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Abstract

Background: The implications of congenital Zika Virus (ZIKV) infections for pediatric neurodevelopment and
behavior remain inadequately studied. The aim of this study is to investigate patterns of neurodevelopment and
behavior in groups of children with differening severities of ZIKV-related microcephaly and children with prenatal
ZIKV exposure in the absence of microcephaly.

Methods: We conducted a cross-sectional study, nested in a cohort, of 274 children (aged 10–45 months) who
were born during the peak and decline of the microcephaly epidemic in Northeast Brazil. Participants were
evaluated between February 2017 and August 2019 at two tertiary care hospitals in Recife, Pernambuco, Brazil. We
analyzed the children in four groups assigned based on clinical and laboratory criteria: Group 1 had severe
microcephaly; Group 2 had moderate microcephaly; Group 3 had prenatal ZIKVexposure confirmed by maternal RT-
PCR testing but no microcephaly; and Group 4 was a neurotypical control group. Groups were evaluated clinically
for neurological abnormalities and compared using the Survey of Wellbeing of Young Children (SWYC), a
neurodevelopment and behavior screening instrument validated for use in Brazil. Children with severe delays
underwent further evaluation with an adapted version of the SWYC.
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Results: Based on the SWYC screening, we observed differences between the groups for developmental milestones
but not behavior. Among the 114 children with severe microcephaly of whom 98.2% presented with neurological
abnormalities, 99.1% were ‘at risk of development delay’ according to the SWYC instrument. Among the 20 children
with moderate microcephaly of whom 60% presented with neurological abnormalities, 65% were ‘at risk of
development delay’. For children without microcephaly, the percentages found to be ‘at risk of developmental
delay’ were markedly lower and did not differ by prenatal ZIKV exposure status: Group 3 (N = 94), 13.8%; Group 4
(N = 46), 21.7%.

Conclusions: Among children with prenatal ZIKV exposure, we found a gradient of risk of development delay
according to head circumference. Children with severe microcephaly were at highest risk for delays, while
normocephalic ZIKV-exposed children had similar risks to unexposed control children. We propose that ZIKV-
exposed children should undergo first-line screening for neurodevelopment and behavior using the SWYC
instrument. Early assessment and follow-up will enable at-risk children to be referred to a more comprehensive
developmental evaluation and to multidisciplinary care management.
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Background
Zika virus (ZIKV) is a teratogenic arthropod-borne
flavivirus, and its vertical transmission can lead to
fetal injury, which can clinically manifest in a pattern
of signs and symptoms recognized as Congenital Zika
Syndrome (CZS) [1]. The CZS phenotype is marked
by structural defects, including morphological alter-
ations to the limbs, eyes, and brain as well as func-
tional impairments, such as difficulty in swallowing
and communication [2].
Current evidence suggests that many of the functional

disabilities associated with CZS arise from damage to
the developing nervous system. Intrauterine ZIKV infec-
tions exhibit a marked neurotropism, and recent studies
indicate that ZIKV is able to impair the viability and
growth of neural progenitor cells and post migratory
neurons [3–5]. Indeed, microcephaly - a hallmark of
CZS - is thought to arise when prenatal infections with
ZIKV trigger fetal brain disruption sequence, resulting in
brain volume loss, reduced intracranial pressure, and
skull collapse [2, 6].
Despite an increasing understanding of the pathogenic

mechanisms of fetal ZIKV infection and the resultant
structural changes, the long-term implications of
congenital ZIKV exposure on neurodevelopment and be-
havior remain understudied. To address the pressing
need for research on the prognosis of children exposed
to ZIKV during pregnancy, we evaluated children en-
rolled in the Cohort of Children of the Microcephaly
Epidemic Research Group (MERG) using the Survey of
Wellbeing of Young Children (SWYC) screening instru-
ments [7–9], which are validated for use in Brazil [10].
Although there are several instruments available for
identifying signs of risk for developmental delays, [11]
the SWYC is particularly advantageous due to its ease of
use as a first-line screening tool and its capacity to assess

children with varying degrees of neurological
impairment.
The aim of this study is to investigate the neurodeve-

lopment and behavior of groups of children with severe
and moderate ZIKV-related microcephaly and children
with prenatal ZIKV exposure in the absence of micro-
cephaly, born between 2015 and 2017 in Pernambuco
State, the epicenter of the microcephaly epidemic in
Northeast Brazil [12].

Methods
We conducted a cross-sectional study, nested in the
MERG pediatric cohort of children born during the peak
and decline of the ZIKV-related microcephaly epidemic
in the Northeast of Brazil. Detailed clinical histories for
all participating children were available in the core co-
hort dataset.
The MERG Pediatric cohort includes children recruited

from: (i) outpatient care at three health centres who were
identified in the peak of the microcephaly epidemic as
having a head circumference below 33 cm and/or with se-
vere neurological abnormalities; (ii) the MERG Micro-
cephaly case-control study; and (iii) the offspring of the
MERG cohort study of pregnant women with rash. Ethical
approval for the recruitment, follow-up, and screening
was provided by local institutional review boards (MERG
Pediatric Cohort, CAAE 52803316.8.0000.5192; MERG
Pregnant Women Cohort, CAAE 53240816.4.0000.5190;
MERG Case-Controlled Study 51849215.9.0000.5190).
Participants were evaluated between February 2017 and
August 2019 at two tertiary care hospitals (the Hospital
Universitário Oswaldo Cruz and at the Rehabilitation
Center of the Fundação Altino Ventura) in Recife, Per-
nambuco, Brazil.
From a total of 608 children followed in the MERG

Pediatric Cohort, SWYC screening information was
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unavailable in 80 participants who either could not be
assessed by SWYC or had inconsistencies in completing
the form. Of the remaining 528 children, a further 254
normocephalic children were not included as their
mothers had no laboratory testing for ZIKV by PCR.
Thus, the analysis was conducted on the 274 children
who completed neurodevelopmental screening and
whose mothers had their ZIKV infection status molecu-
larly confirmed during pregnancy. Of note, we restricted
inclusion in this study to participants whose mothers
underwent PCR testing for ZIKV, as PCR provides the
most robust laboratory evidence of an acute infection
during pregnancy (Fig. 1).
Group allocation depended on children’s head cir-

cumference (HC) and prenatal ZIKV exposure status.
To differentiate the severity of microcephaly between
groups 1 and 2, we considered the HC measure col-
lected closest to the date of the SWYC assessment.
To differentiate between the children without micro-
cephaly in groups 3 and 4, we considered the mater-
nal ZIKV infection testing results obtained during
pregnancy and at birth.
The children in Groups 1 and 2 were born during the

peak of the microcephaly epidemic and referred for fur-
ther neuro-pediatric evaluation as part of their tertiary
health care for CZS. Group 1 consisted of 114 children
with severe microcephaly and other clinical and/or
radiological abnormalities consistent with CZS. Severe
microcephaly was defined as a HC corresponding to ≥ 3
standard deviations (SD) below the mean for sex and age
(corrected for prematurity), according to Intergrowth
charts [13]. Group 2 included 20 children with

moderate microcephaly and other clinical or radiological
abnormalities consistent with CZS. Moderate micro-
cephaly was defined as a HC between 2 and < 3 SD
below the mean [13].
Group 3 included 94 children without microcephaly

born to mothers who tested positive for ZIKV during
pregnancy by one-step reverse-transcription polymerase
chain reaction (RT-PCR) using primers and probes pre-
viously described by Lanciotti and et al., [14]. Detailed
descriptions of the laboratory testing during pregnancy
have been previously published [15]. Group 4 included
46 neurotypical children with no microcephaly nor any
other brain abnormalities detectable by brain ultrasound
at birth who were born to mothers with no laboratory
evidence of ZIKV infection during pregnancy. The chil-
dren in Group 4 were recruited at birth as the control
group of a case-control study of microcephaly, whose
detailed descriptions of ZIKV testing and clinical evalua-
tions have been previously published [16].

Screening assessment and clinical evaluations
Trained health professionals evaluated children using
the SWYC, a standardized instrument for surveillance of
children’s neurodevelopment and behavior, which has
been translated into Brazilian Portuguese and validated
for use in Brazil [10]. If a child was administered the
SWYC more than once during follow-up, we analyzed
only the results from the oldest age at screening. Simi-
larly, in the case of repeated neurological evaluations, we
used the data from the evaluation that was closest in
time to the SWYC assessment.

Fig. 1 Flow diagram of children enrollment
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The SWYC includes: (a) milestones for screening cog-
nitive, language, and motor development in children
under 60 months of age, [7] (b) the Baby Pediatric
Symptom Checklist (BPSC) for social/emotional screen-
ing of children under 18 months of age [8] and (c) the
Preschool Pediatric Symptom Checklist (PPSC) for so-
cial/emotional screening of children aged 18 to 60
months [9] .
For the milestones, each form is age-specific (with cor-

rected age for children born prematurely) and includes
10 items. Children were considered at “risk of develop-
mental delay” when their total score for the milestones
fell below the cut-off points for the respective age
groups, using the standardized scoring thresholds for
both the original test from the United States of America
(USA) [7] and the Brazilian version [8]. For the behav-
ioral evaluations, children were considered to have ‘sus-
pected behavior abnormalities’ if they scored ≥ 3 on any
domains of the BPSC (i.e., irritability, inflexibility, and
difficulty with routines) or ≥ 9 for the PPSC, using the
American standardized scoring [9, 10]. Parents were in-
formed of the screening outcomes and received guidance
on appropriate home stimulation.
Following initial observations that many of the chil-

dren with microcephaly did not perform any skills
predicted by their chronological age, we adapted the
SWYC milestones form to explore the extent of the
delays. Specifically, we listed the SWYC milestones
from 1 to 36 months of age in increasing order of
complexity and evaluated children’s abilities to per-
form the ranked skills. Assessment using the adapted
form was brought to an end for a given child after
six answers of “not yet.”
Neurologic assessments were performed by qualified

pediatric neurologists. Neurological impairment was
identified as the occurrence of abnormalities in con-
sciousness, irritability, tone, muscular trophism, muscu-
lar strength, and/or proprioceptive reflexes. Radiological
abnormalities were detected by brain ultrasound, com-
puted tomography (CT), and/or magnetic resonance im-
aging (MRI) and included the presence of calcifications,
ventriculomegaly, cortical or cerebellar atrophy, and/or
neuronal migration disorder.

Data management and statistical analysis
We used the chi-squared test to compare the distribu-
tion of participants’ characteristics (sex, gestational age,
birthweight, small-for-gestational age, neurologic abnor-
malities identified by clinical evaluation, and neuroimag-
ing abnormalities) across groups 1 to 4. We reported the
overall statistical significance (p-value for Σ2 test), but
also calculated the residuals to identify the cells making
the greatest contribution to significant results. We calcu-
lated the Chi-squared test for trend to compare the

proportions of children ‘at risk’ for neurodevelopmental
delays and behavioral symptoms across the four groups.
To evaluate skill performance by age in children with

severe microcephaly (Group 1), we applied the adapted
milestones form in two age subsets: children evaluated
at 24 months of age and younger versus children older
than 24 months. The non-parametric Mann-Whitney U
test was used to test for differences in the performance
of development milestones, measured as ordinal scores
on the SWYC adapted form. This test is an alternative
to the one-way analysis of variance for data that is not
normally distributed.
We considered significant level set up at p < 0.05, and

all testing was two-tailed. Data were double entered into
the secure digital platform. Analyses were performed
using Stata, version 15 statistical software (StataCorp
LP) and R software.
A total of 274 infants underwent neurodevelopmental

and behavioral assessment. As this is the first study to
use SWYC assessment in children with CZS, there are
no previous data to inform the sample size calculations.
Therefore, we enrolled all children who fulfilled the in-
clusion criteria.

Results
The study sample comprised 274 children evaluated
using SWYC at a mean age of 31.4 months.
The HC of the children with microcephaly (Groups 1

and 2) ranged from − 2.03 to -10 SD below the mean for
age and sex.
Table 1 shows that severe microcephaly cases

(Group 1) had a statistically significant higher fre-
quency of abnormal neurological findings (112 of 114
[98.2%]) than the other groups. Similarly, neuroradio-
logical alterations (103 of 106 [97%]) were elevated in
Group 1 as compared to moderate microcephaly cases
(Group 2) (6 of 16 [37.5%]) and normocephalic chil-
dren born to ZIKV-positive mothers (Group 3) (5 of
43 [11.6%]). Other clinical findings in Group 1 in-
cluded: pyramidal syndrome (i.e., defined by the pres-
ence of hypertonia, clonus, hyperreflexia, and
increased archaic reflexes) (89.2%), inadequate re-
sponses to visual stimuli (57%), and inadequate re-
sponses to auditory stimuli (14%). The frequency of
seizures differed across the ZIKV-exposed groups and
were reported 67.9% [72 of 106] of the children in
Group 1, 17.6% [3 of 17] in Group 2, and 2.2% [2 of
90] in Group 3 (data not shown). The number of
children in the groups varied by outcome as not all
of the children were able to participate in all of the
assessments.
For Group 1, SWYC screening indicated risks of devel-

opment delay in 99% of the children using the Brazilian
threshold (100% using the American threshold).
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Strikingly, none of the children in Group 1 were able to
perform the milestone skills expected for their chrono-
logical age. For Group 2, SWYC screening indicated risks
of developmental delay in 65% of the children using the
Brazilian threshold (70% using the American threshold).
Of note, Group 3 (ZIKV-exposed children without micro-
cephaly) and Group 4 (neurotypical controls) had similar
frequencies of children at risk of development delay. Over-
all, there was a clear gradient of risk (chi-squared test for
trend, df = 3, p < 0.01), with a greater proportion of chil-
dren at risk of developmental delay in the microcephalic
groups compared to the normocephalic groups. Results of
the behavior evaluations with the BPSC and PPSC are

presented together (i.e., independently of age group) due
to the small number of children evaluated under 18
months of age. Based on the BPSC and PPSC, there were
no significant differences between the four groups in the
frequency of children with ‘at risk’ behavior (Table 2).

Among the Group 1 children assessed for developmen-
tal milestones using the adapted SWYC milestone form,
73% (82 of 111) were evaluated after two years of age. Al-
most all children scored lower than expected, independent
of the age of assessment. There were no statistically sig-
nificant difference in scores by age of assessment except
for the milestone of “Laughs” (Table 3).

Table 1 Birth characteristics, neurological and radiological characteristics of groups of infants with severe and moderate Zika related
microcephaly, as well as those exposed and neurotypical controls

Biological
and
radiological
characteristics

Study Groups

Group 1 Group 2 Group 3 Group 4

Severe Microcephaly
(n = 114)

Moderate microcephaly
(n = 20)

ZIKV maternal
infectiona

(n = 94)

Controlsb

(n = 46)
P Value

Sex, No. (%)

Female 64 (56.1) 12 (60.0) 47 (50.0) 25 (54.3) .786

Male 50 (43.9) 8 (40.0) 47 (50.0) 21 (45.7)

Prematurity, Weeks of Gestational Age, No. (%)

< 37 16 (14.2) 4 (25.0) 6 (7.9) 7 (15.2) .249

≥ 37 97 (85.8) 12 (75.0) 70 (92.1) 39 (84.8)

Missing 1 4 18 0

Birthweight, g, No. (%)

< 2500 28 (25.5) 10 (58.8)c 5 (7.1) 2 (4.3) < 0.001

2500–2999 47 (42.7) 3 (17.6) 14 (20.0) 12 (26.1)

≥ 3000 35 (31.8) 32 (69.6)

Missing 4 3 4 (23.5) 51 (72.9)

Small-for-gestational age, No. (%)

Yes 29 (26.4) 8 (47.1)c 5 (7.1) 2 (4.3) < 0.001

No 81 (73.6) 9 (52.9) 65 (92.9) 44 (95.7)

Missing 4 3 24 0

Clinical neurological abnormalities, No. (%)

Yes 112 (98.2)c 12 (60.0) 10 (11.1) 3 (7.5) < 0.001

No 2 (1.8) 8 (40.0) 80 (88.9) 37 (92.5)

Missing 0 0 4 6

Neuroimaging abnormalities, No. (%)

Yes 103 (97.2)c 6 (37.5) 5 (11.6) 0 (0) < 0.001

No 3 (2.8) 10 (62.5) 38 (88.4)d 46 (100)

Missing 8 4 51 0

The number of children varied due to missing values
aNormocephalic children born to mothers ZIKV PCR+
bNormocephalic children, considered neurotypical controls
cCells making the greatest contribution to significant results
dFor Group 3 brain ultrasound was performed within the first 6 months of life. For children who had the first evaluation over 6 months, neuroimaging was
performed only according to clinical indication
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Out of the full MERG pediatric cohort (N = 608) there
were 80 losses to follow-up, of whom 19 had microceph-
aly, 58 were offspring of the MERG Pregnant Women
Cohort, and 3 were from the control group of the
MERG case-control Study. To analyze if the 80 losses
would result in bias, we compared the characteristics of
children lost to and included in follow-up. For children
with microcephaly, both groups were similar. Of the 58
children born to mothers from the Pregnant Women
Cohort, 16 were born to mothers who were PCR- nega-
tive for ZIKV and did not meet the inclusion criteria for
the current study; we therefore excluded them from the
comparison (Table 4). From the remaining 42 children
considered lost to follow-up, 31 mothers were not tested
by PCR during pregnancy and 11 were PCR + for ZIKV
during pregnancy.

Discussion
Prior studies have highlighted both the urgent need
for further investigation of neurodevelopmental out-
comes in children with prenatal ZIKV exposure and
the challenge of identifying instruments appropri-
ated for evaluating children across the spectrum of
CZS, especially those with severe microcephaly
[17–19].
In this investigation, we applied the SWYC screen-

ing test to assess the neurodevelopment and behavior
of prenatally ZIKV-exposed children with and without
microcephaly who were born during the ZIKV

microcephaly epidemic (2015–2017) in Pernambuco
in the Northeast of Brazil [20].
According to the SWYC screening, virtually all partici-

pants with severe microcephaly (Group 1) and approxi-
mately two-thirds of participants with moderate
microcephaly (Group 2) were considered ‘at risk of de-
velopment delay.’ In comparison, 13.8% of ZIKV-
exposed normocephalic children (Group 3) and 21.7% of
control group children (Group 4) were identified by
SWYC assessment as being ‘at risk.’.
The high frequency of ‘risk of development delay’

observed in children with microcephaly is likely at-
tributable to the severity of the cerebral damage.
Cerebral malformations generally indicate a poor
prognosis in terms of neurodevelopmental function
[21]. In a child with microcephaly caused by etiolo-
gies other than ZIKV, the risk of intellectual disability
has been estimated to be 10.5% for HC between − 2
and − 3 SD, 51.2% for HC between − 3 and − 4 SD,
and 100% for HC below − 4SD [22].
In this cohort of children with ZIKV-related micro-

cephaly, the majority of cases in Group 1 had marked
chronic encephalopathy and extensive intraparenchymal
cortical calcifications, among other neuroimaging abnor-
malities. Furthermore, the frequency of central nervous
system malformations, pyramidal syndrome, epilepsy, in-
adequate response to visual and auditory stimuli were
higher in Group 1 than in the other groups evaluated.
These neuroimaging and clinical findings are predictors
of severe neuropsychomotor impairment and are among
the phenotypic characteristics of CZS [1, 2, 23–25].

Table 2 SWYC neurodevelopmental and behavioral outcomes in children with severe and moderate Zika related microcephaly,
children exposed without microcephaly and neurotypical controls

SWYC components Study Groups P Value (Σ2)

Severe
Microcephaly

Moderate microcephaly ZIKV maternal infectiona Controlsb

(n = 114) (n = 20) (n = 94) (n = 46)

Development milestone (Brazil), No. (%)

“At risk”/Needs review 113 (99.1)c 13 (65.0)c 13 (13.8) 10 (21.7) < 0.001

“Appears to Meet Age Expectations” 1 (0.9) 7 (35.0) 81 (86.2) 36 (78.3)

Development milestone (USA), No. (%)

“At risk”/Needs review 114 (100.0)c 14 (70.0)c 19 (20.2) 12 (26.1) < 0.001

“Appears to Meet Age Expectations” 0 (0.0) 6 (30.0) 75 (78.8) 34 (73.9)

Baby and Preschool Pediatric
Symptoms Checklist, No. (%)

“At risk”/Needs further evaluation or investigation 55 (51.0) 13 (65.0) 40 (42.5) 28 (63.7) 0.70

Adequate 53 (49.0) 7 (35.0) 54 (57.5) 16 (36.3)

Missing 6 0 0 2
aNormocephalic children born to mothers ZIKV PCR+
bNormocephalic children, considered neurotypical controls
cCells making the greatest contribution to significant results
Σ2test for trend: 151.6 (p < 0.0000001) OR: 1 (controls); 0.58 (ZIKV maternal infection); 6.69 (moderate microcephaly); 406.8 (severe microcephaly)
Σ2test for trend: 138.2 (p < 0.0000001) OR: 1 (controls); 0.72 (ZIKV maternal infection); 6.61 (moderate microcephaly); not calculated (severe microcephaly)
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Consistent with our findings, a 2019 Brazilian investi-
gation assessing children with cerebral palsy and prob-
able CZS, of whom 97.5% had microcephaly, using the
Bayley Scale of Infant and Toddler Development III
(Bayley-III) reported scores below 70 (i.e., suggesting se-
vere developmental delays) for almost all participants

across all three scales: cognitive, 95.1%; language, 97.6%;
motor, 97.6% [23].
A case series study assessing 24 children with ZIKV-

related microcephaly in Northeast Brazil using the Den-
ver Developmental Screening Test II also found a high
degree of impairment for neuropsychomotor

Table 3 Differences in development milestones gains between children with severe Zika-related Microcephaly, divided by age
groups, using the SWYC adapted form

Development Milestones ≤ 24 months (n = 29) > 24 months (n = 82)

Not
yet

Some
what

Very
much

Mean
Rank

Not
yet

Some
what

Very
much

Mean
Rank

P
Valuea

Makes sounds that let you know he or she is happy or upset 0 6 23 53.5 5 6 71 56.9 0.44

Seems happy to see you 1 2 26 54.8 2 4 76 56.4 0.61

Follows a moving toy with his or her eyes 5 10 14 50.3 7 26 49 58.0 0.21

Turns head to find the person who is talking 0 9 20 53.5 5 14 63 56.9 0.53

Holds head steady when being pulled up to a sitting position 9 12 8 54.3 25 30 27 56.6 0.73

Brings hands together 14 6 9 53.9 40 8 34 56.7 0.66

Laughs 1 5 23 50.2 3 2 77 58.0 0.03

Keeps head steady when held in a sitting position 9 14 6 50.3 19 37 26 58.0 0.23

Makes sounds like “ga,“ “ma,“ or “ba” 19 4 6 51.0 46 8 28 57.8 0.27

Looks when you call his or her name 3 9 17 50.3 7 15 60 58.0 0.17

Rolls over 16 8 5 52.4 42 16 24 57.3 0.45

Passes a toy from one hand to the other 26 0 3 52.9 67 4 11 57.1 0.35

Looks for you or another caregiver when upset 7 8 14 56.2 30 6 46 55.9 0.96

Holds two objects and bangs them together 26 1 2 54.7 71 3 8 56.5 0.66

Holds up arms to be picked up 26 2 1 50.8 64 4 14 57.8 0.14

Gets into a sitting position by him or herself 28 1 0 52.3 72 1 9 57.3 0.16

Picks up food and eats it 24 1 4 56.6 69 3 10 55.8 0.85

Pulls up to standing 25 4 0 52.0 65 1 16 57.4 0.26

Plays games like “peekaboo” or “patacake” 24 3 2 55.0 67 2 13 56.4 0.76

Calls you “mama” or “dada” or similar name 26 2 1 53.3 69 0 13 57.0 0.39

Looks around when you say things like “Where’s your bottle?“
or “Where’s your blanket?“

24 4 1 52.8 64 0 18 57.1 0.38

Copies sounds that you make 26 1 2 52.9 67 9 6 57.1 0.35

Walks across a room without help 29 0 0 53.5 77 0 5 56.9 0.18

Follows directions like “Come here” or “give me the ball” 28 1 0 51.8 71 4 7 57.5 0.13

Runs 29 0 0 53.5 77 0 5 56.9 0.18

Walks upstairs with help 28 0 1 55.4 78 0 4 56.2 0.75

Kicks a ball 27 2 0 57.8 80 0 2 55.4 0.29

Names at least 5 familiar objects like ball or milk 28 0 1 54.9 77 1 4 56.4 0.59

Names at least 5 body parts like nose, hand, or tummy 29 0 0 55.5 81 0 1 56.2 0.55

Climbs up a ladder at a playground 28 1 0 55.3 78 0 4 56.2 0.72

Uses words like “me” or “mine” 28 1 0 55.9 79 0 3 56.0 0.93

Jumps off the ground with two feet 28 1 0 55.9 79 0 3 56.0 0.93

Puts 2 or more words together like “more water” or “go
outside”

29 0 0 55.0 80 1 1 56.3 0.40

Uses words to ask for help 28 1 0 55.4 78 1 3 56.2 0.73
a Mann-Whitney U test
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development. The study reported that children with a
mean age of 19.9 months scored, on average, develop-
ment milestones equivalent of ages 2.1 to 3.4 months,
across the domains of language, motor, and personal/so-
cial skills [26].
Microcephaly, of any severity, is considered a useful

indicator for developmental delays. However, in our
study we compared neurodevelopment in children with
severe and moderate microcephaly and observed, that
among children with moderate microcephaly, 35% “Ap-
pear to Meet Age Expectations” using the SWYC assess-
ment. Therefore, this strategy of classifying the
microcephaly into moderate or severe allowed us to ob-
serve that the predictive value of SWYC varies according
to the severity of microcephaly.
Although the frequency of cases with moderate micro-

cephaly in our sample ‘at risk of developmental delay’
was lower than the frequency in cases with severe micro-
cephaly, the percentage of ‘at risk’ children was higher
than that found in the normocephalic groups, which in-
cluded the ZIKV-exposed and control children. Indeed,
both normocephalic groups had similar frequencies of
‘at risk’ children to each other and to the percentage of
‘at risk’ children in the general population that would be
expected to be found with screening tests [27].
Prior to this study, few studies with comparable

methods have investigated the development of children
without microcephaly who were exposed to ZIKV pre-
natally. In a cohort in the Southeast Brazil that was
assessed using Bayley-III, 28% of ZIKV-exposed children
presented with at least one below average score (i.e.,
scores < 85 − 70) for cognitive, language, and motor

function [28]. In using a screening test instead of a more
comprehensive developmental assessment, such as
Bayley-III, we would expect an even higher percentage
of children to be identified as being at risk of develop-
mental delay; however, our results from the SWYC
screening suggest a lower frequency of children at risk
of developmental delay in this cohort than compared
with the Rio de Janeiro sample. Nevertheless, we note
that a normal SWYC test cannot exclude subsequent
later-onset neurodevelopment repercussions. Therefore,
we recommend that children with prenatal ZIKV expos-
ure should undergo a longitudinal evaluation, using add-
itional and more accurate and comprehensive tests, such
as the Bayley-III [29].
Using the adapted SWYC form, the expected score

would be the one predicted by the child’s age at assess-
ment (i.e., the child should perform most of the mile-
stones expected for their age, as well as the milestones
of the lower age groups). This adaptation made it pos-
sible to observe that children with severe microcephaly
were severely limited in their ability to achieve develop-
mental milestones that were appropriate for their
chronological age. Even though over 74% of the children
assessed were > 24 months of age, over 80% were unable
to perform tasks corresponding to the expected skill ac-
quisition for 5–8 month of age, such as item 14 of the
adapted form (“passes a toy from one hand to another”).
When children were divided into two age groups (14–

24 months vs. 25–32 months), we observed no differ-
ences in the achievement of developmental milestones,
with the exception of the item “Laughs”. The acquisition
of this milestone by the older children may be explained

Table 4 – Comparison of the children with Zika related microcephaly and children exposed without microcephaly, included in the
analysis versus losses to follow-up, in relation to biological, clinical and radiological characteristics

Biological, clinical and radiological characteristics Microcephaly Children born to PCR +mothers

Losses
(n = 19)

Included
(n = 134)

Losses*
(n = 42)

Included
(n = 94)

Sex, N (%) Female 7 (42.1) 24 (41.4) 19 (45.2) 47 (50.0)

Male 11 (57.9) 34 (58.6) 23 (54,8) 47 (50.0)

Prematurity, Weeks of Gestational Age, N (%) < 37 2 (20.0) 20 (15,0) 4 (22.2) 6 (7.9)

≥ 37 3 (60.0) 109 (85,0) 14 (77.8) 70 (92.1)

Missing 14 5 24 18

Birthweight, g, N(%) < 2500 2 (25.0) 38 (29.9) 4 (15.4) 5 (7.1)

2500–2999 3 (37.5) 50 (39.4) 8 (30.8) 14 (20.0)

≥ 3000 3 (37.5) 39 (30.7) 14 (53.8) 51 (72.9)

Missing 11 7 16 24

Mother’s age Years 25.5 (22–34) 28 (21–31) 25 (20–32)

Image abnormalities Yes 2 (33.6) 109 (89.3) 3 (23.1) 5 (11.6)

No 4 (66.7) 13 (10.7) 13 (76.9) 38 (88.4)

Missing 13 12 26 51

*11 children born to PCR +mothers plus 31 children whose mothers were not tested PCR
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by the fact that this is a predominantly socio-emotional
skill, and less dependent on motor and cognitive func-
tions, which are usually highly affected in these children.
When comparing the performance of the older and
younger groups, these findings suggest a significant limi-
tation in the ability of the children with severe micro-
cephaly to achieve new milestones as they get older,
which may be explained by the severity of their neuro-
logical impairment.
Although the SWYC tool was not specifically designed

to provide the deficit profile of development, this study
demonstrates an additional application of the SWYC,
which addresses the current lack of specific instruments
for evaluating development in children with severe
neurological impairment. Further follow-up studies and
repeated measures will be valuable for confirming the
observation that children with severe ZIKV-related
microcephaly maintain the neurodevelopment far below
their expected age.
Using the SWYC checklists, the risk for behavioral and

emotional symptoms was observed to be similar among
the groups. It is plausible that the SWYC questions re-
lated to behavior and emotional symptoms may have
generated inconsistent responses for children with severe
microcephaly, due to the children’s serious motor and
intellectual limitations. Questions such as “Is your child
interested in playing with other children”, “Does your
child break things on purpose”, or “Is your child fidgety
or unable to sit still” are likely out of context for most
children with severe microcephaly. Therefore, we sug-
gest that these results do not mean that Group 1 has
lower risk for behavioral problems, but rather that chil-
dren with severe microcephaly do not possess the cogni-
tive, emotional and motor skills required to demonstrate
the ‘at risk’ behaviors. Therefore, this result should be
interpreted with caution.
Initial descriptions of CZS mentioned irritability as

a frequent clinical finding [30]. Although this charac-
teristic was often reported and observed in newborns
and young infants with a phenotype typical for CZS,
irritability became less evident as the children grew
(personal observation of the authors). In this investi-
gation, irritability was not a predominant complaint
in Group 1, which may be related to the fact that
most of these children were assessed after the second
year of life, at which time irritability may have been
less likely to be presented. It is not possible to deter-
mine whether the condition was resolved or if this
behavior was modified by the frequent use of anticon-
vulsants in this population [31].
Also unexpectedly, children without microcephaly

(Groups 3 and 4) demonstrated high frequencies of
risk signs of behavioral and emotional symptoms
(42.5% and 63.7%, respectively). Although the

underlying cause in this cohort is currently unknown,
we note that studies have shown a progressive in-
crease of the prevalence of behavioral abnormalities
in childhood worldwide [32–34].

Limitations and strengths
Since cases of microcephaly were identified during an
emerging epidemic, and since it is not possible to ensure
that microcephaly was representative of all cases born
during the Zika outbreak, there is a potential for selec-
tion bias. Specifically, the moderate cases of microceph-
aly that are less readily clinically detectable could be
underrepresented in this cohort. In addition, a survival
bias related to CZS severity cannot be excluded as the
neurodevelopment assessments were performed at dif-
ferent ages across the clinical groups. Additionally, selec-
tion bias in group 3 may have occurred as 31 children
without microcephaly and unknown prenatal ZIKV ex-
posure status from the MERG pregnancy cohort were
lost to follow-up and more likely than the included chil-
dren to be born with low birth weight or prematurely,
two characteristics associated with both ZIKV exposure
and neurodevelopmental delay.
Nevertheless, efforts were undertaken to mitigate the

potential for bias in this study. First, the field workers
were trained to uniformly apply the SWYC. For normo-
cephalic children, the staff were blinded to information
about mothers’ gestational and ZIKV testing history;
however, for children with microcephaly (Groups 1 and
2), a blinded assessment was not possible. Second, this
study utilizes a validated translation of SWYC to
minimize risks of cross-cultural biases and to achieve re-
liable and comparable measures of the developmental
and behavioral domains.
The sample size was large enough to detect the differ-

ences among groups in relation to development mile-
stones. For the behavioral evaluations, as the difference
in the frequency of “suspected behavior abnormalities”
between groups was not large, we found a low power of
the study to detect differences of the magnitude. Power
of comparison between groups 1 + 2 vs. group 3 = 31%;
power of comparison between groups 1 + 2 vs. group
4 = 24%; power of comparison between groups 3 vs.
group 4 = 63%.
Among the strengths of this study, we can highlight

the possibility of comparing children with different levels
of ZIKV involvement, including children with and with-
out microcephaly, in addition to a control group. Also,
the use of the adapted form not only enabled the detec-
tion of the delay, but also enabled us to define skills that
were expected but not achieved, which allows earlier
and more targeted multidisciplinary intervention to ad-
dress the identified needs in children with severe
microcephaly.
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Conclusions
Children with prenatal exposure to ZIKV may manifest
different levels of neurodevelopmental impairment, and
even amongst children with microcephaly, there is a
variability in functional performance. Our results suggest
that children with severe microcephaly do not seem to
acquire new skills beyond a certain stage of develop-
ment. To confirm these findings, we suggest that chil-
dren with severe microcephaly should be evaluated with
repeated measurements from the adapted form. For chil-
dren with prenatal exposure to ZIKV at risk of develop-
mental delay, we suggest repeated neurodevelopmental
assessments using more accurate and comprehensive in-
struments, such as the Bayley-III. SWYC may be
adopted as a screening tool, thereby enabling at-risk
children to be referred for further detailed assessment
and multidisciplinary care.
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