071 (0.061-0.081) 29 (24-34) 48 (40-56) 

2f UK sequence common-slope binomial GLMM (1|LTLA/OBS) + REGION + DATE UK B.1.177 vs. minority variants d LTLA 0.057 (0.054-0.061) 23 (21-24) 37 (34-40) 

2g UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE South East B.1.177 vs. minority variants d LTLA 0.056 (0.045-0.066) 22 (18-27) 36 (28-44) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE London B.1.177 vs. minority variants d LTLA 0.031 (0.022-0.040) 12 (8-16) 19 (13-25) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE East of England B.1.177 vs. minority variants d LTLA 0.038 (0.028-0.048) 15 (10-19) 23 (16-30) 
 

UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE South West B.1.177 vs. minority variants d LTLA 0.048 (0.035-0.062) 19 (13-25) 30 (21-40) 
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UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Midlands B.1.177 vs. minority variants d LTLA 0.066 (0.056-0.076) 27 (22-32) 44 (36-52) 

 
UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE North East and Yorkshire B.1.177 vs. minority variants d LTLA 0.057 (0.048-0.065) 23 (19-27) 37 (31-43) 

 
UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Scotland B.1.177 vs. minority variants d LTLA 0.058 (0.050-0.067) 23 (20-27) 38 (31-44) 

 
UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE North West B.1.177 vs. minority variants d LTLA 0.076 (0.066-0.086) 31 (27-36) 52 (44-60) 

 
UK sequence separate-slopes binomial GLMM (1|LTLA/OBS) + REGION * DATE Wales B.1.177 vs. minority variants d LTLA 0.062 (0.053-0.072) 25 (21-30) 41 (34-49) 

*2h UK S gene target failure separate-slopes binomial spline GLMM (1|OBS) + REGION * ns(collection_date_num,df=3) UK avg. VOC vs. all other variants b Region 0.109 (0.107-0.111) 48 (47-49) 83 (81-84) 
 

UK S gene target failure separate-slopes binomial spline GLMM (1|OBS) + REGION * ns(collection_date_num,df=3) South East VOC vs. all other variants b Region 0.099 (0.096-0.102) 43 (41-44) 72 (69-75) 
 

UK S gene target failure separate-slopes binomial spline GLMM (1|OBS) + REGION * ns(collection_date_num,df=3) London VOC vs. all other variants b Region 0.113 (0.110-0.116) 50 (49-52) 86 (83-90) 
 

UK S gene target failure separate-slopes binomial spline GLMM (1|OBS) + REGION * ns(collection_date_num,df=3) East of England VOC vs. all other variants b Region 0.119 (0.115-0.123) 54 (51-56) 93 (89-97) 
 

UK S gene target failure separate-slopes binomial spline GLMM (1|OBS) + REGION * ns(collection_date_num,df=3) South West VOC vs. all other variants b Region 0.118 (0.109-0.127) 53 (48-58) 91 (82-101) 
 

UK S gene target failure separate-slopes binomial spline GLMM (1|OBS) + REGION * ns(collection_date_num,df=3) Midlands VOC vs. all other variants b Region 0.100 (0.095-0.104) 43 (41-45) 73 (69-77) 
 

UK S gene target failure separate-slopes binomial spline GLMM (1|OBS) + REGION * ns(collection_date_num,df=3) North East and Yorkshire VOC vs. all other variants b Region 0.109 (0.104-0.113) 48 (46-50) 82 (77-87) 
 

UK S gene target failure separate-slopes binomial spline GLMM (1|OBS) + REGION * ns(collection_date_num,df=3) North West VOC vs. all other variants b Region 0.108 (0.103-0.113) 47 (45-50) 81 (76-86) 

*3a DK sequence random-intercept binomial GLMM (1|REGION/OBS) + DATE DK VOC vs. all other variants Region 0.080 (0.067-0.092) 33 (27-39) 55 (45-66) 

*3b CH sequence+RT-PCR 
rescreening 

common-slope binomial GLMM (1|OBS) + REGION + DATE CH VOC vs. all other variants Region 0.101 (0.092-0.109) 44 (39-48) 74 (66-82) 

*3c USA S gene target failure random-intercept binomial GLMM (1|STATE/OBS) + DATE USA VOC vs. all other variants State 0.084 (0.080-0.088) 35 (34-37) 59 (56-63) 

*4a UK S gene target failure Rt regression 
 

England VOC vs. all other variants UTLA 0.067 (0.060-0.073) 31 (27-34) 43 (38-48) 

*4b UK S gene target failure Rt regression 
 

England VOC vs. all other variants UTLA 0.085 (0.079-0.091) 38 (35-41) 57 (52-62) 

*5a UK S gene target failure transmission model: 
increased transmissibility 

 England VOC vs. all other variants Region 0.097 (0.067-0.129) — 67 (44-102) 

*5b UK S gene target failure transmission model: 
increased transmissibility 

 
East of England, London, 
and South East 

VOC vs. all other variants Region 0.099 (0.071-0.126) — 64 (39-95) 

*5c UK S gene target failure transmission model:  
increased duration of infectiousness 

 
East of England, London, 
and South East 

VOC vs. all other variants Region 0.096 (0.064-0.131) — 123 (42-255) 

*5d UK S gene target failure transmission model:  
immune escape 

 
East of England, London, 
and South East 

VOC vs. all other variants Region 0.052 (0.017-0.091) — 32 (4-66) 

*5e UK S gene target failure transmission model:  
increased susceptibility in children 

 
East of England, London, 
and South East 

VOC vs. all other variants Region 0.091 (0.064-0.122) — 70 (43-100) 

*5f UK S gene target failure transmission model:  
shorter generation time 

 
East of England, London, 
and South East 

VOC vs. all other variants Region 0.103 (0.07-0.128) — 1 (1-2) 

*5g UK S gene target failure transmission model:  
combined model 

  East of England, London, 
and South East 

VOC vs. all other variants Region 0.093 (0.044-0.124) — 72 (19-136) 

a  Natural cubic spline term with 2 degrees of freedom. 
b Growth differences (∆r) in this model are time-dependent; for the VOC vs. minority variants and VOC vs. B.1.177 variant contrasts, growth differences were evaluated for the period from November 
1 2020 onwards and from July 1st 2020 until the 30th of September 2020, respectively, when each of these variants were invading in the population. 
c Using a subset of the data from August 1 2020 onwards, omitting the zero counts in the earlier period. 
d Using a subset of the data for the period between July 1st 2020 and September 30 2020, when the growth of this variant was approximately logistic, and before it started to be displaced by VOC 
202012/01. 
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Table S2.  
Details of fitted parameters. 

Parameter Description Prior distribution Notes 

tS Start date of epidemic in days 
after 1 January 2020 

~uniform(0, 60) Determines date at which seeding begins in 
region; starting on this date, one random 
individual per day contracts SARS-CoV-2 for 
28 days 

u Basic susceptibility to infection ~normal(0.09, 0.02) Determines basic reproduction number R0 

death_mean Mean delay in days from start 
of infectious period to death 

~normal(15, 2) Delay is assumed to follow a gamma 
distribution with shape parameter 2.2. Prior 
and shape of distribution informed by 
analysis of CO-CIN data (66). 

admission Mean delay in days from start 
of infectious period to hospital 
admission 

~normal(7.5, 1) Delay is assumed to follow a gamma 
distribution with shape parameter 0.71. Prior 
and shape of distribution informed by 
analysis of CO-CIN data (66). 

icu_admission Mean delay in days from start 
of infectious period to ICU 
admission 

~normal(11.1, 1) Delay is assumed to follow a gamma 
distribution with shape parameter 1.91. Prior 
and shape of distribution informed by 
analysis of CO-CIN data (66). 

hosp_rlo Log-odds of hospital 
admission, relative to age-
specific probabilities of 
hospital admission given 
infection derived from Salje et 
al. (67). 

~normal(0, 0.1) Based on Salje et al. (67), we assumed that 
the basic shape of the age-specific 
probability of hospitalisation given infection 
was logistic(7.37 + 0.068a), where a is the 
individual’s age in years. This overall 
relationship is then adjusted according to the 
hosp_rlo parameter. 

icu_rlo, 
icu_rlo2 

Log-odds of ICU admission, 
relative to age-specific 
probabilities of ICU admission 
given hospital admission 
derived from CO-CIN data. 

~normal(0, 0.1) We fit a spline to CO-CIN data on hospital 
admission and ICU admission by age to 
derive the basic age-specific probability of 
ICU admission, which was then adjusted 
based on the icu_rlo and icu_rlo2 
parameters. icu_rlo applies for the first 
half of 2020 while icu_rlo2 applies for the 
second half of 2020 into 2021. 

cfr_rlo, 
cfr_rlo2, 
cfr_rlo3 

Relative log-odds of fatality 
due to COVID-19 

~normal(0, 0.1) Based on Levin et al. (68), we assumed the 
basic shape of the age-specific infection 
fatality ratio of SARS-CoV-2 was logistic(–
7.56 + 0.121a) (see entry for hosp_rlo). 
This is adjusted by cfr_rlo, cfr_rlo2, 
and cfr_rlo3 to adjust the fatality rate for 
each region. 

contact_final Relative rate of effective 
contact at end of 2020 

~normal(1, 0.1) ≤ 1 To capture continued low incidence of SARS-
CoV-2 infection in spite of rising contact rates 
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contact_s0 Parameter for curve specified 
by contact_final 

~exponential(0.1) as shown by mobility data and social contact 
surveys, we assume that the effective 
contact rate over time is multiplied by a factor 
asc(t/366, 1, contactfinal, -contacts0, contacts1), 
where t is time in days since 1 January 2020. contact_s1 Parameter for curve specified 

by contact_final 
~exponential(0.1) 

concentration1 Increased contact among 
young people in July 

~normal(2, 0.3) ≥ 2 Because initial increases in SARS-CoV-2 
prevalence from July in England were 
especially apparent in young people, we 
allow increases in mobility to be more 
emphasized in young people starting from 
July. We model a relative contact-rate 
multiplier for individuals of age a as 
beta(a/100 | a = 0.2(k – 2) + 1, b = 0.8(k – 2) 
+ 1), where k is the concentration parameter 
and beta is the beta distribution probability 
density function. This gives flat contact rates 
across age groups when k = 2, and relatively 
higher contact rates in individuals around age 
20 when k > 2. 

concentration2 Increased contact among 
young people in August 

~normal(2, 0.2) ≥ 2 

concentration3 Increased contact among 
young people from September 

~normal(2, 0.1) ≥ 2 

disp_deaths, 
disp_hosp_inc, 
disp_hosp_prev, 
disp_icu_prev 
 

Negative binomial dispersion 
for deaths, hospital incidence 
(admissions), hospital 
prevalence (beds occupied), 
and ICU prevalence 

~exponential(10) We estimate the size parameter for negative 
binomial likelihood functions of deaths, 
hospital incidence, hospital prevalence and 
ICU prevalence, where size = 1/(disp2) (69) 

  
 
 Parameters for VOC 202012/01 strain 
 

Parameter Description Prior distribution Notes 

v2_when Introduction date of VOC 
202012/01 in days after 1 
January 2020 

~uniform(144, 365) On this date, ten random individuals contract 
VOC 202012/01 

v2_hosp_rlo Relative log-odds of 
hospitalisation for VOC 
202012/01, compared to 
preexisting variants 

~normal(0, 0.1) Vague prior 

v2_icu_rlo Relative log-odds of ICU 
admission for VOC 
202012/01, compared to 
preexisting variants 

~normal(0, 0.1) Vague prior 

v2_cfr_rlo Relative log-odds of death for 
VOC 202012/01, compared to 
preexisting variants 

~normal(0, 0.1) Vague prior 

v2_relu Relative transmission rate of 
VOC 202012/01, compared to 
preexisting variants 

~lognormal(0, 0.4) Vague prior 
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v2_immesc Cross protection against VOC 
202012/01 due to previous 
infection by a preexisting 
variant (0 = no cross 
protection, 1 = total cross 
protection) 

~beta(3, 1) Vague prior 

v2_ch_u Relative susceptibility to VOC 
202012/01, compared to 
preexisting variants, for 0-
19yo individuals 

~lognormal(0, 0.4) Vague prior; v2_ch_u = 1 corresponds to 
children having reduced susceptibility relative 
to adults as in ref. (19). Susceptibility of 0-19 
year olds to VOC 202012/01 is multiplied by 
v2_ch_u. 

v2_infdur Relative length of infectious 
period of VOC 202012/01, 
compared to preexisting 
variants 

~lognormal(0, 0.4) Vague prior 

v2_serial Relative length of generation 
interval of VOC 202012/01, 
compared to preexisting 
variants 

~normal(0, 0.4) Vague prior. The latent and infectious 
periods are multiplied by v2_serial, while 
the infectiousness is multiplied by 1 / 
v2_serial, in order to maintain overall 
infectiousness when integrated over the 
infectious period. 
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Table S3.  
Model parameters not subject to fitting. 

Parameter Description Value Notes 

dE Latent period (E to IP, E to IS, L to IS; days) ~gamma(µ = 2.5, k = 2.5) Set to 2.5 so that incubation 
period (latent period plus 
period of preclinical 
infectiousness) is 5 days(70) 

dP Duration of preclinical infectiousness (IP to 
IC; days) 

~gamma(µ = 2.5, k = 4) Assumed to be half the 
duration of total 
infectiousness in clinically-
infected individuals (14) 

dC Duration of clinical infectiousness (IC to R; 
days) 

~gamma(µ = 2.5, k = 4) Infectious period set to 5 
days, to result in a serial 
interval of approximately 6 
days(71–73) 

dS Duration of subclinical infectiousness (IS to 
R; days) 

~gamma(µ = 5.0, k = 4) Assumed to be the same 
duration as total infectious 
period for clinical cases, 
including preclinical 
transmission 

yi Probability of clinical symptoms given 
infection for age group i 

Estimated from case 
distributions across 6 countries 

(19) 

f Relative infectiousness of subclinical cases 50% Assumed (15, 19) 

ci,j Number of age-j individuals contacted by an 
age-i individual per day, prior to changes in 
mobility 

UK-specific contact matrix (74) 

Ni Number of age-i individuals From demographic data (75) 

∆t Time step for discrete-time simulation 0.25 days   

P(ICU)i Proportion of hospitalised cases that require 
critical care for age group i 

Estimated from CO-CIN data (66) 

ws Waning rate of seropositivity 224 days-1 Estimated from serology data 

loshosp Length of stay in hospital ~lognormal(µlog = 11.08, sdlog = 
1.20) 

Estimated from CO-CIN data 
(66) 

losicu Length of stay in ICU ~lognormal(µlog = 13.33, sdlog = 
1.25) 

Estimated from CO-CIN data 
(66) 
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detect0, 
detect1, 
detects0, 
detects1 
  

Delay from hospital admission to SARS-
CoV-2 test 

detect0 = 14  
detect1 = 1 
detects0 = 5.86 
detects1 = 33.4 
 
 
 

To capture substantial delays 
in testing at the beginning of 
the epidemic in the UK, we 
assume that the delay from 
hospital admission to 
confirmed SARS-CoV-2 
infection is asc(t/366, detect0, 
detect1, detects0, detects1), 
where t is time in days since 1 
January 2020. Estimated from 
a previous round of model 
fitting. 
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Table S4.  
Model comparison for dynamic transmission models. 
 
Hypothesis DIC Predictive deviance ∆DIC ∆PD Rank 
Increased transmissibility 16246 6872 4 0 1 
Increased duration of infectiousness 16242 8188 0 1316 2 
Immune escape 19988 9314 3747 2442 4 
Increased susceptibility in children 16385 8056 144 1184 3 
Shorter generation time 17205 58373 963 51501 5 
Combined 16295 18141 53 11269 — 
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Table S5.  
Summary of projections for England, 15 Dec 2020 – 30 June 2021, including a seasonal decline 
in transmission. Compare to Table 2, main text. 
 

No vaccination 
 Moderate (October 

2020) 
High (November 2020) with 
schools open 

High with schools 
closed 

Very high (March 
2020) 

Peak ICU (rel. to 
1st wave) 

271% (254 - 290%) 160% (150 - 171%) 130% (122 - 136%) 119% (113 - 125%) 

Peak ICU 
requirement 

9,880 (9,240 - 10,500) 5,830 (5,450 - 6,220) 4,720 (4,450 - 4,960) 4,340 (4,110 - 4,550) 

Peak deaths 3,910 (3,690 - 4,140) 2,020 (1,900 - 2,130) 1,500 (1,440 - 1,560) 1,320 (1,260 - 1,380) 

Total admissions 627,000 (596,000 - 
650,000) 

442,000 (421,000 - 460,000) 395,000 (376,000 - 
411,000) 

334,000 (318,000 - 
352,000) 

Total deaths 213,000 (202,000 - 
224,000) 

142,000 (134,000 - 148,000) 128,000 (122,000 - 
134,000) 

104,000 (99,400 - 
110,000) 

 
200,000 vaccinations per week 

 Moderate (October 
2020) 

High (November 2020) with 
schools open 

High with schools 
closed 

Very high (March 
2020) 

Peak ICU (rel. to 
1st wave) 

268% (252 - 284%) 158% (148 - 169%) 129% (122 - 136%) 118% (112 - 124%) 

Peak ICU 
requirement 

9,770 (9,170 - 10,300) 5,760 (5,390 - 6,140) 4,710 (4,440 - 4,950) 4,310 (4,070 - 
4,520) 

Peak deaths 3,630 (3,470 - 3,850) 1,910 (1,800 - 2,020) 1,480 (1,430 - 1,550) 1,320 (1,280 - 
1,380) 

Total admissions 605,000 (579,000 - 
636,000) 

427,000 (407,000 - 444,000) 371,000 (353,000 - 
386,000) 

299,000 (285,000 - 
314,000) 

Total deaths 198,000 (190,000 - 
210,000) 

133,000 (126,000 - 139,000) 116,000 (110,000 - 
120,000) 

89,200 (84,500 - 
93,100) 

 
2 million vaccinations per week 

 Moderate (October 
2020) 

High (November 2020) with 
schools open 

High with schools 
closed 

Very high (March 
2020) 

Peak ICU (rel. to 
1st wave) 

234% (220 - 250%) 148% (139 - 158%) 128% (121 - 134%) 118% (111 - 124%) 

Peak ICU 
requirement 

8,520 (7,990 - 9,100) 5,380 (5,050 - 5,730) 4,650 (4,390 - 4,880) 4,290 (4,060 - 4,500) 

Peak deaths 2,450 (2,310 - 2,590) 1,510 (1,450 - 1,570) 1,390 (1,340 - 1,450) 1,290 (1,250 - 1,340) 

Total admissions 479,000 (455,000 - 
497,000) 

348,000 (333,000 - 362,000) 268,000 (256,000 - 
278,000) 

184,000 (177,000 - 
191,000) 

Total deaths 138,000 (132,000 - 
145,000) 

97,700 (93,400 - 102,000) 78,300 (75,000 - 
81,300) 

56,700 (54,700 - 
58,700) 
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Table S6. 
Gelman-Rubin convergence diagnostics !" for all transmission models. Regions are East of 
England (EE), London (LD), Midlands (ML), North East and Yorkshire (NEY), North West 
(NW), South East (SE), and South West (SW). 
 

 
Combined model Duration of 

infectiousness 
Immune escape Increased 

susceptibility in 
children 

Increased transmissibility Shorter generation 
time 

variable \ region EE LD SE EE LD SE EE LD SE EE LD SE EE LD ML NEY NW SE SW EE LD SE 

cfr_rlo 1.054 1.053 1.062 1.038 1.030 1.023 1.043 1.020 1.032 1.030 1.047 1.018 1.023 1.053 1.023 1.029 1.027 1.017 1.027 1.041 1.033 1.055 

cfr_rlo2 1.051 1.074 1.061 1.037 1.026 1.034 1.033 1.023 1.020 1.021 1.064 1.024 1.019 1.047 1.026 1.026 1.036 1.016 1.024 1.036 1.038 1.054 

cfr_rlo3 1.057 1.072 1.068 1.043 1.027 1.025 1.027 1.021 1.026 1.033 1.065 1.022 1.023 1.056 1.032 1.032 1.025 1.021 1.029 1.062 1.040 1.056 

concentration1 1.074 1.105 1.080 1.053 1.036 1.030 1.035 1.024 1.044 1.040 1.062 1.032 1.024 1.059 1.042 1.038 1.038 1.032 1.036 1.054 1.091 1.048 

concentration2 1.047 1.059 1.078 1.028 1.033 1.024 1.029 1.020 1.031 1.028 1.055 1.017 1.033 1.048 1.028 1.040 1.022 1.025 1.044 1.036 1.053 1.041 

concentration3 1.047 1.082 1.078 1.047 1.034 1.037 1.026 1.019 1.040 1.036 1.058 1.022 1.017 1.050 1.032 1.029 1.030 1.034 1.032 1.058 1.042 1.048 

contact_final 1.057 1.058 1.073 1.052 1.035 1.038 1.039 1.019 1.053 1.041 1.041 1.031 1.022 1.073 1.035 1.031 1.044 1.036 1.038 1.058 1.059 1.051 

contact_s0 1.075 1.073 1.079 1.060 1.044 1.042 1.062 1.032 1.054 1.032 1.059 1.051 1.036 1.091 1.042 1.031 1.039 1.035 1.044 1.058 1.088 1.074 

contact_s1 1.074 1.068 1.079 1.061 1.045 1.041 1.061 1.032 1.056 1.032 1.054 1.052 1.035 1.090 1.042 1.030 1.045 1.035 1.044 1.060 1.081 1.073 

death_mean 1.041 1.065 1.061 1.044 1.021 1.028 1.027 1.023 1.030 1.029 1.046 1.023 1.021 1.061 1.033 1.024 1.039 1.027 1.035 1.048 1.043 1.027 

disp_deaths 1.051 1.045 1.056 1.032 1.024 1.028 1.030 1.023 1.038 1.028 1.041 1.022 1.024 1.049 1.032 1.024 1.029 1.025 1.031 1.034 1.029 1.047 

disp_hosp_inc 1.056 1.041 1.067 1.027 1.016 1.026 1.037 1.020 1.038 1.023 1.049 1.022 1.018 1.064 1.036 1.027 1.025 1.022 1.023 1.033 1.031 1.051 

disp_hosp_prev 1.042 1.080 1.054 1.030 1.023 1.029 1.033 1.019 1.022 1.028 1.051 1.019 1.020 1.066 1.033 1.024 1.033 1.019 1.029 1.043 1.047 1.066 

disp_icu_prev 1.090 1.065 1.063 1.039 1.021 1.029 1.043 1.022 1.028 1.035 1.058 1.014 1.032 1.047 1.027 1.025 1.018 1.022 1.031 1.046 1.037 1.045 

hosp_admission 1.053 1.070 1.061 1.025 1.020 1.022 1.041 1.027 1.024 1.030 1.058 1.035 1.024 1.061 1.029 1.022 1.025 1.022 1.019 1.035 1.046 1.051 

hosp_rlo 1.044 1.062 1.055 1.031 1.024 1.032 1.035 1.018 1.035 1.038 1.067 1.022 1.021 1.080 1.034 1.024 1.030 1.025 1.026 1.042 1.034 1.039 

icu_admission 1.051 1.059 1.049 1.053 1.025 1.030 1.044 1.029 1.037 1.029 1.059 1.030 1.025 1.058 1.034 1.027 1.027 1.028 1.028 1.046 1.050 1.066 

icu_rlo 1.037 1.060 1.058 1.036 1.022 1.033 1.033 1.020 1.033 1.034 1.058 1.026 1.026 1.080 1.033 1.040 1.025 1.019 1.033 1.041 1.055 1.047 

icu_rlo2 1.062 1.088 1.059 1.030 1.034 1.027 1.044 1.018 1.033 1.026 1.055 1.015 1.021 1.049 1.037 1.032 1.035 1.026 1.035 1.045 1.049 1.040 

tS 1.064 1.088 1.080 1.039 1.028 1.027 1.031 1.021 1.026 1.029 1.049 1.023 1.033 1.051 1.027 1.030 1.034 1.021 1.025 1.038 1.044 1.050 

u 1.038 1.062 1.061 1.050 1.022 1.034 1.055 1.022 1.036 1.037 1.049 1.019 1.024 1.052 1.034 1.038 1.029 1.021 1.030 1.044 1.035 1.048 

v2_cfr_rlo 1.053 1.065 1.061 1.028 1.027 1.023 1.028 1.019 1.030 1.025 1.039 1.019 1.023 1.060 1.019 1.023 1.026 1.025 1.025 1.049 1.034 1.047 

v2_ch_u 1.087 1.075 1.077 
      

1.034 1.048 1.015 
          

v2_disp 1.061 1.069 1.048 1.036 1.028 1.032 1.041 1.018 1.036 1.021 1.036 1.033 1.031 1.048 1.033 1.028 1.029 1.024 1.033 1.041 1.044 1.052 

v2_hosp_rlo 1.068 1.068 1.062 1.033 1.031 1.032 1.038 1.025 1.021 1.034 1.033 1.030 1.020 1.063 1.032 1.027 1.025 1.022 1.022 1.033 1.031 1.051 

v2_icu_rlo 1.051 1.081 1.076 1.025 1.026 1.025 1.029 1.022 1.042 1.021 1.031 1.024 1.026 1.040 1.036 1.032 1.020 1.029 1.034 1.039 1.031 1.051 

v2_immesc 1.047 1.088 1.054 
   

1.052 1.024 1.033 
             

v2_infdur 
   

1.045 1.037 1.030 
                

v2_relu 1.093 1.075 1.092 
         

1.030 1.068 1.065 1.028 1.020 1.021 1.031 
   

v2_serial 1.071 1.074 1.075 
                

1.053 1.067 1.062 

v2_sgtf0 1.039 1.067 1.085 1.043 1.028 1.041 1.036 1.042 1.027 1.026 1.052 1.025 1.022 1.050 1.040 1.027 1.022 1.023 1.019 1.041 1.026 1.066 

v2_when 1.050 1.059 1.070 1.037 1.025 1.032 1.078 1.021 1.044 1.031 1.061 1.024 1.023 1.093 1.095 1.029 1.019 1.027 1.038 1.081 1.083 1.061 

 


